
Detection of Temporally Correlated Primary
User Signal with Multiple Antennas

Hadi Hashemi1, Sina Mohammadi Fard1, Abbas Taherpour1, Saeid Sedighi1,
and Tamer Khattab2(B)

1 Department of Electrical Engineering, Imam Khomeini International University,
Qazvin, Iran

2 Electrical Engineering, Qatar University, Doha, Qatar
tkhattab@ieee.org

Abstract. In this paper, we address the problem of multiple antenna
spectrum sensing in cognitive radios (CRs) when the samples of the pri-
mary user (PU) signal as well as samples of noise are assumed to be
temporally correlated. We model and formulate this multiple antenna
spectrum sensing problem as a hypothesis testing problem. First, we
derive the optimum Neyman-Pearson (NP) detector for the scenario in
which the channel gains, the PU signal and noise correlation matrices
are assumed to be known. Then, we derive the sub-optimum general-
ized likelihood ratio test (GLRT)-based detector for the case when the
channel gains and aforementioned matrices are assumed to be unknown.
Approximate analytical expressions for the false-alarm probabilities of
the proposed detectors are given. Simulation results show that the pro-
posed detectors outperform some recently-purposed algorithms for mul-
tiple antenna spectrum sensing.

1 Introduction

Using multiple antennas at the secondary user (SU) receiver is one efficient app-
roach to overcome deleterious effects of noise uncertainty, fading and shadowing.
Moreover, it improves the performance of spectrum sensing by exploiting avail-
able observations in the spatial domain [1–10]. [1] considers a blind spectrum
sensing approach where the empirical characteristic function of the multiantenna
samples is used in the formulation of the statistical test. In [2], the authors derive
the optimum NP and sub-optimum GLRT-based multiantenna detectors of an
orthogonal frequency division multiplexing (OFDM) signal with a cyclic prefix
of known length. In [3–7], GLRT eigenvalues-based detectors of spatial rank-one
PU signals robust to noise variance uncertainty are derived. In addition, some
GLRT eigenvalue-based detectors for multiantenna spectrum sensing are pro-
posed in [8,9], for PU signals with spatial rank larger than one. In CR networks,
signals from far PUs arrive at the SU base station within a small beamwidth,
which results in a high correlation between the channel gains of different anten-
nas. The Roa test is applied to derive sub-optimum multiantenna detectors under
the correlated receiving antennas model in [10].
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All the detectors proposed in [1–10] do not consider any temporal correlation
between the samples of the received signal. Nevertheless, in practice, the PU
signal samples as well as noise samples may be temporally correlated, which
causes degradation in the performance of detectors proposed in [1–10]. In [11],
the detection of temporally correlated signals over multipath fading channels is
discussed and a modified energy detector (ED) is proposed for such a scenario.
However, as known, the performance of the ED is susceptible to errors in the
noise variance and it has been shown that in order for ED to achieve a desired
probability of detection under noise (or in more general terms, under model
uncertainties) the signal-to-noise ratio (SNR) must be above a certain threshold
[12] (SNR wall).

In this paper, we consider multiple antenna spectrum sensing when there are
temporal correlation between the PU signal samples in the presence of addi-
tive temporally correlated Gaussian noise. First, for benchmarking purposes, we
obtain the optimum NP detector for the case when the SU receiver has complete
knowledge about the channel gains, the PU signal and noise covariance matrices.
Then, we derive the sub-optimum GLRT-based detector when the channel gains,
the PU signal and noise covariance matrices are assumed to be unknown to the
SU receiver. Approximate analytical expressions for the false-alarm probabilities
of proposed detectors are also given. The simulation results are provided to eval-
uate the impact of the different parameters on the performance of the proposed
detectors and, moreover, to compare the performance of the proposed detectors
with some recently-proposed detectors.

The rest of the paper is organized as follows. In Section 2, we describe the sys-
tem model and the basic assumptions about the PU signal and noise. In Section
3, we derived the optimum NP detector. The sub-optimum GLRT-based detector
is obtained in Section 4. Asymptotic expressions for the false-alarm probabilities
of the proposed detectors are evaluated in Sections 5. The simulation results and
related discussions are given in Section 6. Finally, Section 7 concludes the paper.

Notation: Lightface letters denote scalars. Boldface lower-and upper-case letters
denote column vectors and matrices, respectively. x[.] are the entries and xi is
sub-vector of vector x. The determinant and inverse of matrix A are |A| and
A−1, respectively. vec[A] is the column-wise vectorization of matrix A. The
M × M identity matrix is IM and the M × M zeros matrix is 0M . Superscripts
∗, T and H are the complex conjugate, transpose and Hermitian (conjugate
transpose) operations, respectively. E[·] is the statistical expectation. A ⊗ B is
kronecker product of matrices A and B. CN (m,P) denotes circularly symmetric
complex Gaussian distribution with mean m and covariance matrix P. Q(x) is
Q-function Q(x) = 1√

2π

∫ ∞
x

exp
(

−u2

2

)
du.

2 System Model

We consider a CR network including a single-antenna PU and a mutiantenna SU
with M receiving antennas. We assume the received signal is downconverted to
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baseband and sampled at the frequency fs = 1
Ts

at each antenna to generate N
consecutive time blocks, each of which contains L consecutive temporal samples.
Define yi,j ∈ CM as the vector of the received signal samples from M different
antennas of the ith time block at the jth time instant. The observation vector
yi,j is given as

yi,j = hisj + ni,j , i = 1, . . . , N ; j = 1, . . . , L (1)

where hi ∈ CM is the baseband equivalent of channel gains vector at ith time
block, which is assumed to be constant during each time block. sj ∈ C denotes
the baseband samples of the PU signal, which is assumed to be distributed as
a zero-mean complex Gaussian random variable with autocorrelation function
rs[k] = E[sjs

∗
j−k]. We assume, in general, sj exhibits temporal correlation, i.e.

rs[k] �= 0 for k �= 0. ni,j ∈ CM denotes the baseband equivalent of noise samples
which is assumed to be distributed as a zero-mean complex Gaussian random
vector. In addition, ni,j is assumed to be spatially uncorrelated but temporally
correlated with autocorrelation function rn[k]. We assume noise and the PU
signal samples are mutually independent.

Let us define the matrix Yi
.= [yi,1, . . . ,yi,L] ∈ CM×L containing L time

samples of the ith time block. In addition, let us define yi = vec[Yi] ∈ CLM×1

and y = vec[y1, . . . ,yN ] ∈ CNLM×1. We denote the hypotheses of the pres-
ence and absence of the PU signal by H1 and H0, respectively. By defining the
correlation matrix of y: Σν = E{yyH |Hν}, ν = 0, 1, it can be easily shown that,

Σ0 = IN ⊗ IM ⊗ Σn = INM ⊗ Σn, (2)

where

Σn
.=

⎛

⎜
⎜
⎜
⎜
⎝

rn[0] r∗
n[1] . . . r∗

n[L − 1]
rn[1] rn[0] . . . r∗

n[L − 2]
...

...
. . .

...
rn[L − 1] rn[L − 2] . . . rn[0]

⎞

⎟
⎟
⎟
⎟
⎠

, (3)

is the temporal correlation matrix of noise, and

Σ1
.=

⎛

⎜
⎜
⎜
⎜
⎝

Σ1,1 0 . . . 0

0 Σ2,2 . . . 0
...

...
. . .

...
0 . . . . . . ΣN,N

⎞

⎟
⎟
⎟
⎟
⎠

, (4)

where

Σi,i = hih
H
i ⊗ Σs + IM ⊗ Σn (5)
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with

Σs
.=

⎛

⎜
⎜
⎜
⎜
⎝

rs[0] r∗
s [1] . . . r∗

s [L−]
rs[1] rs[0] . . . r∗

s [L − 2]
...

...
. . .

...
rs[L − 1] rs[L − 2] . . . rs[0]

⎞

⎟
⎟
⎟
⎟
⎠

. (6)

Accordingly, the distribution of observations under each hypothesis is given
as

{
H0 : y ∼ CN (0NLM ,Σ0)

H1 : y ∼ CN (0NLM ,Σ1).
(7)

3 Optimum Detector

In this section, we derive the NP detector for the case of completely known hi,
Σn and Σs. From (7) the probability density function (PDF) of the observations
vector y under each hypothesis is given by,

f(y|H0,Σ0) =
exp

{−yHΣ−1
0 y

}

πNLM |Σ0|

=
exp

{
−Ltr(Σ−1

n

∑N
i=1

∑M
m=1 Ri,mm)

}

πNLM |Σn|NM
. (8)

and

f(y|H1,Σ1) =
exp

{−yHΣ−1
1 y

}

πNLM |Σ1|

=
exp

{
−Ltr(

∑N
i=1 RiΣ−1

i,i )
}

πNLM
∏N

i=1 |Σi,i|
, (9)

where

Ri
.=

1
L

yiyH
i =

⎛

⎜
⎜
⎜
⎜
⎝

Ri,11 Ri,12 . . . Ri,1M

Ri,21 Ri,22 . . . Ri,2M

...
...

. . .
...

Ri,M1 . . . . . . Ri,MM

⎞

⎟
⎟
⎟
⎟
⎠

. (10)

in which Ri,mk’s are the corresponding sub-matrices.
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Taking logarithm from (8) and (9) and defining Lν(y) .= ln f(y|Hν ,Σν),
ν = 0, 1, we obtain,

L0(y) = −Ltr(Σ−1
n

N∑

i=1

M∑

m=1

Ri,mm) − NLM lnπ − NM ln |Σn|, (11)

L1(y) = −Ltr(
N∑

i=1

RiΣ−1
i,i ) − NLM ln π −

N∑

i=1

ln |Σi,i|. (12)

By constituting the logarithm of likelihood ratio (LLR) function from (11) and
(12) and comparing it with a threshold, the optimum detector is given by

LLR = Ltr(
N∑

i=1

Ri[(IM ⊗ Σn)−1 − Σ−1
i,i ]) ≷H1

H0
τ ′, (13)

Now by using matrix inversion lemma, we have,

(hihH
i ⊗ Σs + IM ⊗ Σn)−1 (14)

= (IM ⊗ Σn)−1 − (IM ⊗ Σn)−1(hih
H
i ⊗ Σs)(hih

H
i ⊗ Σs + IM ⊗ Σn)−1

Therefore, by substituting (14) in (13), we find,

Topt = Ltr(
N∑

i=1

RiC−1
i ) ≷H1

H0
τ, (15)

where Ci
.= (hih

H
i ⊗ Σs + IM ⊗ Σn)(hih

H
i ⊗ Σs)−1(IM ⊗ Σn).

In order to simplify the optimum detector more, we can use the sin-
gular value decomposition (SVD) of Ci: Ci = UΛiUH , where Λi =
diag{λi,1, λi,2, ..., λi,LM} contains eigenvalues of Ci and the columns of U its
the corresponding eigenvectors. Therefore,

Topt = tr(
N∑

i=1

yiy
H
i UΛ−1

i U
H

) =
N∑

i=1

tr(Λ−1
i UHyiy

H
i U) ≷H1

H0
τ. (16)

Let wi
.= UHyi and wi(n) be the nth elements of wi, then the optimum detector

can be written as

Topt =
N∑

i=1

LM∑

n=1

λ−1
i,n|wi(n)|2 ≷H1

H0
τ. (17)

4 Sub-Optimum GLRT-Based Detector

In this section, we assume the channel gains, the PU signal and noise covariance
matrices are unknown to the SU receiver. We derive the GLRT-based detector
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for such a scenario. We first maximize (9) with respect to Σ1 in order to compute
the maximum likelihood estimate (MLE) of Σ1. By setting the derivative of (9)
with respect to Σ1 equal to zero, we obtain

L(Σ−1
i,i RiΣ−1

i,i )T = (Σ−1
i,i )T , (18)

which results to Σ̂i,i = LRi.
In addition, in order to compute the MLE of Σn, we should take deriva-

tive of (8) with respect to Σn and set it equal to zero, which yields Σ̂n =
L

NM

∑N
i=1

∑M
m=1 Ri,mm.

By constituting the LR function, the GLRT-based detector is obtained as,

Tsub =
f(y|H1, Σ̂1)
f(y|H0, Σ̂0)

=
|Σ̂n|NM

∏N
i=1 |Σ̂i,i|

=
1

(NM)NML

N∏

i=1

|∑N
i=1

∑M
m=1 Ri,mm|M
|Ri| .

(19)

5 Analytical Performance

In the following section, we evaluate the performance of the proposed optimum
and sub-optimum detectors in terms of the detection and false-alarm probabili-
ties, i.e. Pd and Pfa, respectively.

5.1 Performance of the Optimum Detector

Performance of the optimum detector is evaluated in this sub-section. We can
rewrite (17) in the null hypothesis as,

Topt|H0 =
N∑

i=1

LM∑

n=1

λ−1
i,n|wi(n)|2 =

N∑

i=1

λ−1
i,1 λ0i,1

|wi(1 )|2
λ0i,1

+ . . .

+ λ−1
i,LMλ0i,LM

|wi(LM)|2
λ0i,LM

=
N∑

i=1

LM∑

n=1

λ−1
i,nλ0i,nzi(n), (20)

where λ0i,n ’s are eigenvalues of ith time block covariance matrix and wi(n) is
a zero-mean Gaussian random variable with variance λ0i,n . Thus, from [13],

zi(n) = |wi(n)|2
λ0i,n

has the chi-squared distribution with one degree of freedom.

From central limit theorem (CLT), with NLM sufficiently large and, also,
from [13], the distribution of the optimum detector under the null hypothesis is
Gaussian. Hence, for evaluating performance of the optimum detector, we should
compute its mean and variance as,

μTopt|H0 =
N∑

i=1

LM∑

n=1

λ−1
i,nλ0i,nE[zi(n)|H0] =

N∑

i=1

LM∑

n=1

λ−1
i,nλ0i,n , (21)
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and

σ2
Topt|H0

=
N∑

i=1

LM∑

n=1

λ−1
i,nλ0i,nV ar[zi(n)|H0] = 2

N∑

i=1

LM∑

n=1

λ−1
i,nλ0i,n . (22)

Similarly, under H1, Topt has a Gaussian distribution with mean and variance
as,

μTopt|H1 =
N∑

i=1

LM∑

n=1

λ−1
i,nλ1i,nE[zi(n)|H1] =

N∑

i=1

LM∑

n=1

λ−1
i,nλ1i,n , (23)

and

σ2
Topt|H1

=
N∑

i=1

LM∑

n=1

λ−1
i,nλ1i,nV ar[zi(n)|H1] = 2

N∑

i=1

LM∑

n=1

λ−1
i,nλ1i,n , (24)

where λ1i,n ’s are eigenvalues of ith time block covariance matrix under H1.
Thus, the false-alarm and detection probabilities can be calculated as,

Pfa = P{Topt > τ |H0} = Q
(

τ − μTopt|H0

σTopt|H0

)

, (25)

Pd = P{Topt > τ |H1} = Q
(

τ − μTopt|H1

σTopt|H1

)

. (26)

5.2 Performance of the Sub-Optimum Detector

In this sub-section, we derive the asymptotic distribution of the proposed detec-
tors under H0 by using the results existing for the asymptotic distribution of
the GLRT.

Lemma 1. Let Θ = [μr,μs]T , with μr ∈ Rr and μs ∈ Rs, be the set of
unknown parameters under H1 and H0. For a composite hypothesis test of the
form,

{
H0 : μr = μr0

,μs

H1 : μr �= μr0
,μs

, (27)

the asymptotic distribution of GLRT statistic, TGLRT , under H0, as N → ∞, is
as

2 ln TGLR ∼ χ2
r, (28)

where χ2
n denotes the central chi-squared distribution with n degrees of freedom.

Proof. See [14]
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Fig. 1. The complementary ROC of the proposed GLRT-based detector for SNR = −8,
Pfa = 0.01, N = 32, L = 10 and different value of M .

According to Lemma 1, as N → ∞, we have

2 ln Tsub ∼ χ2
f , (29)

where f = NL2(M2 − 1). Thus, the false-alarm probability of ΛGLR1 can be
obtained as

Pfa = P[Tsub > η|H0] = P[2 ln Tsub > 2 ln η|H0] =
γ

(
1
2NL2(M2 − 1), ln η

)

Γ
(
1
2NL2(M2 − 1)

) ,

(30)

where γ(k, z) .=
∫ z

0
tk−1e−tdt is the lower incomplete Gamma function.

6 Simulation Results

In this section, we provide simulations in order to evaluate the impact of the dif-
ferent parameters on the performance of the proposed detectors and, moreover,
to compare the performance of the proposed detectors with other previously
reported detectors used as a benchmark. Specifically, the benchmark detectors
are: the AGM method [8, Eqn.(14)], the maximum eigenvalue to trace (MET)
detector [3, Eqn.(39)], and maximum to minimum eigenvalue (MME) detector
[15, Algorithm1].

The complementary ROC (receiver operating characteristics) of the proposed
GLRT-based detector for SNR = −8dB, Pfa = 0.01, N = 32, L = 10 and
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Fig. 2. The detection probability of the proposed GLRT-based detector versus SNR
for Pfa = 0.01 and M = 4, L = 10 and different value of N .
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Fig. 3. The detection probability of different detectors versus SNR for Pfa = 0.01,
L = 10, N = 32 and M = 4.



Detection of Temporally Correlated Primary User Signal 75

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Threshold

Pr
ob

ab
ili

ty
of

fa
lse

al
ar

m
,P

fa

 

 
M = 8, N = 16 − Simulation 
M = 8, N = 16 − Analytical
M = 4, N = 32 − Simulation 
M = 4, N = 32 − Analytical
M =2, N = 64 − Simulation 
M = 2, N = 64 − Analytical

Fig. 4. The false-alarm probability versus threshold of the proposed GLRT-based
detectors for L = 10 and different value of L and M .

different value of M is shown in Fig. 1. This figure shows that increase in the
number of antennas is associated with improvement in performance, but the
improvement declines when the number of antennas becomes larger.

Fig. 2 depicts the detection probability of the proposed GLRT-based detec-
tor versus SNR for Pfa = 0.01 and M = 4, L = 10 and different value of
N . As expected, performance of the proposed GLRT-based detector improves
by increasing the number of time blocks. Fig. 3 compares the performance of
optimum NP detector and the proposed GLRT-based detectors with some other
previously reported detectors used as a benchmark. Fig. 3 depicts detection prob-
ability of different detectors versus SNR for for Pfa = 0.01, L = 10, N = 32
and M = 4. As it can be seen, optimum detector has the best performance
among all detectors and after that the proposed GLRT-based detector outper-
forms AGM, MET and MME. In addition, the proposed GLRT-based detector
does not require to compute the eigenvalue of the sample covariance matrix in
contrast to MET and MME. Hence, the proposed GLRT-based detector has
lower computational complexity compare to MET and MME.

Finally, the validity of the approximate closed-form expression provided for
proposed GLRT-based detectors is verified in Fig. 4. Fig. 4 shows that there is
a good agreement between simulations and the approximate closed-form expres-
sion for different value of M and N .

7 Conclusion

In this paper, we investigated the multiple antenna spectrum sensing problem
in CR networks when there are temporal correlation between received samples.
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First, we derived optimum Neyman-Pearson (NP) for the scenario where the
channel gains, the PU signal and noise correlation matrices are known. Then,
we obtained the sub-optimum GLRT-based detector for the case when the PU
receiver has no knowledge about the channel gains, the PU signal and noise cor-
relation matrices. Then, we provided approximate closed-form expression for the
false-alarm probabilities of the proposed detectors. The simulation results were
provided to evaluate the impact of the different parameters on the performance
of the proposed detectors and, moreover, to compare the performance of the
proposed detectors with some other detectors. The provided simulations results
revealed that the performance of the proposed sub-optimum detector is better
than its counterparts.
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