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Abstract. In this paper, we study non-uniform multilevel quantization
problem in cognitive radio networks (CRNs). We consider a practical
collaborative spectrum sensing (CSS) scenario in which secondary users
(SUs) cooperate with each other to decide about the presence of the
primary user (PU). We consider a cooperative parallel access channel
(CPAC) scheme in reporting channels in which SUs transmit their quan-
tized data to fusion center (FC) for the final decision. Also, we eval-
uate the final summation-based decision statistic and Kullback-Leibler
(KL) divergence performance criterion in the Rayleigh fading channel
and additive Gaussian noise. We compare the non-uniform quantization
scheme performance with the uniform one and illustrate the sensitivity
of the provided quantization scheme to average error probability of sym-
bols. Furthermore, the effect of the collaboration in the CPAC scheme on
performance of the distributed sensing compared with non-cooperative
scheme is investigated.

Keywords: Collaborative spectrum sensing · Non-uniform quantiza-
tion · Rayleigh fading channel

1 Introduction

Cooperative spectrum sensing (CSS) is one of the ways to improve the per-
formance of spectrum sensing algorithms in the shadowing and channel fading
situations [1–6]. In [1] the impact of sensors collaboration to achieve optimal
performance is studied. Authors in[2], investigate a CSS problem in which the
energy sensed by each SU is transmitted to the others and each SU attempts to
decide based on its own information and received signals. In [3–5], cooperation
in CRNs with assumption of independent channels is considered. The authors in
[3] and [4] assume the same distribution for all users, while [5] assumes different
distributions which is more realistic for practical scenarios. In [6], the authors
propose a method which uses spatial diversity to deal with the devastating effects
of a fading channel. However, due to the increasing wireless network users, the
CSS algorithms are often faced with the problem of limited bandwidth. Thus,
information received by the SUs must be properly quantized before transmitting
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to FC in order to occupy less bandwidth, while maintaining the accuracy of the
observations [7–15]. In [7], the M -level quantization problem for a distributed
detection system is investigated by assuming interfering nodes and Byzantine
attacks. In [8] the problem of SUs binary decisions fusion in Rayleigh channels
is studied. Also in [9], authors analyze quantizer design which is robust to link
outages and/or sensor failure in a multi-user system. In [10], comparison of the
performance of single-user and collaborative multi-user quantized system has
been studied. In [11] and [12], authors review the performance of relay based
collaborative distributed detection system for the quantize and forward scheme.
The same problem with the assumption of orthogonal multiple access channels
is considered in [12]. In [13], the authors provide a quantization system with
multiple non-uniform threshold levels, while the impact of channel errors on the
performance of the quantized detection system has been examined in [14]. In
[15], a simulation-based investigation of energy quantization effect on proposed
detector performance is provided.

In this paper, we investigate a multilevel quantization problem in a practical
collaborative distributed detection system. We review an M -level non-uniform
quantization procedure. In order to make the final decision, the SUs transmit
their quantized data to FC in CPAC protocol. We assume a practical wireless
report channel with Rayleigh fading and analytically evaluate the corresponding
performances. A remarkable point of this paper is the comprehensive study of
the SUs cooperation impact on practical wireless networks by deploying a non-
uniform quantization technique. The rest of the paper is organized as follows. In
Section 2, we introduce the system model and assumptions on SUs detector and
applied transmission protocol. In Section 3, we provide boundaries calculations
of uniform and non-uniform multilevel quantization scheme which we have used.
Derivation and evaluation of final decision performance in FC and KL diver-
gence performance criterion are investigated in Section 4. Simulation results are
provided in Section 5 and finally, Section 6 summarizes the conclusions.

Notation: Lightface letters denote scalars. Boldface lower-and upper-case letters
denote column vectors and matrices, respectively. x(.) is the entries and xi is
sub-vector of vector x and [A].,. is the entries of matrix A. N (μ, σ2) denotes
Gaussian distribution with mean μ and variance σ2. Superscript T is transpose
and Q(x) is Q-function Q(x) = 1√

2π

∫ ∞
x

exp
(

−u2

2

)
du.

2 System Model

Suppose a CSS system in CRNs which K SUs detect presence or absence of PU
signals in certain frequency range. We assume each SU has been equipped with
a single antenna. Thus, the final goal of this spectrum sensing system is decision
between the two following hypotheses,

yi(t) =

{
wi(t) H0

s(t) + wi(t) H1

, i = 1, 2, ..,K, (1)
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where yi(t) is observed signal in ith SU, s(t) is PU’s transmitted signal and wi(t)
is additive white Gaussian noise of the channel between the PU antenna and ith
SU.

There are several methods for received signal detection in CRNs that each
of them require different information about PU signal parameters. Generally,
it is assumed that PU signal and priori probabilities of transmitted symbols
are unknown for SU and the traditional and efficient detection method is energy
detector (ED) in this situation. For this reason and also better expression, we use
ED in this paper. Input band-pass filter of detector selects the center frequency
fc, and the bandwidth of interest, W . By assuming sampling time interval T ,
each SU takes P = 2TW samples. Thus, ED for each user can be declared, as
follows,

Ti =
P∑

t=1

|yi(t)|2. (2)

Then, statistical distributions of the derived detector in each SU are,

Ti ∼
{

χ2
P H0

χ2
P (λi) H1

, i = 1, 2, . . . ,K, (3)

where χ2
P and χ2

P (λi) denote central and non-central chi squared distributions,
respectively, each with P degrees of freedom and non-centrality parameter of λi

for the latter distribution. λi is the instantaneous signal to noise ratio (SNR) of
ith SU. To overcome the bandwidth constraint problem of reporting channels,
which link SUs and FC, calculated statistic in each SU is quantized into M lev-
els. The M quantized symbols are transmitted to FC over non-ideal channel. In
different papers, cooperative and non-cooperative schemes are used for trans-
mission scheme. The point we consider in this paper is that we benefit the whole
capacity of the report channels to transmit the SUs data to FC. One scheme
that has this feature is CPAC, which is described in the following. According
to the results derived in [6], CPAC scheme has the best performance among
the analogous ones. Thus, transmission scheme which is used in this network is
CPAC, where sensors are assigned orthogonal channels for transmission.

CPAC transmitting protocol, as is shown in Fig. 1, involves K2 phases that
each SU transmits during K phases, despite the non-cooperative one, which is
called PAC scheme, where each SU transmits data only in one phase. Thus, the
symbol of each SU is transmitted over all of report channels between SUs and
FC. Therefore, received vector in FC is,

yFC = HequSU + n, (4)

where uSU = (uSU1 , uSU2 , ..., uSUK
)T is transmitted vector from SUs to FC, n is

additive noise vector in which ni, i = 1, ...,K is a Gaussian random variable
with distribution N (0, σ2

n) and Heq is the equivalent channel matrix as follows,
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Fig. 1. Structure of CPAC scheme. White blocks represent inactive slots, blue blocks
represent active slots (dark blue for transmitting and light blue for receiving).

Heq =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hK

h2 0 . . . 0
0 h3 . . . 0
...

...
. . .

...
0 0 . . . h1

...
...

. . .
...

hK 0 . . . 0
0 h1 . . . 0
...

...
. . .

...
0 0 . . . hK−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5)

where hi, i = 1, ...,K is ith SU’s channel fading gain which is assumed has
Rayleigh distribution. Also channel gain and additive noise is assumed indepen-
dent. Remarkable thing is that in this scheme the cooperative channels between
sensors are assumed to be error-free. In other words, we assume that the symbols
trasmitted from each SU, is received completely and correctly in others SUs.
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3 Multilevel Quantization Scheme

In this section, we provide a multilevel quantization scheme to transmit statis-
tic values of SUs Ti, i = 1, ...,K to FC to make final decision on presence or
absence of PU signal. In the multilevel quantization scheme, we need to parti-
tion Ti into multiple regions. Thus, we must determine multiple boundaries. In
the following subsections, we investigate on uniform and non-uniform procedures
on boundaries determination.

3.1 Uniform Quantization Scheme

In the uniform method, which is a common approach for M -level quantization,
the process is such that each user determine the maximum and minimum values
of the derived statistic during N observations, as the upper and lower quantiza-
tion bounds, respectively. In the next step, the range between these two values is
divided into M interval and finally quantized value for each interval is obtained,
as follows,

τm,i =
(

θmax,i − θmin,i

M

)

m + θmin,i, m = 0, . . . , M, (6)

where θmax,i and θmin,i are maximum and minimum of T(j)
i , j = 1, . . . , N ,

respectively. And thus, quantized values are,

νm,i =
(

τm−1,i + τm,i

2

)

, m = 1, . . . , M, (7)

3.2 Non-uniform Quantization Scheme

Since detection error usually occur in low SNR and nearby thresholds and in
higher SNR detection of PU presence is much easier, it is more efficient that quan-
tization boundaries density be higher nearby thresholds. In this study, we use
a procedure to create non-uniform boundaries. In this procedure, quantization
boundaries of each SU are derived based on the threshold value ηi, i = 1, . . . , K
which has been calculated by consideration of Neyman-Pearson method for
binary hypotheses and acceptable false alarm probability [13]. The M quantiza-
tion levels of ith SU quantizer is represented by USUi

= {u1,i, u2,i, . . . , uM,i}
and its quantization boundaries are ti = {t0,i, t1,i, . . . , tM,i}. In fact, when
Ti ∈ (tm+1,i, tm,i] for m = 1, . . . , M , quantizer decides USUi

= um,i. First, we
determine an upper and lower bounds for tm,i, in order to cover all possible val-
ues of each SU’s statistic. Then, determination of boundaries values is in a way
that number of boundaries near the binary hypothesis threshold ηi be greater.
Therefore, boundaries are determined as follows,

⎧
⎪⎪⎨

⎪⎪⎩

tM,i = Ti + ηi

tM
2 ,i = ηi

t0,i = ηi − Ti.

(8)
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where,

Ti = max
j

|T(j)
i − ηi|, j = 1, . . . , N, (9)

is the maximum distance of ith SU statistic from threshold in N observations and
also T(j)

i is ith SU statistic in jth observation. For middle values of boundaries,
we have,

{
tm,i = tm+1,i+ηi

2 , m > M
2

tn,i = tn−1,i+ηi

2 , n < M
2 .

(10)

Therefore, quantized value of each level is defined as,

um,i =
tm−1,i + tm,i

2
, m = 1, ...,M. (11)

The probability mass function (PMF) of USUi
, which is the transmitted value to

FC from ith SU, can be expressed as,

P (USUi
= um,i|Hj) =

∫ tm,i

tm−1,i

f(Ti = t|Hj)dt, j = 0, 1. (12)

According to cumulative distribution function (CDF) of central and non-central
chi-square random variables and (3), we have,

P (USUi
= um,i|H0) =

γ
(

N
2 ,

tm,i

2

)
− γ

(
N
2 ,

tm−1,i
2

)

Γ
(

N
2

) , (13)

where Γ (.) and γ(., .) are gamma and lower incomplete gamma function, respec-
tively.

P (USUi
= um,i|H1) = QN

2
(
√

λi,
√

tm−1,i) − QN
2
(
√

λi,
√

tm,i), (14)

for m = 1, ...,M , where QN
2
(., .) is Marcum Q-function.

As mentioned before, the report channel is assumed fading channel with
Rayleigh distribution and additive Gaussian noise. Therefore, according to (5)
and Fig. 1, all of SUs quantized data are transmitted to FC over K different
independent channels. i.e. for each SU’s transmitted symbol uSUi

, we have K
observations in K different time phases. If variable l be index of observations
time phases, it can be seen in Fig. 1 that transmitted symbol related to ith SU,
uSUi

, is received in l = i + nK, n = 0, ...,K − 1, time phases. Thus, the received
signal from ith SU in lth time phase is,

yFCi
[l] = uSUi

hi,l + ni = xSUi,l
+ ni, (15)

where hi,l = [Heq]l,i has Rayleigh distribution with unit power as follows,

fH(hi,l) = 2hi,le
−h2

i,l , hi,l > 0. (16)
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For xSUi,l
distribution, we have,

FXSUi,l
(xSUi,l

) = P (XSUi,l
< xSUi,l

) = P (Hi,lUSUi
< xSUi,l

)

= P (Hi,l <
xSUi,l

uSUi

) = FH(
xSUi,l

uSUi

). (17)

Then,

fXSUi,l
(xSUi,l

) =
1

uSUi

fH(
xSUi,l

uSUi

) (18)

=
2

u2
SUi

xSUi,l
exp

(

−
x2

SUi,l

u2
SUi

)

,
xSUi,l

uSUi

> 0.

4 Decision in Fusion Center

In this section, we derive a posteriori probability of received symbols in FC from
each user. Since, additive noise is assumed Gaussian, distribution of observed
signal in FC from ith SU in lth time phase can be calculated as,

f(yFCi
[l]|uSUi

,Hj) = f(yFCi
[l]|uSUi

) (19)

=
∫ +∞

−∞

2xSUi,l√
2πu2

SUi

e

−

⎛
⎜⎝

x2
SUi,l

u2
SUi

+
(yFCi

[l] − xSUi,l
)2

2σ2
n

⎞
⎟⎠

dxSUi,l
.

By replacement τSUi,l
=

xSUi,l

uSUi

, and also from Section 3.462 in [16], (19) might

be simplified as,

f(yFCi
[l]|uSUi

) =

√
2σn√

π(u2
SUi

+ 2σ2
n)

e

⎛
⎜⎝

−yFCi
[l]2

2σ2
n

⎞
⎟⎠

(20)

×

⎡
⎢⎢⎢⎣1 +

√
2πuSUi

yFCi
[l]

σn

√
u2

SUi
+ 2σ2

n

e

⎛
⎜⎝

u2
SUi

yFCi
[l]2

2σ2
n

(
u2

SUi
+ 2σ2

n

)
⎞
⎟⎠{

1

2
− 1

2
erf

(
1√
2

−uSUi
yFCi

[l]

σn

√
u2

SUi
+ 2σ2

n

)}
⎤
⎥⎥⎥⎦ .

In (20), erf(x) =
2√
π

∫ x

0
e−t2dt is Gaussian error function of random variable x.

By assumption ASUi
=

1
u2

SUi
+ 2σ2

n

, then (20) can be rewritten as follows,

f(yFCi
[l]|uSUi

) =
√

2√
π

σnASUi
e

⎛
⎝−yFCi

[l]2

2σ2
n

⎞
⎠

+ 2uSUi
A

3
2
SUi

yFCi
[l]e−ASUi

yFCi
[l]2Q

(

−uSUi
A

1
2
SUi

σn
yFCi

[l]

)

. (21)



Non-uniform Quantized Distributed Sensing 85

As we can see, by assumption of known noise variance, (21) is function of uSUi

and yFCi
[l] and is independent from instantaneous channel value. Since transmit-

ted data from SUs are discrete random variables, we have to calculate PMF of
received symbols as a posteriori probability of quantized data from distribution
of received signals in FC. Thus,

P (UFCi
[l] = um,i|uSUi

= uk,i) =
∫

Ωm

f(yFCi
[l] = t|uk,i)dt, (22)

where Ωm is decision region of um,i symbol. Calculation of integral in (22) is
given in Appendix. Thus, from (12) and (A-4), a posteriori probability of received
symbol from ith SU under both hypotheses can be represented as,

P (UFCi
[l] = um,i|Hj) =

M∑

k=1

P (UFCi
[l] = um,i|uSUi

= uk,i)P (USUi
= uk,i|Hj),

(23)

for j = 0, 1. By averaging on K time phases in which ith SU’s symbol is trans-
mitted, we have, for j = 0, 1,

P (UFCi
= um,i|Hj) =

1
K

K∑

l=1

P (UFCi
[l] = um,i|Hj). (24)

To determine transmitted symbol of the ith SU, maximum a posteriori prob-
ability (MAP) is used such that the received symbol with greater a posteriori
probability is selected. Thus, for equal priori probabilities of both hypotheses,
we have,

ûSUi
= max

m=1,...,M
{um,i : P (UFCi

= um,i)}. (25)

4.1 Decision Rule Based on Received Symbol Summation

In this subsection, we consider summation based fusion scheme in FC in which
FC sums the determined symbols of all SUs to make final decision. i.e.,

TFC =
K∑

i=1

ûSUi
�H1

H0
η
FC

. (26)

To evaluate performance of the expressed decision rule, we have to derive the
PMF of TFC. Thus, From [17], we have,

p(TFC |Hj) = p(ÛSU1 |Hj) ∗ . . . ∗ p(ÛSUK
|Hj). (27)

Where p(ÛSUi
|Hj) denotes the PMF of ith received symbol estimation and ∗

denotes the convolution operator of discrete random variables. If LTFC , which
has MK elements, be the set of values which TFC can take, then according to
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Neyman-Pearson test for discrete random variables, decision rule at the FC is
given by,

⎧
⎪⎪⎨

⎪⎪⎩

TFC < η
FC

, H0

TFC = η
FC

, H1 with probability γ

TFC > η
FC

, H1,

(28)

where for maximum acceptable false alarm probability α, η
FC

is the threshold
given by,

η
FC

= min
tFC∈LTFC

{tFC : P (TFC > tFC |H0) < α}. (29)

and γ is randomization parameter as follows,

γ =
α − P (TFC > η

FC
|H0)

P (TFC = η
FC

|H0)
. (30)

Detection probability can be calculated as,

Pd = P (TFC > η
FC

|H1) + γP (TFC = η
FC

|H1). (31)

4.2 Kullback-Leibler Divergence Criterion in FC

In this subsection, we benefit KL divergence criterion for evaluation of detector
performance in FC, which in probability, is a criterion of the difference between
two probability distributions. The KL divergence is a fundamental equation to
quantify the proximity of two probability distributions[18]. While, it may be used
as criterion of divergence between the two hypotheses in detection, since it is
the expected log-likelihood ratio[19]. In this paper, we express the KL divergence
criterion in the following form,

DKLFC
=

∑

m

P (û = m|H1) ln
P (û = m|H1)
P (û = m|H0)

, (32)

where P (û = m|Hj), j = 0, 1, is PMF of the received symbols estimations vector,
û = {ûSU1 , ûSU2 , ..., ûSUK

} and m ∈ {u1,1, ..., uM,1} × . . . × {u1,K , ..., uM,K}. As
mentioned before, we assume that SUs are independent and the PMF of them
are independent too. Therefore, (32) can be expressed as follows,

DKLFC
=

K∑

i=1

M∑

m=1

P (ûSUi
= um,i|H1) ln

P (ûSUi
= um,i|H1)

P (ûSUi
= um,i|H0)

. (33)
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5 Simulation Results

In this section, we provide a comparative simulation-based performance of the
system which is introduced in this paper, based on Monte-Carlo simulations.

Fig. 2 depicts comparison of the performance in FC for different quantization
levels under uniform and non-uniform schemes based on detection probability
Pd versus SNR at false alarm probability rate Pfa = 0.01 and K = 4 in the
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Fig. 2. Probability of detection Pd of the CPAC scheme versus SNR for Pfa = 0.01,
K = 4 and different uniform and non-uniform quantization levels.
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Pfa = 0.01, M = 8 and different number of users.
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Fig. 4. Average error probability of FC detector versus SNR in the CPAC scheme for
M = 8.
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Fig. 5. sensitivity of FC to average error probability of symbols received from each SU
versus SNR in the CPAC scheme for K = 4.

CPAC scheme. As can be seen, statistic performance is more efficient in the
provided non-uniform scheme compared with the uniform one and also with
increasing quantization levels, performance will be better, but this improvement
in the levels change from 2 to 4 is more than 4 to 8 or 8 to 16 in the non-
uniform one. Because values of bounds in this method are very close to each
other near the threshold and so increasing of levels will not have noticeable
effect. Therefore, non-uniform method does not require high quantization levels
for better performance that will be effective for less occupied bandwidth.
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Fig. 6. KL divergence performance metric in FC versus SNR in CPAC scheme for
K = 2.

In Fig. 3, we investigate the impact of CPAC protocol on performance of
the FC statistic based on detection probability Pd versus SNR for M = 8 and
Pfa = 0.01. As can be seen, in addition to better performance of the detector
for more SUs, performance improvement in cooperative scheme compared with
non-cooperative one, PAC, is also evident.

In Fig. 4, decreasing average error probability Pe of FC detector versus SNR
in CPAC scheme for M = 8 and the higher number of SUs is depicted. Fig. 5
shows sensitivity of FC detector to average symbol error probability for K = 4
and cooperative scheme. In this figure, the maximum numerical value for sensi-
tive criterion is equal 1, thus the values closer to one are more sensitive, which
means in higher quantization levels, receiver is more sensitive to average symbol
error and thus its decision is more accurate.

Finally, in Fig. 6 we provide simulation-based evaluation of the KL divergence
criterion versus SNR for different quantization levels and K = 2 in CPAC
scheme. Higher values of KL divergence which means more accurate decision
can be observed in figure with increasing quantization levels.

6 Conclusion

In this paper, we investigated a practical CSS problem in which SUs use multi-
level non-uniform quantization to transmit their data to FC based on cooperative
scheme in Rayleigh fading wireless links. We detected symbols received in FC
from each SU in different time phases of CPAC scheme based on MAP pat-
tern. In addition, we provided summation-based final decision statistic and KL
divergence metric to evaluate the system performance in FC. Simulation results
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revealed the effect of SUs cooperation and also applying non-uniform quantiza-
tion on the performance improvement of the derived detector in FC. Also, we
showed that sensitivity of the detector to average symbol error probability and
KL divergence criterion will increase in higher quantization levels.
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Appendix

In this section we provide calculation of integral in (22) as follows,
∫

Ωm

f(yFCi
[l] = t|uSUi

)dt (A-1)

=
∫

Ωm

√
2σnASUi√

π
e

⎛
⎝−t2

2σ2
n

⎞
⎠

dt+
∫

Ωm

2uSUi
A

3
2
SUi

te−ASUi
t2Q

(

−
uSUi

√
ASUi

σn
t

)

dt.

First and second parts of (A-1) can be calculated, respectively, as,

I :
∫ √

2σnASUi√
π

e

⎛
⎝−t2

2σ2
n

⎞
⎠

dt = σ2
nASUi

erf
(

t√
2σn

)

. (A-2)

Also, by integration by parts method, for second part we have,

II :
∫

2uSUi
A

3
2
SUi

te−ASUi
t2Q

(

−
uSUi

√
ASUi

σn
t

)

dt

=
√

πu2
SUi

ASUi

2
erf

(
t

σn

)

− uSUi

√
ASUi

Q(−
uSUi

√
ASUi

σn
t)e−ASUi

t2 . (A-3)

Then, from (A-2), (A-3) and (22), we have,

P (UFCi
[l] = um,i|uSUi

= uk,i) (A-4)

=

[
σ2

nAk,ierf

(
t√
2σn

)
+

√
πu2

k,iAk,i

2
erf

(
t

σn

)
− uk,i

√
Ak,iQ(−uk,i

√
Ak,i

σn
t)e−Ak,it2

]
Ωm

.
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