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Abstract. In this paper, we study the distributed optimal power alloca-
tion for the carrier aggregation in next generation (5G) cognitive radio
networks. The presented study relies on the power control and carrier
aggregation principles of wireless communication systems. Our approach
differs from the conventional well-known water filling (WF) algorithm
in the sense that we provide decentralized solution, wherein all of the
Lagrange multipliers are not handled equally over the heterogeneous
fading channels. This is accomplished in order to provide distributed
power control over the heterogeneous fading channels that are consid-
ered non-identically distributed and non-identical Nakagami-m channels.
To this end, we first formulate the optimization problem and in the
sequel, we solve it using the alternating direction method of multipli-
ers (ADMM), which provides to our solution the required decomposition
for each channel and the robustness through the augmented Lagrangian.
For benchmarking, we provide comparison to other prominent decom-
position methods like dual decomposition method (DDM). Simulation
results highlight the performance gain of ADMM in terms of number of
iterations. The achievable sum rates are also depicted for different net-
work setups. Comparison to the WF is also provided that reveals the
gain of the applied decomposition methods (i.e. ADMM and DDM) to
the cognitive heterogeneous 5G cellular networks.

Keywords: Carrier aggregation · Optimal power allocation · Hetero-
geneous fading channels · Alternating direction method of multipliers ·
Decomposition methods

1 Introduction

5G technologies include the cognitive cellular networks concept relying on the het-
erogeneous networks deployment of macro, pico and other different size of cells.
The difference among those cells is their carrier frequency that can be used either
to provide higher capacity or coverage [1]. An additional cognitive radio aspect in
5G wireless communication systems (beyond LTE-Advanced) is the carrier aggre-
gation (CA). Although CA first introduced in Rel.8 of the LTE system for a static
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implementation within particular bands, today, the application of CA in Het-
Nets is already implemented (Rel.12) and it is being further extended to Rel.13
within a multi-band context [3]. In this way, the aggregation of heterogeneous dis-
persed bands is carried out giving the freedom to operators for better spectrum
exploitation including the bandwidth expansion [2]. Such an heterogeneous wire-
less medium should be taken into account in the design of known techniques of
wireless communications such as power control [4].

Power control relies on the channel state information (CSI) that is sent from
the user equipment (UE) back to the base station (BS) through feedback channel
resulted in the well-known water filling (WF) algorithm [4]. Power control with
CA in cognitive cellular networks with HetNets deployment should be revisited
due to the heterogeneity of the multiple channels that can be aggregated. In
such a dynamic wireless medium, wherein the channel gains are not considered
identically distributed and non identical random variables, the conventional WF
algorithm is not practical anymore. Thereby, we need to devise new solutions to
manipulate more than one Lagrange multipliers and on the other hand, to not
provide a global solution (i.e. one Lagrange multiplier) due to the heterogeneity.
Towards this end, several works have been dealt with the multiple Lagrange
multipliers issue as discussed below.

In [5], authors studied the problem of power allocation for interference chan-
nels. For the solution of a 2-channel system model, they use the augmented
Lagrangian method in conjunction with the steepest descent method to opti-
mize the augmented Lagrange function to each iteration. Augmented Lagrangian
method is a modified dual-ascent method with an additional penalty condition
bringing thereby robustness and yielding convergence without assumptions like
strict convexity of the objective function [6]. In [7], the authors studied power
control in a cognitive radio network application, wherein the interference orig-
inated from the secondary network to the primary is considered. Looking into
their solution for the problem of power allocation, they proposed a Gauss-Seidel
sequential iterative method. Gauss-Seidel is used for the calculation of the power
allocation vector including the transmit power of other secondary base stations
contributing to the interference at the primary receivers. In [8], the author pro-
posed a dynamic power control algorithm that allows each femtocell user to adapt
its outage probability specification to minimize the total energy consumption in
the system and guarantees a minmax fairness in terms of worst outage proba-
bility to all the femtocell users. In [9], authors studied a cognitive radio model
for the power control with constraint on the transmit power and the interference
power resulting in a Lagrange dual function with two Lagrange multipliers. They
proposed a dual decomposition method (DDM) for solving this problem dealing
with the two multipliers. Such solution adopts the decomposability for a given
network resource allocation problem providing architectural alternatives for a
more modularized network design [10].

Obviously, decomposition methods is one of the powerful tool that naturally
looks for parallel optimization algorithms [6]. For example, in [11], the authors
provide an optimal design of multiuser DSL spectrum using DDM to manage
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an exponential complexity that increases with the number of DSL channels. In
particular, the power constraints are imposed through the use of Lagrangian
multipliers, which can be chosen correctly in order to achieve the optimisa-
tion objective across different tones. The DDM has been also applied to the
power control for spectrum sharing cognitive radio networks for decoupling the
problems of the transmit power and interference power calculating thereby the
corresponding Lagrange multipliers [12].

In this paper, we study the power control problem with CA in heterogeneous
networks, wherein the optimal power allocation is accomplished over hetero-
geneous channel conditions. In order to model such heterogeneous system, we
assume a channel model with independent but not identically distributed chan-
nels [13]. Additionally, we assume non-identical Nakagami-m fading channels
that gives the system model more heterogeneous characteristics [14]. The prob-
lem is formulated with separate power constraints for each channel assuming
optimal power allocation policy through Lagrange multiplier for each one. Since
we don’t look for a global solution (i.e. one unique Lagrange multiplier for all
channels), we devise an algorithm that can provide on one hand decomposition
and on the other hand local information exchange at each iteration leading to a
smaller number of iterations as compared to the other state of the art decom-
position method as the DDM. The proposed algorithm follows the principles
of the alternating direction method of multiplier (ADMM) that represents an
advanced DDM that combines the idea of DDM and the augmented Lagrangian
method [6]. ADMM has been recently used to solve several problems in wireless
communications; we mention here for example the need for a distributed multi-
cell coordinated beamforming solution, wherein multiple base stations (BSs)
collaborate with each other in the beamforming design to mitigate the intercell
interference as presented in [15]. Finally, in order to establish a benchmark of
the proposed ADMM algorithm, we solve our problem using the DDM providing
a practical algorithm. The obtained simulation results indicate the advantage
of using ADMM compared with DDM in terms of convergence and number of
iterations.

The rest of this paper is organised as follows. Section 2 give details about the
system model and the channel model. Section 3 provides the theory for the CA in
HetNets assuming optimal power allocation and heterogeneous fading channels.
Section 4 provides the details on the ADMM based solution and the Section
5 the details on the DDM approach. Simulation results and useful insights are
provided in Section 6 and the paper summary is provides in Section 7.

2 System and Channel Models

2.1 System Model

The proposed system model is considered for an heterogeneous network (Het-
Net), wherein the large and small cells are separated through the use of different
frequencies. The considered HetNet consists of cells of different sizes that are
called macro-, micro-, pico- and femto-cells.
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Fig. 1 depicts the system model of our macro/micro/pico and femto cells
HetNet deployment, in which all cells use different frequency channels and fading
impairments as explained below in the channel model description. Although,
the system model shows three cells, it will be expended to more generic case
using the derived analysis below. Under this premise, there is no interference
problem and the throughput gain for this option will be the highest one. We
also assume that the HetNet is able to provide carrier aggregation (CA) among
the heterogeneous bands. Each band within each cell can provide one or multiple
component carriers, i.e. channels, for aggregation offering the highest rate to the
end-user, whereby the CA in heterogeneous cognitive cellular networks can be
realized. In the next section, we give the details about the channel model of the
considered system model.

{h,m_1}

{h1,m1}
{h2,m2}

{hl,ml}

Fig. 1. Cognitive Heterogeneous Cellular Networks with Carrier Aggregation.

2.2 Channel Model

We assume that the CA over the considered HetNet system model can be mod-
eled as L parallel channels with heterogeneous fading channel characteristics. In
particular, each component carrier (i.e. channel) with l ∈ 1, .., L can be aggre-
gated by the transmitter (Tx) using the channel state information (CSI) received
by the receiver (Rx) for each channel. Considering L channels in our channel
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model, it is identical to assume L parallel channels [16]. We assume that the
feedback for each channel is provided by the Rx to Tx in an efficient way either
per channel or over the whole bandwidth [17]. The input−output (X,Y ) rela-
tionship for each channel of the L parallel channels with CA is described as
follows:

Yl = hlXl + nl, ∀l ∈ L (1)

where hl is the channel gain of the l − th channel and nl the noise that is a
zero-mean unit-variance complex Gaussian random variable independent of the
noise on the other channels.

Based on these assumptions, the average power of the l − th channel is given
by:

gl = E[| hl |2], ∀l ∈ L (2)

under the following constraint:

ΣL−1
l=0 hl = 1. (3)

The signal-to-noise-ratio (SNR) for the l − th channel is equal thereby to:

γl =
hlpl

σl
2Bl

, ∀l ∈ L (4)

where pl is the transmit power of the l − th channel, the σl the variance of the
noise and the Bl is the bandwidth of each channel.

Moreover, the following assumptions apply about our channel model:

• The bandwidth of each channel Bl is equal and fixed.
• The number of channels should provide the following rule L = BlTd in

respect to the delay spread Td having assumed a multi-carrier system.
• Each channel has a channel gain denoted as {Hl}L−1

l=0 .
• Each channel is considered invariant within a coherence period Tc and

thereby the number of symbols per channel is equal to Kl = [BlTc].

Having defined the system and channel models, the aim of this work is to provide
the most efficient power control scheme for CA over HetNets by maximizing the
sum achievable rate. To this end, we first model the carrier aggregation over
heterogeneous fading channels defining the required performance analysis, and
next, we explain the problem under consideration.

3 Carrier Aggregation over Heterogeneous Fading
Channels

CA in HetNets can be assumed as the CA over heterogeneous fading channels,
where the latter can be analysed as the sum achievable rate over independent and
non-identically distributed (i.n.d.) channels in terms of power and non-identical
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Nakagami-m channels in terms of fading impairments. In this way, the different
channels to be aggregated expose heterogeneous conditions. Under this premise,
the sum achievable rate in a CA system is defined as follows.

First, we assume that for each channel the power control is employed for
the adaptation over the fading channel conditions through the channel feedback.
Thereby, an optimal power allocation is carried out. For bench-marking purpose,
we assume that each channel performs the well known water-filling (WF) algo-
rithm and thus, the optimal power allocation for each l-th channel is given as
follows [4]:

Pl(hl) =
(

λl − σl
2

hl

)
. (5)

The corresponding achievable average rate over the fading channel is obtained
as follows:

Cl(hl) =
∫

log2

(
hlpl

λlσ2Bl

)
f(gl)dgl. (6)

The performance of the CA system over heterogeneous fading channels is con-
sidered as the sum rate as follows:

Ctot =
L∑

l=1

Cl =
L∑

l=1

C(hl). (7)

In order to model the HetNets environment, we assume that the channel
gains are heterogeneous, i.e. independent and non-identically distributed (i.n.d)
in terms of power and non-identical Nakagami-m in terms of fading impairments.
In this case, the instantaneous SNR γl of each channel is considered a gamma
distributed random variable with probability density function (PDF) given by
[14]:

fγl
(γ) =

ml
mlγml−1 exp−mlγ/γ̄l

γ̄l
mlΓ (ml)

(8)

where the fading parameter is considered different for each l-th channel denoted
as ml as well as the average SNR γ̄l. Thus, heterogeneous fading channels can be
assumed as also pointed out in [13], wherein the fading impairments are modeled
with different PDFs. In our case, we assume the generalized case of Nakagami-m
for changing the factor m accordingly, since our main focus is on the power con-
trol scheme for CA in HetNets. More specifically, we look for the power control
scheme that does not give a global solution for the i.n.d and non-identical fading
channel gains. The contribution of this paper is to find the overall optimal power
allocation P (h1, .., hl) of the proposed CA over heterogeneous fading channels.
The considered optimal power allocation is accomplished using the alternating
direction method of multipliers (ADMM) providing thereby a more efficient and
robust decomposition and learning among the fading channels with heteroge-
neous characteristics. Our future work on this topic, we will incorporate more
sophisticated fading channel formula including scheduling among the channels
with different bandwidth options for each channel [13].
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4 Power Control for Carrier Aggregation
in Heterogeneous Fading Channels

We formulate the problem of maximizing the sum rate over the transmit power
of each l − th component channel. The problem is formulated for l ∈ L channels
as follows:

max
p1,..,pL

Ctot =
L∑

l=1

Cl (9)

s.t.

L∑
l=1

Pl(hl) ≤ P̄l (10)

where the two constraints guarantee that each channel l − th follows each one
optimal power allocation policy.

It is evident from the problem defined in (9) that a solution using decompo-
sition principles could provide the mathematical framework to build an analytic
foundation for the design of requested distributed power control. For example,
assuming the WF algorithm, each subproblem can be solved isolated resulting in
the individual sum achievable rate that can not give an efficient distributed and
coordinated solution. We look for a solution that can be achieved by exchanging
information about the channels conditions in order to provide solutions on their
separate problems at local level leading to the efficient overall solution at dis-
tributed level. One known solution of such a problem is the dual decomposition
that can solve the problems separately and update the optimal values using the
subgradient method. Nevertheless, there is a more powerful method that relies
on the decomposition principles providing more robustness in such distributed
problems. This method is known as the Alternating Direction Method of Multi-
pliers (ADMM).

In particular, the ADMM combines the principles of the dual decomposition
using also the augmented Lagrangian tool for gradually learning. In particular,
the ADMM method consists of the following steps in order to solve our problem:

• To formulate the augmented Lagrangian function:

L(p1, .., pL, λ1, .., λL) =
L∑

l=1

Cl

+λ1

(
P1(h1) − P̄1

)
+ ... + λL

(
PL(hL) − P̄L

)
+

ρ

2

((
P1(h1) − P̄1

)2 + ... +
(
PL(hL) − P̄L

)2)
(11)
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• To designate the dual decomposition as follows:

min
λ1,..,λL

{ max
p1,..,pL

C1 + ... + CL

+λ1

(
P1(h1) − P̄1

)
+ ... + λL

(
PL(hL) − P̄L

)
+

ρ

2

((
P1(h1) − P̄1

)2 + ... +
(
PL(hL) − P̄L

)2)}
(12)

where the λ1,..,λL are the dual variables for each of L channels.
• To solve the inner subproblems through optimization decomposition solution

using Gauss-Seidel or block-coordinate descent method:

P1(h1)k+1 = arg min
p1

L(p1, .., pk
L, λk

1 , .., λ
k
L) (13)

= C(1) + λ1

(
P k
1 (h1) − P̄1

)
+ρ

((
P k
1 (h1) − P̄1

)2
+ ... +

(
P k

L(hL) − P̄L

)2)
(14)

...

P2(hL)k+1 = arg min
pL

L(pk+1
1 , .., pL, λk

1 , .., λ
k
L) (15)

= C(L) + λL

(
P k

L(hL) − P̄L

)
+ρ

((
P k+1
1 (h1) − P̄1

)2
+ ... +

(
P k

L(hL) − P̄L

)2)
(16)

• To solve the outer problem using the subgradient updates:

λk+1
1 = λk

1 + ρ(P1(h1)k+1 − P̄1) (17)

...

λk+1
L = λk

L + ρ(PL(h2)k+1 − P̄L) (18)

Instead of the dual decomposition method (DDM), ADMM, as its name
suggests, alternatively performs one iteration of the Gauss-Seidel step (13 − 16)
and one step of the outer subgradient update for speeding up its convergence.
Notably, the augmented Lagrangian is minimized jointly with respect to the
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L primal variables. The optimal power allocation Pl(hl) with L variables are
updated in an alternating or sequential fashion. Separating the maximization
for the optimal power allocation of two channels into two steps is precisely what
allows for decomposition [6]. In order to benchmark the ADMM performance,
we also devise the DDM for our problem and we describe the algorithm in details
below.

5 Benchmarking with the Dual Decomposition Method

DDM is a powerful tool that can be used for decomposing a problem to sub-
problems applying the separation principles in networking systems [18]. We will
provide the solution of the proposed optimization problem using DDM n order to
establish a benchmark to the proposed ADMM-based algorithm for comparison
purposes. In this way, we can also highlight the architectural differences among
the two decomposition approaches.

We first formulate the Lagrangian function of the optimization problem as
follows:

L(p1, .., pL, λ1, .., λL) =
L∑

l=1

Cl + λ1(P1(γ1) − P̄1) + ... + λL(PL(γL) − P̄L)

(19)

and the Lagrangian dual function is given as follows:

g(λ1, .., λL) =

max
p1,..,pL

L∑
l=1

Cl + λ1(P1(γ1) − P̄1) + ... + λL(PL(γL) − P̄L)

(20)

where the λ1, .., λL Lagrange multipliers are considered the link price [10].
The dual function can be minimized to obtain an upper bound on the optimal

value of the original optimization problem:

min
λ1,..,λL

g(λ1, .., λL) (21)

s.t. λ1 > 0
...
λL > 0

where the optimal dual objective g∗ forms the duality gap C∗
tot − g∗, which is

indeed zero since the Karush-Kuhn-Tucker (KKT) conditions are satisfied.
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The DDM algorithm used for the problem solution is described in the algo-
rithm below. The DDM is simulated in parallel with the ADMM and useful
insights are discussed in the section below.

Algorithm 1. Dual Decomposition algorithm with L component channels.
• Parameters: constant step size α and constant convergence value ε.
• Initialize: variables λk

1 = 1, .., λk
L = 1 for all L channels.

1. The Lagrangian dual problem is solved locally by the BS, which aggregates the L
channels and then send the feedback the solutions to the corresponding channels.

2. The BS updates its prices for each component channel l ∈ L using the subgradient
as follows:

λk+1
1 = λk

1 − α(
∑

1

P̄1 − P1(λ1)) (22)

...

λk+1
L = λk

L − α(
∑

L

P̄L − PL(λL)) (23)

and broadcasts the new prices λk+1
1 , .., λk+1

L .
3. Set k −→ k + 1 and go to step 1) until satisfying termination criterion.

• Stop once | λk+1
l −λk

l |≤ ε, ∀l ∈ L simultaneously, where ε is the convergence rule.

6 Simulation Results and Useful Insights

In this section, simulation results are presented and useful insights are discussed.
We opt to provide the outage probability for each channel that reveals better the
impact of different Lagrange multiplier values resulted by the different applied
methods. The outage probability formula can be found to several references, e.g.
[4].

Fig. 2 depicts the outage probability using two component carriers
(CCs) assuming the following heterogeneous channel conditions: CC − 1 :
5dB,m = 1, CC − 2 : 15dB,m = 2 where the first term denotes the average
SNR of the specific CC and the second term the fading m parameter. The sim-
ulation has been carried out using ADMM, DDM and WF algorithms. Focusing
on the first carrier, i.e. CC1, it is inferred that the ADMM outperforms the DDM
in terms of required number of iterations. In particular, the ADMM requires 18
iterations in order to converge to the capacity solution and the DDM requires 23
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Fig. 2. Outage probability of 2 CCs of 5dB and m = 1, 15dB and m = 2 using ADMM
and DDM. Benchmark with the WF algorithm is also provided.

iterations. This is provided in the ADMM by the parallel solutions of the inner
subproblems that is not taken into account in the DDM. For benchmarking pur-
pose, the results using WF algorithm are depicted that requires 63 iterations. In
this way, the advantage of decomposition methods for handing the heterogene-
ity of the channels is manifested. The same outcome can be observed for the
second carrier, i.e. CC2, with an additional interesting performance gain that
is the outage probability, which shows lower values than those required for the
first channel. This could be explained as the results of having better channel
conditions for the CC2 compared to the CC1’s ones.

Fig. 3 below depicts the performance of the ADMM in comparison to DDM
using three CCs, i.e. CC1, CC2 and CC3. The results also corroborate the advan-
tage of using ADMM instead of DDM having a better number of iterations as
long as the channel conditions are better. The outage probability for better chan-
nel conditions is improved as well. It is also observed that the higher average
SNR for a particular fading channel condition, e.g. m = 2 does not have an
impact on the number of iterations for the two prominent decomposition meth-
ods that applied in this paper and corroborate the benefit of seperation princi-
ples in wireless communications through the dual decomposition [18]. Finally, it
should be noted that for better channel conditions, e.g. CC2, the outage proba-
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Fig. 3. Outage probability of 3 CCs of 5dB and m = 1, 10dB and m = 2, 15dB and
m = 2 using ADMM and DDM.

bility is low since the Lagrange multiplier decreases significantly almost to zero.
This behavior is observed for both ADMM and DDM verifying the fact that the
decomposition provides achievable rates without power control. However, the
WF requires power control for achieving the capacity with higher impact on the
performance in terms of outage probability.

Fig. 4 depicts the achievable sum rate in bits per sec over average SNR in dB
at the CC-1 assuming fading channel with m = 1, average SNR equal to 10dB
and fading channel m = 2 at the CC-2 and finally average SNR equal to 15dB
and fading channel m = 2 at the CC-3. The results are depicted using ADMM,
DDM and WF algorithms respectively. It is evident from the results that both
decomposition methods, i.e. ADMM and DDM outperforms the WF and there
is a gain of using the DDM at the low power regime although in terms of itera-
tions ADMM performs better as have been discussed above. Most importantly,
for more than 2 CCs, the performance gain of using decomposition methods
is significant due to the provided coordinated solution for each particular link
comparing to the isolated WF solution, which does not deal with the distributed
nature of the problem at hand.
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Fig. 4. Sum rate (bits/sec) over the average SNR in dB at the CC-1 with m = 1,
assuming 10dB average SNR and m = 2 at the CC-2, and 15dB average SNR and
m = 2 at the CC-3, using ADMM, DDM and WF algorithms.

7 Conclusion and Future Work

In this paper, we study the power control problem when carrier aggregation in
heterogeneous networks is deployed in future cognitive 5G cellular networks. Our
study assumes the optimal power allocation over fading channels with hetero-
geneous characteristics in terms of power and fading impairments. To this end,
we model the channel gains with heterogeneous characteristics that is carried
out assuming independent and non-identically distributed (i.n.d.) in terms of
power and non-identical Nakagami-m in terms of fading impairments. Under
this premise, we formulate the problem of maximizing the achievable rate of the
CA over the transmit power constraints of the channels. The problem solution
is carried out in a distributed and coordinated fashion employing the alternat-
ing direction method of multipliers (ADMM) as a powerful tool for providing
decomposition. The particular method is devised, applied and presented in this
paper. In order to benchmark the proposed method, we provide a problem solu-
tion using the dual decomposition method (DDM) too. Simulation results are
obtained and illustrated, which corroborate the fact that ADMM converges faster
than the DDM. In terms of sum rate, the decomposition methods for such a dis-
tributed problem provides better result than the classical WF. Having defined
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such a dynamic framework, our future work on this topic will be the provision
of scheduling the channels with an order-based policy taking also into account
variable bandwidth sizes for each channel.
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