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Abstract. In this paper, we focus on the design of probabilistic random
access (PRA) for a cognitive radio network (CRN). The cognitive base
station (CBS) allows the secondary users (SUs) to reuse the sub-channels
of the primary users (PUs) provided that the interference of the SUs to
the PUs is below a predetermined threshold. PUs transmit over a fixed
set of channels with fixed transmission powers that are scheduled by the
CBS. With this prior information, CBS optimizes the probabilistic ran-
dom transmissions of the SUs. In each time slot, SUs transmit over a
random number of channels d, chosen uniformly at random, according to
a certain degree distribution function, optimized by the CBS. Once the
signals of the SUs and PUs are received, CBS then implements successive
interference cancellation (SIC) to recover both the SUs’ and PUs’ signals.
In the signal recovery, we assume that the PUs’ signals can be recovered
if the interference power (IP) of the SUs to the PUs is below a predeter-
mined threshold. On the other hand, we assume the SUs’ signals can be
recovered if its received SINR is above a predetermined threshold. We
formulate a new optimization problem to find the optimal degree distri-
bution function that maximizes the probability of successfully recovering
the signals of an SU in the SIC process under the SINR constraints of
the SUs while satisfying the IP constraints of the PUs. Simulation results
show that our proposed design can achieve higher success probabilities
and a lower number of transmissions in comparison with conventional
schemes, thus, significantly improving signal recovery performance and
reducing energy consumption.

Keywords: Probabilistic random access · Cognitive radio · SIC · IP ·
SINR · Degree distribution

1 Introduction

Cognitive radio (CR) has been known to be a promising technology to achieve the
efficient utilization of the radio spectrum. In CR networks (CRNs), unlicensed
secondary users (SUs), are allowed access to the radio spectrum owned by the
licensed primary users (PUs), provided that the PUs are guaranteed a certain
level of protection. Optimal resource allocation algorithms i.e. channel and power
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allocation, among the SUs that maximize their data rates or minimize their
transmit power requirements have been well-investigated for multiple scenarios
and are known to be NP-hard. Accordingly, numerous sub-optimal algorithms
for resource allocation have been proposed for both downlink and uplink CR
transmissions [1,2]. However, these approaches do not scale well as the number
of users in the network increases and their activity becomes more dynamic.

To overcome these problems, random access protocols provide a simple solu-
tion that significantly reduces processing and signalling overhead. A commonly
used approach is to employ random access over the control channels. That is,
users perform contentions for channel access request. Once access request is
granted, data will be transmitted over the allocated channels. Commonly used
contention based schemes in CRNs include ALOHA, slotted-ALOHA and car-
rier sense multiple access (CSMA) [3,4,5]. These models assume that the SUs
contend to access the channels only when the PUs are inactive.

In [6], authors proposed another random access approach where the CBS pre-
determines a certain transmission probability and makes it known to all the SUs.
The PUs’ transmissions are fixed whereas the SUs transmissions are randomized
according to the assigned transmission probability. It is shown that such a sim-
ple random transmission can offer significant improvements in performance, in
certain cases, for both the PUs and SUs, compared to fixed transmissions. It is
argued that from a design point of view, controlling the probabilities is easier
than controlling the power. However, the paper only considered a very single
case of single channel and no analysis was done to derive the design criteria for
choosing the optimal transmission probability.

In [7,8,9], some probabilistic random access (PRA) schemes were proposed
where each user transmits over a subset of sub-channels, which are selected
uniformly at random, according to a degree distribution, predetermined by the
base station. The PRA can then be represented by a bipartite graph, and a
message passing algorithm can be implemented at the base station to recover
the users’ signals. Optimization is then carried out by using the conventional
analytical tools of codes-on-graph for binary erasure channels to maximize the
probability of having an interference-free clean packet in each iteration. That
is mainly because it is assumed that successful signal recovery is only possible
when a ‘clean packet’ is available.

In this paper, we extend the work in [6,7,8,9] to an uplink CRN. We assume
the PUs’ channel and power allocations are scheduled, and thus, known priori at
the CBS. The CBS performs maximal-ratio combining (MRC) to combine the
multiple copies of each user’s signals over its respective sub-channels and imple-
ments successive interference cancellation (SIC) to recover the SUs’ and PUs’
signals. Under the conventional interference power (IP) constraint, a PU’s signal
can be successfully recovered if the IP caused by the SUs to that PU is below
a predetermined threshold. Moreover, under the conventional SINR constraint,
an SU’s signal can be successfully recovered if its SINR is above a predeter-
mined threshold. Due to the IP and SINR constraints, the ‘clean packet’ model
becomes sub-optimal. Accordingly, we formulate a new optimization problem to
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find the optimal degree distribution that maximizes the success probability of
the SIC process of the SUs while satisfying the IP constraints of the PUs. This
is equivalent to maximizing the probability of having a received SINR of an SU
greater than or equal to a predetermined threshold in each iteration of the SIC.
Simulation results show that our proposed design can achieve significantly lower
error probabilities and requires a lower number of transmissions, in comparison
with the conventional approach.

The rest of this paper is organized as follows. Section 2 presents the system
model. In section 3, we describe the probabilistic random transmission scheme
and the SIC process. In section 4, we analyze the system performance in an
asymptotic setting and formulate our degree distribution optimization problem.
Numerical results are provided in section 5. Finally, section 6 concludes the
paper.

2 System Model

We consider an uplink CRN, including a CBS, a set of Kp active PUs, denoted by
Kp, and a set of Ks active SUs denoted by Ks. There are in total N orthogonal
sub-channels of equal bandwidth in the network. Channels are assumed to be
reciprocal and block fading; that is, we assume the channel coefficients remain
constant for the whole transmission block but vary independently from one block
to the other. Let yn denote the received signal vector at the CBS over the nth

sub-channel, where 1 ≤ n ≤ N . Then, it can be expressed as follows:

yn =
∑

k∈Kp

gk,nxk,n +
∑

i∈Ks

hi,nui,n + en, (1)

where gk,n is the channel gain between PUk and the CBS over the nth sub-
channel, and hk,n is the channel gain between SUk and the CBS over the nth

sub-channel. xk,n and ui,n are the transmitted signals of each of the PUs and
SUs to the CBS, over the nth sub-channel. en is the additive white Gaussian
noise (AWGN) random variable with zero mean and variance σ2

e .
Each PU is allocated one distinct set of sub-channels. We denote by N (k)

p

the set of N
(k)
p sub-channels allocated to PUk. We denote by N (k)

s the set of
N

(k)
s sub-channels chosen by SUk. Then, xk,n = 0 for n /∈ N (k)

p , and uk,n = 0
for n /∈ N (k)

s . Moreover, we denote by Qk,n and Pk,n the power of xk,n and uk,n,
respectively.

3 Random Transmission Scheme

In this section, we describe the random transmission scheme for the previously
described system.
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3.1 Channel Access

For a given transmission block, each SU chooses a random degree d obtained from
a predefined degree distribution Ω(x) =

∑
i Ωix

i, where Ωi is the probability
that d = i. Then, the SU chooses d sub-channels uniformly at random to transmit
over. We define a Ks ×N random channel access matrix A with integer elements
ak,n ∈ {0, 1}, where ak,n = 1 means SUk is transmitting in sub-channel n, and
ak,n = 0 means SUk is not transmitting in sub-channel n. Thus, it is easy to show
that the elements of A are independent identically distributed (i.i.d.) Bernoulli
random variables with a success probability of 1

N Ω̄, where Ω̄ is the average
degree and is given by

∑
i iΩi. Then, we can represent the probabilistic random

PU1 PU2 ...

CH1 CH2 CH3 CH5CH4

SU1 SU2 SUKs...PUKp

... CHNt
CH6 CH7 CH8

N (1)
p N (2)

p N (Kp)
p

...

Fig. 1. Bipartite Graph Illustration of the Random Transmission Scheme

transmission scheme by a bipartite graph as shown in Fig.1. The PUs and SUs
are shown by circles and referred to as variable nodes while the sub-channels
[CHi]1 ≤ i ≤ N are shown by squares and referred to as check nodes. The
number of edges connected to each variable node corresponds to the number of
sub-channels it is allocated, and it is called the degree of the respective variable
node. The solid edges represent the transmissions of the PUs whose number is
assumed to be fixed e.g. PU1 is of degree 2 in Fig. 1. On the other hand, the
dashed edges represent the transmissions of the SUs whose number is a random
variable with a distribution pre-determined by the CBS.

3.2 Successive Interference Cancellation

The CBS employs SIC to recover each user’s signals. Each user is assumed to
transmit the same signals over its respective sub-channels. The CBS can, then,
combine the received transmissions of each user over all respective sub-channels
using MRC, and the overall received SINR at the CBS can be represented as the
sum of all individual SINRs. Note that the CBS is assumed to have the perfect
knowledge of the PUs’ channel state, transmit power and allocated sub-channels.
We also assume that the CBS first attempts to recover the signals of the PUs.
The maximum achievable rate of PUi, where 1 ≤ i ≤ Kp, is shown below:
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R(i)
p =

N
(i)
p

N
log

⎛

⎜⎝1 +
∑

n∈N (i)
p

γ(i)
p,n

⎞

⎟⎠ , (2)

where

γ(i)
p,n =

|gi,n|2Qi,n∑Ks

k=1 ak,n|hk,n|2Pk,n + σ2
e

. (3)

We denote by I
(i)
p,n =

∑
k∈Ks

ak,n|hk,n|2Pk,n the interference power caused to

PUi’s transmission over the nth sub-channel, where n ∈ N (i)
p . Thus, the total

interference caused by the SUs to PUi can be expressed as I
(i)
p =

∑
n∈N (i)

p
I
(i)
p,n.

The signals of PUi can be successfully recovered provided that I
(i)
p is below the

threshold I
(i)
th .

Without loss of generality, we assume the SUs’ signals are recovered through
the SIC process according to their received SINR, in an ascending order. More
specifically, we assume that the SINR of SUk is larger than that of SUk−1, for
1 ≤ k ≤ Ks. Assuming the signals of the first i − 1 SUs have been successfully
recovered, the maximum achievable rate of SUi, where 1 ≤ i ≤ Ks, is shown
below:

R(i)
s =

N
(i)
s

N
log

⎛

⎝1 +
∑

n∈N (i)
s

γ(i)
s,n

⎞

⎠ , (4)

where

γ(i)
s,n =

ai,n|hi,n|2Pi,n∑Ks

k=i+1 ak,n|hk,n|2Pk,n + σ2
e

. (5)

Thus, we can express the total SINR of SUi as γ
(i)
s =

∑
n∈N (i)

s
γ
(i)
s,n. The signals

of SUi can be successfully recovered provided that their received SINR γ
(i)
s at

the ith iteration of SIC is above the threshold γ
(i)
th .

It will be shown later that the design problem is dependent on the SUs’
received power rather than transmit power. Assuming that the SUs are able to
estimate their channel gains from the downlink given the reciprocity of the chan-
nel, the CBS needs to broadcast the received power constraints only, imposed
on each sub-channel on a per user basis. The SUs can, then, adaptively tune
their power as necessary. Accordingly, we define a power vector p = [Pn]1≤n≤N ,
where Pn is the received power constraint imposed on the nth sub-channel on a
per user basis.

4 Asymptotic Performance Analysis of PRA in CRNs

In this section, we analyze the relationship between the system constraints (Ith

and γth) and the different system metrics (N , Kp and Ks). We formulate an
optimization problem to find the degree distribution that can maximize this
probability of successfully recovering the signals of the SUs for a given setup.
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4.1 Probability Density Function of the IP

Let us first calculate the power of interference introduced to the PUs.

Lemma 1. In an asymptotically large network (N → ∞, Ks → ∞), the prob-
ability density function of the total interference power induced over the sub-
channels of PUk, ∀k ∈ Kp, follows the Poisson distribution below:

Pr(I(k)p = iP (k)
o ) = e−αN(k)

p

(
αN

(k)
p

)i

i!
, (6)

where α = Ks

N Ω̄, and Pn = P
(k)
o ∀n ∈ N (k)

p . Its average and standard deviation
are given below:

E[I(k)p ] = αN (k)
p P (k)

o , σ
I
(k)
p

= αN (k)
p P (k)

o . (7)
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Fig. 2. The average interference power for a total of N = 128 sub-channels assigned
equally to Kp = 60 PUs and shared by Ks SUs.

The proof of this lemma is provided in Appendix 7. In Fig. 2, the average IP
is shown as a function of the average degree Ω̄ and the number of users Ks.
P

(k)
o is set to 0 dB ∀k ∈ Kp. The average IP per PU is shown to increase with

the number of Ks, as expected from Lemma 1. It is worthy of noting that N
is fixed for all three simulations and that the increase in the average IP in fact
corresponds to the increase in the ratio Ks

N rather than Ks itself.

4.2 Probability of Success of the SUs

As in Section III-B, we assume the SUs’ signals are recovered in an ascending
order, based on their received SINR, with γ

(i)
s ≤ γ

(i−1)
s for 1 ≤ i ≤ Ks. Given
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that the signals of the first i − 1 SUs have been successfully recovered, we can
rewrite (5) and express the total SINR of SUi as follows:

γ(i)
s =

∑

n∈N (i)
s

Pn

d
(i)
n Pn + σ2

e

, (8)

where d
(i)
n is a random variable that represents the number of users, other than

SUi, transmitting in the nth sub-channel and whose signals have not been recov-
ered yet. We define d(i) = [d(i)n ]

1≤n≤N
(i)
s

and refer to it as the observation vector.

The CBS can then recover the signals of SUi, if and only if, γ
(i)
s ≥ γ

(i)
th , which

will happen for certain values of d(i). Let V(k) denote the set of all vectors v
that can satisfy the SINR constraint for SUk. It can then be found that:

V(k) = {(v1, v2, ..., vN
(k)
s

)|
∑

n∈N (k)
s

Pn

vnPn + σ2
e

≥ γ
(k)
th } (9)

In other words, the CBS can recover the signals of SUk if and only if the obser-
vation vector d(k) belongs to V(k). We then have the following proposition:

Proposition 1. For the recovery of the SUs’ signals, we assume that the PUs’
signals have been successfully recovered and that the SUs’ signals are ordered
and recovered in an ascending order, based on their received SINR. Let Si be the
event of having γ

(i)
s ≥ γ

(i)
th . Then, the probability of successfully recovering the

signals of SUi, through the SIC process, can be calculated as follows:

Pr(Si) = Pr(γ(i)
s ≥ γ

(i)
th )

= Pr(γ(i)
s ≥ γ

(i)
th |Si−1)Pr(Sk)

= Pr(d(i) ∈ V(i)|Si−1)Pr(Sk),

for 1 ≤ i ≤ Ks.

4.3 Clean Packet Model

As mentioned before, authors in [7,8,9] have implemented the iterative recovery
process of codes-on-graph for the binary erasure channel (BEC) in PRA schemes.
As in Fig. 1, the system is mapped onto a bipartite graph and the signal recovery
is visualized as a message passing algorithm [10]. However, at the receiver side,
successful signal recovery can only take place if an interference-free clean packet
has been received at the destination.

From Section III-B, the observation vector of the ‘clean packet’ model must
have the following form for successful signal recovery:

{d(i)|∃j, d
(i)
j = 0, 1 ≤ j ≤ i}.
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Let us consider the case where the received power of an SU’s signal is less than
or equal to its SINR threshold. Then, if the received signal is interference-free,
it can be successfully recovered in our design. For such a case, the observation
vectors of both designs are the same for dm = 1.

On the other hand, from (9), we can see that the set of observation vectors
that ensure successful recovery will generally be larger for our design; thus, it is
expected to provide a higher probability of success. The ‘clean packet’ model can
be seen as a special case of our design. Interestingly, when the SINR threshold
is higher than that of the received power per signal for an SU, the ‘clean packet’
model fails to service any SUs at all. However, for sufficiently high degrees, our
approach can still service a significant fraction of the SUs.

4.4 Optimization of the Degree Distribution

Given a CRN system of Kp PUs and Ks SUs transmitting over a set of N
sub-channels, we formulate an optimization problem to find the degree distribu-
tion that maximizes the probability of successfully recovering the SUs’ signals
through the SIC process, while satisfying the IP constraints of the PUs. The CBS
has the perfect knowledge of the PUs channel allocation, power, and respective
IP constraints. It also has knowledge of the number of active SUs and their
respective SINR constraints. Accordingly, the optimization problem can be for-
mulated as follows:

maxp,Ω(x)

Ks∑

k=1

Pr(Sk)

s.t. (i)
dm∑

i=1

Ωi = 1, Ωi ≥ 0, ∀1 ≤ i ≤ dm

(ii)E

[
∑

n

I(k)p,n

]
≤ I

(k)
th , ∀k ∈ Kp.

Condition (i) ensures the sum of all probabilities is equal to 1. Condition (ii)
ensures that the PUs are protected by the IP constraint on a per user basis. With
reference to Lemma 1, it can easily be seen that this condition determines the
value of Ω̄ and p. Optimization is carried out using the covariance matrix adap-
tation evolution strategy (CMA-ES)[11] and can be easily modified for different
IP and SINR thresholds.

5 Numerical Results

In this section, we investigate the system performance for different setups. Results
are averaged over 10000 samples. The received power constraint per sub-channel
Po is taken to be 0 dB, the number of sub-channels N is set to 128 [12].

For ease of analysis, we now assume that Pn = Po, where 1 ≤ n ≤ N . This
condition dictates that all sub-channels have the same received power constraint.
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For a practical system, this also reduces the signalling overhead. This can be
easily justified for the case where N

(i)
p = Np and I

(i)
th = Ith, for 1 ≤ i ≤ Kp. We

adopt this assumption in our simulations. We also assume that γ
(i)
th = γth, for

1 ≤ i ≤ Ks.

Table 1. Results of CMA-ES optimization for Ks
N

= 60
128

log10 γth/Po 0 dB 1 dB

dm 4 8 4 8

Ω1 0.0002 0.0003 0.0001 0.0002
Ω2 0.5072 0.0831 0.1108 0.1295
Ω3 0.0041 0.1619 0.1727 0.1529
Ω4 0.4885 0.1744 0.7163 0.2112
Ω5 0.2255 0.0674
Ω6 0.0382 0.2406
Ω7 0.1758 0.1188
Ω8 0.1408 0.0794

ε 3.00e-03 3.75e-04 2.67e-04 4.05e-04

In Table 1, we show the results of CMA-ES for Ks

N = 60
128 and a maximum

degree of 4 and 8. Using the results of [7], we proceed to compare the achievable
error probabilities of both designs; the error probability is denoted by ε and
defined as 1 − 1

Ks

∑Ks

k−1 Ps,k. Results are shown in Fig. 3. As predicted, the
proposed design outperforms the ‘clean packet’ model even for γth

Po
= 1. As our

proposed design relies on the overall received SINR, the sum of all individual
SINRs, it makes use of all transmissions over the different sub-channels rather
than interference-free transmissions only, thus, achieving better performance for
the same power requirements. Finally, in Fig. 4, we consider the probability of
having the IP caused by the SUs to the PUs below a given threshold. We use the
results from Table 1, for dm = 8 and log10

γth

Po
= 0dB. We find Ω̄ to be around

5.23. Interestingly, for Ith ≤ -5dB, the probability of successfully recovering a
PU’s signals becomes independent of the threshold and solely dependent on
the number of SUs supported in the network. Even more so, for thresholds
as high as 10 dB, the probability of successfully recovering a PU’s signals is
almost one for any number of SUs. It is worthy of noting that Condition (ii)
in Section IV-D can be easily modified to limit this probability by restricting
Pr

(∑
n I

(k)
p,n ≤ I

(k)
th

)
≤ δ, where δ is a predefined threshold.

6 Practical Considerations

In our system, the CBS is assumed to have the perfect knowledge of the PUs’
activity and channel conditions, their respective IP constraints, the number of
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Fig. 3. Error probability of proposed scheme in comparison to the ‘Clean Packet’ model
for different ratios of Ks

N

K
s

10 20 30 40 50 60

P
[IP

 <
 I

th
]

0

0.2

0.4

0.6

0.8

1
IP threshold = -20 dB
IP threshold = -5 dB
IP threshold = 0 dB
IP threshold = 5 dB
IP threshold = 10 dB

Fig. 4. Probability of IP being below the threshold for different values of Ks

active SUs and their respective SINR threshold. We assume this is made known
to the CBS over the control channel, where transmissions are deterministic in
duration and nature. Accordingly, the CBS can find the received power con-
straints necessary and the optimal degree distribution function to meet the sys-
tem constraints. Then, the control channel can also be used to make the degree
distribution known to the SUs. As the SUs are assumed to be able to esti-
mate their channel gains from the downlink given the reciprocity of the channel,
the signalling overhead is significantly reduced in comparison to fixed resource
allocation.
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For a given transmission block, the SIC process cannot be initiated without
the knowledge of how many and which sub-channels were accessed by which
users. We assume the SUs share the same seed with the CBS to determine the
number and index of the chosen sub-channels through a pre-defined pseudo-
random number generator [7].

Finally, it is worthy of noting that the IP constraint can be defined as either
the average IP constraint or the peak IP constraint. However, throughout this
paper, we only consider the former definition. This was justified in [13], where
it was shown that the average IP constraint provides a higher system capacity
than that of the peak IP.

7 Conclusion

In this paper, we proposed a new design of probabilistic random access schemes
in CRNs. We showed that the conventional ‘clean packet’ model is sub-optimal
under the IP and SINR constraints. We formulated a new optimization problem,
based on CMA-ES, to maximize the probability of successful recovering the
SUs’ signals in the SIC process while satisfying the IP constraints of the PUs.
Numerical results show that our degree distributions can achieve lower error
probabilities with lower number of transmissions, and thus, having lower power
requirements.

Proof of Lemma 1

Since the sub-channels are chosen uniformly at random, the degree of each sub-
channel, defined as the number of users transmitting in that sub-channel, follows
the binomial distribution. Let us denote this pdf by Λ(x). In the asymptotic case,
that is for a large number of sub-channels and SUs, the distribution converges
to Poisson [14], as follows:

Λi = e−α αi

i!
, where α =

Ks

N
Ω̄.

From (2), the IP constraint for PUk was defined as: I
(i)
p =

∑N(k)
p

n=1

∑
k∈Ks

ak,nPn =
∑N(k)

p

n=1 unPn, where un is a random variable representing
the number of SUs transmitting in the nth sub-channel. Intuitively, the prob-
ability of having un SUs transmitting in a sub-channel n is the same for all
1 ≤ n ≤ N , and Pr(I(k)p,n = unPn) is simply Λun

. Assuming equal power alloca-
tion, that is Pn = P

(k)
o ∀ n ∈ N (k)

p , we can express the pdf of I
(k)
p as follows:

Pr(I(k)
p = i) = Pr(u1P

(k)
o + u2P

(k)
o + ... + u

N
(k)
p

P (k)
o = i) =

N
(k)
p⊗

n=1

Λz|z= i

P
(k)
o

, ∀k ∈ Kp,

where
⊗

denotes the convolution operation. As Λ(x) was shown to be poisson
distributed, and as the sum of poisson distributed random variables is also a
poisson random variable, we arrive at (6).
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