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Abstract. Cognitive radio (CR) technology is a promising candidate for
next generation intelligent wireless networks. The cognitive engine plays
the role of the brain for the CR and the learning engine is its core. In
order to fully exploit the features of CRs, the learning engine should be
improved. Therefore, in this study, we discuss several machine learning
algorithms and their applications for CRs in terms of spectrum sensing,
modulation classification and power allocation.
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1 Introduction

The evolution of wireless communications systems and many other devices is
continuously subject to two major development trends: a) improvement of exist-
ing capabilities, and b) extension and insertion of new features into the existing
structures. In what concerns the first trend, one can notice that insertion of new
features arises from the fact wireless systems progress very fast in accordance
with the market demands. Therefore, wireless systems always require new ser-
vices and applications. One of the most striking examples for such situations
is cell phones. Earlier cell phones were used only for voice transmissions along
with limited text messaging applications however contemporary cell phones are
capable of transmitting multimedia along with an operating system running on.
In what concerns the second trend, a continuous improvement of existing capa-
bilities is a necessity since incorporating new features adds new dimensions that
help improve the existing capabilities.

The above mentioned considerations suggest that adaptation and optimiza-
tion should always be employed as key enabling technologies for the contin-
uous update of communication systems to dynamically changing conditions.
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In this regard, the purpose of this study is to provide a conceptual descrip-
tion of machine learning algorithms used in the design of wireless communi-
cation systems in the light of a recently emerging technology called cognitive
radio (CR) [1–5]. The idea of CR was first presented by Joseph Mitola III.
and Gerald Q. Maguire, Jr. in [3] “The point in which wireless personal digital
assistants and the related networks are sufficiently and computationally intel-
ligent about radio resources and related computer-to-computer communication
to detect user communications needs as a function of use context, and to pro-
vide radio resources and wireless services most appropriate to those needs” [1].
There are many advantages offered by CRs in wireless communications. A CR
is basically an intelligent wireless device which is aware of the environment and
spectrum and is able to adapt/optimize itself easily to the characteristics of the
communication channel to satisfy the user needs. The environment of a CR may
include radio frequency (RF) spectrum, user behavior, transmission character-
istics and parameters, multi-access interference, localization and data rates of
users. The key strengths of machine learning algorithms are their adaptive nature
with respect to the dynamic changes of the channel and communication system
parameters. In addition, the ability to work without prior knowledge about the
communication environment represents another important feature of CRs. These
considerations recommend machine learning as a promising technology for CRs.

In this paper, applications of machine learning for learning engine, spec-
trum sensing, modulation classification and power allocation in CRs are studied
along with currently available methods and approaches to better adapt and
optimize the overall system performance. The rest of the paper is organized
as follows. The learning engine is presented in Section 2. An overview of key
machine learning techniques that can be implemented into the learning engine
is presented in Section 3. A review of machine learning applications in spectrum
sensing, modulation classification and power allocation for CRs are presented in
Section 4, Section 5 and Section 6, respectively. Concluding remarks are provided
in Section 7.

2 Learning Engine

The cognitive engine is the brain of a CR system and it enables the system to
react intelligently to changes in the environment. Basically, as shown in Figure 1,
the CR extends a software-defined radio by adding an independent cognitive
engine, which consists of a learning engine and reasoning engine [6]. The learning
engine lies in the core of the cognitive engine and it aims to build a model or an
objective function based on the inputs that are to be used in taking the right
decisions and making the correct predictions.

In the context of CRs, no simple relationship between the system inputs
and the objective function is available due to the high complexity and degree
of freedom of the software-defined radio (SDR). In this case, several channel
statistics, such as transmit power, modulation scheme and sensing scheme, need
to be adjusted simultaneously [7]. In such scenarios, adopting a policy-based
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Fig. 1. The structure of cognitive radio engine.

decision making strategy is infeasible due to the large number of states that
the cognitive radio networks (CRNs) and its radio frequency (RF) environment
assume. In addition, even if the resources are available, considering all the pos-
sible states and actions is impossible given the dynamic and random nature of
CRNs. Thus, the learning engine is crucial in the operation of the CR engine.
A learning engine is adopted to estimate the channel statistics. The results are
incorporated into a predictive calculus-based reasoning engine to make decisions
and achieve certain objectives.

Several learning algorithms can be used to implement the learning engine. For
the sake of brevity, Table 1 lists some of recent works involving the applications
of machine learning algorithms in CR. The recent literature shows extensive use
of different learning algorithms in CRs which will be discussed in Section 3. How-
ever, several factors influence the selection of the learning algorithm to imple-
ment the learning engine. For example, one important factor is the availability
of prior knowledge about the environment. Supervised learning methods are
applicable only if prior information about the environment is known to train
the agent. On the other hand, unsupervised learning methods are appealing for
scenarios with lack of prior information. The computational complexity of the
algorithm is the main limiting factor especially for CRs with limited resources.
In general, CRNs and their RF environment exhibit the following characteristics
[7]: (i) incomplete observation information about the state variable, (ii) incorpo-
ration of CRs into CRNs and (iii) unknown RF environment. Consequently, the
learning engine must be designed by taking into account the above characteris-
tics such that the learning method efficiently and optimally adapt to the changes
and the incompleteness of the observed information and RF environment.
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Table 1. Classification of Papers Exploiting Machine Learning Algorithms

Supervised Learning
Unsupervised Learning Reinforcement Learning

SVM KNN

Spectrum Sensing [8,9] [8,9] [8,10] [11–13]

Modulation Classification [14,15] [16]

Power Allocation [17–19]

3 Machine Learning

In literature, machine learning techniques can be categorized into three differ-
ent types, namely, supervised learning, unsupervised learning and reinforcement
learning (RL).

3.1 Supervised Learning

Supervised learning is a machine learning approach that infers an objective func-
tion from a labeled training data. Thus, this method requires prior information
about the environment. The training data consists of input-output pairs. An
inferred function is derived based on the samples to map the future input. For
instance, the training samples (xi, yi) are given and it is assumed that (xi, yi) are
drawn from some distribution P (x). Classification is the main function for super-
vised learning and its goal is to find a classifier function f such that it fits and char-
acterizes the training examples. The classifier is used to map and classify the new-
coming data. One well-known example of supervised learning methods is referred
to as the support vector machine (SVM) and it was first developed in [20]. The
original SVM approach builds a linear classifier that maps the input vectors to a
high-dimensional space. A nonlinear SVM classification method was proposed by
Boser et al [21] using the kernel trick. SVM is exploited in a wide range of machine
learning applications due to its accurate predictions, fast evaluation of the tar-
geted function and the robustness against noise and errors. For more information
about SVM, the reader is referred to [22,23].

3.2 Unsupervised Learning

In contrast to the supervised learning, the unsupervised learning applies to an
environment in which the prior knowledge is unknown. Specifically, the unsuper-
vised learning extracts hidden features from the unlabeled data. Since the sam-
ples from unsupervised learning are unlabeled, unsupervised learning receives
neither targeted outputs nor environmental rewards. This fact distinguishes the
unsupervised learning from the supervised learning and the reinforcement learn-
ing. The main functions for unsupervised learning are clustering, dimensionality
reduction and blind signal separation [24,25]. In principle, a clustering algorithm
aims to group objects into clusters such that the elements in the same cluster are
similar to each other and different from the elements placed in any other clus-
ters. There are several clustering algorithms such as K-means or centroid-based
clustering [26,27] and mixture models.
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3.3 Reinforcement Learning

Reinforcement learning is an online learning method which lies in the middle
between supervised and unsupervised learning. The general idea behind the rein-
forcement learning is to maximize a specific reward function. According to [28],
the reinforcement learning consists of three main components: a policy, a reward
function and value function. Let S be the set of all possible states of the envi-
ronment, and A be the set of all possible actions and n denote the time index.
A policy π : S × A → S is the rule that defines the selection of next state sn+1

based on the current state-action pair (sn, an). The policy can be deterministic
or stochastic. In a deterministic policy, the agent selects the actions in a deter-
ministic fashion based on the current state. The reward function rn : A×S → �
is a scalar function that maps each state-action pair (sn, an) into a single real
number, reward, that indicates the reward obtained by selecting the action an

at state sn to move into state sn+1. According to the knowledge of the reward
function, reinforcement learning is classified into a model-based learning if the
reward is known and a model-free learning otherwise. Generally, the reward func-
tions may be stochastic. The reward function determines the immediate or short
term reward of an action. However, the agent is interested in the long-run total
reward which is defined by the value function or return. Starting from state sn,
the return is the random variable Rn defined as:

Rn =

{∑∞
k=0 γkrn+k+1 : non-episodic model∑N
k=0 rn+k+1 : episodic model,

(1)

where γ ∈ [0, 1] is the discount factor. The goal of the reinforcement algorithm
is to find a policy that maximizes Rn. In principle, the optimal policy can be
found by exhaustive search of the policy space. This solution is computationally
infeasible due to the large (or even infinite) number of policies to be checked.
Hence, the core of reinforcement learning algorithms is to find an efficient method
to calculate or approximate the function value.

One appealing method is to estimate the function value. Estimation of func-
tion values in more details is commonly carried out within a Markov Decision
Process (MDP), which represents a general framework for reinforcement learn-
ing. MDP is a reinforcement learning environment in which states satisfy Markov
property. Markov property means that deciding the next state sn+1 depends
only on the current state sn and action an. In other words, the current state and
actions contain all the required information about future state. Mathematically,
this condition can be expressed as follows:

Pr{sn+1, rn+1|sn, an, rn, sn−1, . . . , s0, a0, r0}
= Pr{sn+1 = s, rn+1 = r|sn, an, rn}. (2)

The Markovian assumption simplifies the analysis by allowing prediction of
future rewards based only on the current state and action. A finite MDP means
that state and action spaces are finite. A natural way to estimate the value func-
tion is to take the sample mean of the received rewards. Since the rewards depend
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on the selected action, the estimated value function depends on the selected pol-
icy. Define the state-value function for π policy (V π) as the expected value of
return given that agent is in the sn state and follows the π policy. For MDP,
V π(sn) is defined as:

V π(sn) = Eπ[Rn|sn, π]. (3)

Similarly, the action-value function for π policy, Qπ(sn, an), is defined as the
expected return starting from state sn and taking the action an and following
the policy π. In MDP, Qπ(sn, an) can be defined as:

Qπ(sn, an) = Eπ[Rn|sn, an, π]. (4)

It is shown in [28] that the optimal action-value function Q∗(sn, an) satisfies:

Q∗(sn, an) = max
π

Qπ(sn, an)·∑
sn+1∈S

(
Pr[sn+1|sn, sn] [rn + γ max

an+1∈A
Q∗(sn+1, an+1)]

)
. (5)

One way to maximize the action-value functions is the Q-learning algorithm [29].
Q-learning follows a fixed state transition and does not require prior information
about the environment. The update for the one-step version is given by:

Qn+1(sn, an) = Qn(sn, an) + α[rn+1+
γ max

an+1∈A
Qn(sn+1, an+1) − Qn(sn, an)]. (6)

The reinforcement learning is subject to a trade-off between exploration and
exploitation. This trade-off manifests through the fact that at each stage, the
agent has to decide whether to exploit the current highest reward action or
to explore new actions for higher rewards. Two action selection methods for
controlling the trade off between exploration and exploitation are the ε-greedy
and softmax action [28,30]. In ε-greedy, the next action is selected either at
random with uniform probability ε or by selecting the optimal action a∗ =
maxa Q(a, s) with probability 1 − ε. In the softmax method, the action a is
selected with probability

exp{Q(sn, an)/τ}∑
an+1∈A exp{Q(sn, an)/τ} , (7)

where τ is a positive weight factor for each action and is referred to as the
temperature factor.

Reinforcement learning algorithms differ by how they efficiently compute the
value function. Reinforcement learning algorithms can be also divided into single
agent reinforcement learning (SARL) and multiple agent reinforcement learning
(MARL). In SARL, the learning process is local at each agent in the sense that
rewards for each agent does not depend on the other agents. In MARL, the
reward depends on both, the environment and all agent policies and actions.
This dependence on other agents’ policies complicates the learning process. The
interested reader is referred to [28,31,32] for detailed information about the
reinforcement learning.
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4 Machine Learning for Spectrum Sensing

The main challenge of CRNs is to opportunistically utilize the unused spectrum
of the primary system. Also, the CR should be designed in a way to protect the
primary users from any interference or quality of service (QoS) degradation. To
achieve this goal, the CR must present the ability to detect the occupancy of
RF transmission activities in the primary system.

Various methods have been proposed for spectrum sensing [33] such as
matched filter, energy detection and cyclostationary detection. The matched fil-
ter [34] is known to be optimal for detecting deterministic unknown signals in
additive white Gaussian noise (AWGN). However, the matched filter approach
is a coherent method, and impractical for scenarios where the CR compete for
large number of bands. Implementation of a matched filter for such scenarios
requires to equip the CR device with a large number of synchronization circuits
to match the different bands. However, such an approach is not efficient. The
basic idea of energy detector [35,36] is to measure the energy of the received sig-
nal, and then to compare it to a threshold to decide the occupancy of the sensed
primary band. The main advantages of an energy detector are its simplicity, low
cost and the ability to work without any prior knowledge about the waveform
of the primary system. However, an energy detector is very sensitive to channel
impairments since it is unable to distinguish between the primary signal and
noise or any type of interference. Cyclostationary detection is based on the fact
that many digital and analog modulated signals have special statistical features
because of the inherent periodicity of these signals statistics [37]. In contrast,
the noise does not present in general such features. One way to exploit the cyclo-
stationary features is to use the spectral-correlation density (SCD) function. A
cyclostationary statistics based detection approach is more immune to station-
ary noise and interferences. Moreover, cyclostationary provides inherent signal
identification since different signals differ in their SCD function. However, these
benefits come at the cost of more complexity.

Assessing the RF-spectrum is a high dimensional complex problem due to
the large number of parameters involved. Using dynamic programming methods
is computationally infeasible especially if the CR devices present power limita-
tions. Machine learning provides an asymptotically close-to-optimal and com-
putationally efficient alternative [30]. Therefore, many papers propose machine
learning-based techniques for spectrum sensing.

Spectrum sensing is a typical classification (or clustering) problem in the
sense that it is required to identify whether the sensed band belongs to the
available class (or cluster). A misdetection occurs if the selected channel is con-
sidered to be idle, while it is in reality used by the primary system. Hence, the
primary system will be subject to an interference and a collision may occur. On
the other hand, a false alarm occurs if the channel is available for the CR but
the classifier decides that it is used. Consequently, a degradation of spectrum
utilization occurs.

The authors in [8] implemented cooperative spectrum sensing (CSS) using
several machine learning techniques. These techniques are the K-means clus-
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tering and Gaussian mixture model (GMM) from the unsupervised learning
category and the support vector machine (SVM) and the weighted K-nearest-
neighbor (KNN) from the supervised learning category. The CSS considered here
is a centralized based cooperative sensing. All the energy levels estimated at the
CR devices are collected at a CR device (e.g., the central device). This vector
of energy levels acts as a feature input for the classification and clustering algo-
rithm to decide whether the channel is available for the CR or not. The channel
is idle if it is not utilized by any primary user. Similarly, the CSS scenario is
studied in [9] using SVM and KNN.

The authors in [38] proposed a centralized CSS method in which each CR
reports its measurements to a central node (another CR device). Then, the
linear fusion rule is used to decide the availability of the channel. To enhance
the sensing performance, the topology of the CRN is taken into account because
measurements carried out by CRs closer to the primary users are more reliable
than far away transceivers. The impact of the location information is reflected
into the values of the linear coefficients which are determined by the Fisher linear
discriminant analysis.

In many cases, the spectrum of interest is very wide and/or non-contiguous.
Hence, a single CR device may not sense the whole the spectrum at once. An
alternative solution is to assign a subset of k CRs to sense each subband [39].
One issue with the fixed number assignment is that monitoring some subbands
with k CRs is more than what is needed to achieve the sensing requirements.
And hence, more power consumption is required for the CRs. In [11], a reinforce-
ment learning method with ε-greedy action selection is employed to optimize the
multiband spectrum sensing and reduce the energy consumption in the CRN.
This is achieved by exploiting the occupancy statistic of each subband and then
assigning the minimum number of CRs that achieves the required misdetection
probability.

5 Machine Learning for Modulation Classification

In general, modulation classification algorithms assume two steps. The first step
performs the feature extraction. Examples of features are spectral correlation
and cumulants. The second step carries out the classification task (via Naive
Bayes, SVM) or clustering task (via KNN, mixture models).

The authors of [16] proposed a two stage classification algorithm using
Genetic Programming (GP) and K-Nearest Neighbor (KNN) approach. The pro-
posed algorithm can identify BPSK, QPSK, 16QAM and 64QAM modulation
schemes, and exploit the forth and sixth order cumulants of the received signals
as features. The first stage divides the signal into three classes: BPSK, QPSK
and QAM (both 16 and 64). To differentiate between 16QAM and 64QAM,
the third class output is fed into the second stage classifier that distinguishes
between 16QAM and 64 QAM.

In [14], two modulation classification approaches are presented. Both of them
exploit the SVM classifier. However, they differ in the selection of the feature
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vector and modulation schemes. The first approach aims to distinguish among 16
QAM, 32 QAM and 64 QAM and uses the demodulation error (i.e, the distance
between the received symbol and its nearest neighbor in each constellation) as
a feature vector. The second approach aims to distinguish among AM, BPSK,
QPSK and BFSK and uses the cyclic spectral correlation as a feature.

The previous works classify only digital modulated signals. In [15], a SVM
classification method is proposed to classify two analog modulated signals (AM
and FM) in addition to five digitally modulated ones (BPSK, QPSK, GMSK,
16-QAM and 64QAM). The authors use a combination of spectral and higher
order cumulants as features. Then, these features are fed into a SVM classifier
to identify the modulation scheme.

6 Machine Learning for Power Allocation

As mentioned in Section 3, Q-learning is a simple and efficient way to implement
reinforcement learning. The operation of Q-learning requires the definition of
a reward function. In power allocation problem, defining the reward function
can be easily done in terms of the transmission powers and channel gains. The
authors in [17] use centralized Q-learning to address the channel and power
allocation problem in CRNs. They consider a scenario where all the transmissions
of the CRs are controlled by a cognitive base station. Therefore, the cognitive
base station is the learning agent and provides channel and power allocation
services to the CRs. In this work, the number of transmission activities of the
CRs is modeled as a Poisson process. The state is defined as

sn =[incoming user index, user(s) on transmission,

received power on each channel]T

and the reward function is defined by:

rn =
N∑

i=1

log2

(
1 +

Pif(i)hi(f(i))
N0 +

∑
j �=i Pjf(j)hj(f(j))ψ(i, j)

)

where f(i) and Pi are the channel and power level used by the i’th user, respec-
tively. N0 denotes the noise power and N stands for the number of users. Func-
tion ψ(i, j) is determined by:

φ(i, j) =

{
1 , f(i) = f(j)
0 , else.

A decentralized Q-learning algorithm for power allocation is considered in [18].
The reward criterion is defined by:

rn =
N∑

i=1

(SINRs
i − SINRs

Th)2 ,
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where SINRp
i is the primary network SINR at the Ii’th cell, SINRs

i denotes
the secondary network SINR at the Ii’th cell and N stands for the number of
cells.

In [19], a decentralized MARL is considered to control the transmit power and
spectrum used by CRs in order to reduce the interference at the primary users. In
order to overcome the increased computational complexity of the function value
in reinforcement learning for large CRNs, the authors apply an approximation to
the value function using a Kanerva-based approximation function. In this paper,
the environment state at time index n is defined as sn = [spn,pwn]T where spn

denotes the vector of spectra and pwn stands for a vector of power values across
all agents.

7 Conclusion

There is a growing interest in machine learning techniques in assessing the fea-
tures of CRNs. Therefore, in this study, we investigated the usefulness of machine
learning techniques for spectrum sensing, modulation classification and power
allocation in CRNs.
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