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Abstract. In this paper,wepropose an energy-efficient interference align-
ment (IA) based resource management algorithm for multi-input multi-
output (MIMO) orthogonal frequency division multiplexing (OFDM)
cognitive radio (CR) systems. The proposed algorithm provides the
secondary users (SUs) with the opportunity for underlay sharing of the
primary system spectrum. The proposed algorithm ensures the quality-of-
service (QoS) of the primary system by guaranteeing the minimum trans-
mission rate. The problem is formulated as a mixed-integer non-convex
optimization problem, inwhich the objective is tomaximize the energy effi-
ciency, and the constraints are the per-user power budget and QoS demand
of theprimary system.To tacklemixed-integer andnon-convexitynature of
the problem, we propose a sub-optimal energy-efficient algorithm through
two successive steps. The first step schedules the subcarriers among the
SUs based on IA while the second step iteratively allocates the power based
on Dinkelbach’s scheme. Simulations reveal that the proposed algorithm
achieves significant improvement in the energy efficiency compared to the
traditional spectrum-efficient algorithm.

Keywords: Cognitive radio · Interference alignment · Resource
allocation · Energy efficiency · MIMO · OFDM

1 Introduction

Cognitive radio (CR) is considered as a promising technology that overcomes
the scarcity and the underutilization of the spectrum [1]. In this context, the
secondary users (SUs) are allowed to share the same spectrum bands with the
primary users (PUs) provided that the quality of service (QoS) of the PUs is guar-
anteed. Recently, interference alinement (IA) is merged with CR as an efficient
interference management technique in order to achieve optimal utilization of the
system resources. IA is a cooperative transmission approach that achieves an opti-
mal sum-rate for K-user interference channels at high signal-to-noise-ratio (SNR).
IA is performed by aligning the interference signals from the undesired transmit-
ters in certain subspaces, termed as interference subspaces, and the desired signal
in the other subspaces, termed as interference-free subspaces [2],[3].
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Energy efficiency gains much of interest nowadays due to the rapidly increas-
ing cost of energy [4,5]. The ever-increasing data-rate demands require energy-
efficient transmissions in order to prolong the battery lifetime of wireless devices.
However, energy-efficient based IA resource allocation in multi-input multi-
output (MIMO) CR systems is rarely addressed in the literature, where many
research works considered the problem of IA based resource allocation in MIMO
CR systems aiming at maximizing the spectral efficiency of CR systems [6–9]. In
this regards, the work in [10] proposed energy-efficient resource allocation based
on IA in CR systems. Nevertheless, this work is focused only on narrow-band
CR systems in addition to that it is restricted to a limited number of SUs.

In this work, we investigate energy-efficient resource allocation algorithm
based on IA technique in dense MIMO orthogonal frequency division multiplex-
ing (OFDM) CR systems. Resource management problem is formulated on the
base of IA in order to enable the SUs to underlay the primary system spectrum.
The proposed algorithm satisfies the QoS of the PU by guaranteeing the min-
imum transmission rate of the PU. In problem formulation, each subcarrier is
assigned to a feasible number of SUs in order to meet IA feasibility conditions.
The resource allocation problem is formulated as a mixed-integer non-convex
optimization problem. To tackle the mixed-integer and non-convexity nature of
the problem, a sub-optimal energy-efficient algorithm is proposed through two
steps. First step assigns each subcarrier to a feasible number of SUs while the
second step allocates the power among all subcarriers and all users.

2 System Model

In this model, K transmitter-receiver pairs are assumed, where a cognitive radio
system with K − 1 pairs of SUs is coexisted with a single-user broadband pri-
mary system. All the K nodes are equipped with MT transmit antennas and
MR receive antennas. User 1 refers to the PU that occupies a bandwidth of B
Hertz divided into N subcarriers. Each subcarrier has a bandwidth W = B/N
Hertz. Underlay spectrum sharing is assumed through this work, where the SUs
guarantee the QoS of the PU. In order to accomplish co-channel interference
free transmission, IA is applied to give the opportunity for the different SUs
to share the CR spectrum with optimal interference management. Due to the
frequency orthogonality of OFDM systems, MIMO IA can be applied indepen-
dently on each subcarrier as a combination of linear precoder at the transmitter
and interference suppression decoder at the receiver [3]. Therefore, we model
the system focusing on a specific subcarrier n. For the nth subcarrier, the D
symbol data streams xn

k are precoded at the kth transmitter using a unitary
matrix Vn

k ∈ C
MT ×D. This precoder aligns the desired data at its own receiver

in the interference-free subspace while the interference signals from other SU
transmitters are aligned at the interference subspace [2,11]. With perfect chan-
nel knowledge, the received signal at the kth receiver on the nth subcarrier is
written as
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where Un
k ∈ C

MR×D is a unitary linear interference suppression matrix applied
at the kth receiver, and Hn

kj ∈ C
MR×MT denotes the channel frequency response

between jth transmitter and kth receiver. zn
k ∈ C

MR×1 is the zero mean unit
variance circularly symmetric additive white Gaussian noise (AWGN) vector
with variance σ2 at the kth receiver.

In IA, the interference can be totally nullified when the condition MT +
MR − (K + 1)D ≥ 0 is achieved [12]. The precoder and decoder matrices can
be designed to achieve IA using closed-form solution or other algorithmic meth-
ods as presented in the literature for many cases (e.g. [2,13,14] and references
therein). In feasible IA systems, the interference is concentrated in the inter-
ference subspace, and hence the leakage interference in the desired subspace is
trivial [15]. Accordingly, the received signal in (1) becomes
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The total sum-rate of the CR system in addition to the PU is expressed as [13]
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where Sn
k ∈ R

D×D is the input covariance matrix of the kth user on the nth sub-
carrier, and hence the transmitted power by the kth user over the nth subcarrier
is Pn

k = Tr (Sn
k ). Since Un

k
HHn

kkV
n
k is considered as the effective channel and has

a rank of D, the sum-rate in (3) can be formulated using spectral decomposition
into
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where Pn
k,d is the allocated power to the dth data stream at the kth user on

the nth subcarrier and λd

(
Un

k
HHn

kkV
n
k

)
is the dth eigenvalue of Un

k
HHn

kkV
n
k .

Further, we denote λd

(
Un

k
HHn

kkV
n
k

)
as λn

k,d.

3 Problem Formulation

The energy efficiency is defined as the amount of information being transmitted
in one Hertz per Joule energy consumption (bits/Hz/Joule). Our objective is
to maximize the energy efficiency of the system while the QoS of the PU is
guaranteed. The QoS of the PU is guaranteed as the minimum transmission
rate, which is described as
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)
≥ RQ, (5)



Energy-Efficient Resource Allocation Based on Interference Alignment 537

where RQ is the minimum transmission rate that should be guaranteed to achieve
the required QoS.

In this work, the overall power consumption is expressed as

E =
K∑

k=1
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(
P k

ct + P k
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)
, (6)

where P k
ct and P k

cr are the transmitter-circuit and the receiver-circuit power
consumption for the kth user, respectively [16].

IA allows the SUs to share the spectrum resources simultaneously with the
PU, which increases the degrees-of-freedom of the CR system. Nevertheless,
according to IA feasibility conditions, the number of SUs that is allowed to
share the PU on a given subcarrier is restricted up to a certain number of SUs
written as

Kf =
MT + MR

D
− 2. (7)

Therefore, the formulation of IA based resource management problem should
consider this limitation by scheduling only Kf SUs on a given subcarrier. The
problem can be formulated as

P1 : arg max
P,W

R(P, W)
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=
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s.t. :
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wn
k ∈ {0, 1} ∀k, n (8f)
K∑

k=2

wn
k = Kf ∀n, (8g)

where P = {Pn
k,d,∀k, n, d} and W = {wn

k = {0, 1},∀k, n} are the power
allocation and user selection indicators, respectively. wn

k is a binary variable
that indicates whether the kth SU is allowed to access the nth subcarrier, where
wn

k = 1 if and only if the nth subcarrier is allocated to the kth SU and 0 implies
otherwise. wn

1 is always 1 since the PU is guaranteed to access all the spectrum
which is satisfied by the constraint (8b). The constraint (8c) represents the kth

user total power constraint Pmax
k , while a positive transmission power at each

antenna is guaranteed by (8d). The constraint (8e) ensures that the QoS of the
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PU as stated in (5). The equality condition
∑K

k=2 wn
k = Kf ensures that any

given subcarrier can be shared by Kf SUs in addition to the PU, where IA
feasibility is accomplished.

4 Sub-optimal Energy-Efficient Algorithm

The optimization problem of P1 is a non-convex and mixed-integer optimiza-
tion problem, which is mostly prohibitive to solve. The non-convexity nature is a
result of the objective function which is the ratio of two functions, and the mixed-
integer nature comes from the integer constraint that is used for SUs scheduling.
Therefore, we propose a sub-optimal scheme in order to solve Problem P1 effi-
ciently with low computational complexity. Firstly, we avoid the mixed-integer
nature of Problem P1 by finding the indicators W using frequency scheduling.
After that, the objective function is simplified using techniques from nonlinear
fractional programming in order to allocate the power among users and sub-
carriers aiming at maximizing the energy efficiency of the system. The detailed
description of the sub-optimal algorithm is provided in the next section.

4.1 Frequency Scheduling

The integer constraint, that is used for user scheduling in (8f), is an obstacle
in tackling the optimization problem. Therefore, frequency scheduling needs to
be performed in case of having a dense CR system, where the number of SUs is
greater than Kf , in order to find W. In this step, we schedule Kf SUs to share
the PU a given subcarrier. This step can overcome the IA feasibility constraint
and guarantees feasible and perfect IA on each subcarrier [17]. The scheduling
operation chooses the SUs with strong direct effective channel since this provides
more power gain to save extra energy.

The description of the scheduling step can be commenced by defining N and
B = {2, ..,K} to be the sets contain all the non-assigned subcarriers and all the
SUs, respectively. Furthermore, define C = {c(1), .., c(NC)} to be the sets of all
possible combinations of Kf SUs, where NC denotes the number of combinations
while c(i) ∈ C refers to the group of users inside the ith combination. The first
element in each group is the PU in addition to the Kf SUs. Each combination
must satisfy that c(i) ⊆ {1,B} and c(i) �= c(j);∀(i �= j). For the nth subcarrier,
the combination selection can be formulated mathematically as

c∗
n = arg max

c(i)

∑

k∈c(i)

∥∥∥Un
k
HHn

kkV
n
k

∥∥∥
F

, (9)

where the SUs inside this cluster are the only allowed to transmit over that
subcarrier in addition to the PU.

At the beginning of the scheduling algorithm, all the possible combinations
are generated to form C using the SUs in the set B. Afterwards, the subcarriers
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are assigned sequentially to groups, where a given subcarrier, e.g the nth sub-
carrier, is allocated to the combination c∗

n that achieves the scheduling criterion
in (9). After finding c∗

n, the indicator wn
k is set to be 1 for all the SUs in c∗

n and
0 otherwise. The scheme is repeated until allocating all subcarriers among the
clusters. The scheduling procedures are included in Algorithm 1.

4.2 Power Allocation

By means of frequency scheduling, the subcarrier indicators W are already deter-
mined. Therefore, the power allocation problem can be formulated as follows

P2 : arg max
P
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Hence, the optimization problem P2 is now non-convex quasiconcave fractional
program, where the numerator is concave in Pn

k,d and the denominator is affine
[18]. Since quasiconcave fractional programs share some important properties
with concave programs [19], it is possible to solve concave-convex fractional
programs with many of the standard methods for concave programs.

In this work, the iterative Dinkelbach’s method [20] is deployed to solve the
quasiconcave problem of P2 in a parameterized concave form. Let χ is a compact
set of feasible solutions of the optimization problem, where P ∈ χ. The following
objective function

arg max
P∈χ

R(P)
E(P)

can be associated using Dinkelbach’s method [20] with the following parametric
concave program

F(λ) = arg max
P∈χ

R(P) − λE(P), (11)

where λ ∈ R is treated as a parameter. It can be shown that F(λ) is convex,
continuous and strictly decreasing in λ [20]. We define λ∗ as the maximum energy
efficiency of the considered system which is given by

λ∗ =
R(P∗)
E(P∗)

= arg max
P∈χ

R(P)
E(P)

. (12)
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According to Dinkelbach’s method [20], we can achieve the maximum energy
efficiency λ∗ when

arg max
P∈χ

R(P) − λ∗E(P) = R(P∗) − λ∗E(P∗) = 0 (13)

for R(P) ≥ 0 and E(P) > 0 [20,21].
In summary, Dinkelbach proposes an iterative method to find increasing val-

ues of feasible λ by solving the parameterized problem

F(λl) = arg max
P∈χ

R(P) − λlE(P), (14)

where λl denotes the lth iteration. The iterative process continues until the
absolute difference value |F(λl)| becomes as small as a pre-specified ε.

Accordingly, Problem P2 is turned into solving a group of convex prob-
lems, which is definitely more manageable. Therefore, for a given λ, Problem P2
becomes
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Problem P3 is convex, where the Lagrangian can be written as
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where α is the non-negative Lagrange multiplier corresponding to the minimum
PU QoS rate in (15d). The Lagrange multiplier vector μ, which has non-negative
elements μn

k,d∀n, k, d, considers the positive power transmission in (15c). β is the
Lagrange multiplier vector corresponding to the maximum power budget for each
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user in the system as in (15b), which has non-negative elements βk,∀k. After
rearranging the Karush-Kuhn-Tucker (KKT) conditions, we get

Pn
1,d =
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, (18)

where [y]+ = max(0, y). These Lagrange multipliers can be solved numerically
using ellipsoid or interior point method.

Remark: At low SNR, Problem P3 may have no solution since the constraint
in (15d) is not feasible to be achieved. To avoid this case, we firstly check if the
constraint in (15d) is feasible or not [10]. This can be satisfied by switching the
SUs into sleep mode and performing power allocation aiming at maximizing the
throughput of the PU as follow

P4 : max
Pn
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This problem can be efficiently solved using a successive application of the con-
ventional waterfilling concept as follows [22]

P̂n
1,d =

[
ν − σ2
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where ν is the waterfilling level. The constraint in (15d) is feasible if and only
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)

≥ RQ . Otherwise, the transmission mode is changed

from IA into single user PU MIMO system as in [10] in order to provide the PU
with the full resources to achieve the maximum throughout.

4.3 The Proposed Algorithm

The proposed energy-efficient IA algorithm for MIMO-OFDM CR systems is
summarized in Algorithm 1. As discussed before, frequency scheduling is per-
formed in order to obtain W∗ as in the steps 1-14. After that, we check whether
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Algorithm 1. Sub-Optimal Energy-Efficient Algorithm
1: Initialize N = {1, 2, .., N}, B = {2, .., K}, the maximum number of iterations L

and the maximum tolerance ε
2: Set λ = 0 and iteration index l = 0
3: Find C
4: n = N (1); (the first element in A)
5: while N is not empty do
6: for all c(i) ∈ C do
7: Find Vn

k and Un
k ; ∀k ∈ c(i)

8: Evaluate ψn =
∑

k∈c(i)

∥
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kkV
n
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∥
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9: end for
10: Choose the set c∗

n such that ψn is maximized
11: Set wn

k = 1 ∀k ∈ c∗
n and 0 otherwise

12: Remove n from N and Set n = n + 1
13: end while
14: Output W∗

15: Switch SUs into sleep mode and solve Problem P4 using (20)

16: if
N∑

n=1

D∑

d=1

log2

(

1 +
P̂n
1,dλn

1,d
σ2

)

≥ RQ then

17: Switch on SUs
18: while Convergence = False and l < L do
19: Solve Problem P3 as in (17) and (18) and obtain Ṕ
20: if R(Ṕ) − λlE(Ṕ) < ε then
21: Convergence = True
22: Return P∗ = Ṕ and λ∗ = R(P∗)

E(P∗)

23: else if ; then

24: Set l = l + 1 and λl = R(Ṕ)

E(Ṕ)

25: Convergence = False
26: end if
27: end while
28: else if ; then
29: Change transmission mode of the PU into single user MIMO and Switch SUs

into sleep mode.
30: end if

the available resources are sufficient to guarantee the minimum QoS rate. When
QoS is guaranteed, the power is allocated by solving a group of convex prob-
lems aiming at finding P∗ as in the steps 17-26. Otherwise, the PU utilizes the
full resources in order to maximize the throughput of the primary system by
changing the transmission mode into single user MIMO system.

5 Simulation Results

In this section, we evaluate the performance of the proposed energy-efficient
resource allocation algorithm using numerical simulations. A PU that occupies
5 MHz bandwidth is assumed, where the number of subcarriers is N = 64. Each
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Fig. 1. Network energy efficiency versus maximum per-user power budget Pmax
k for

different numbers of users.

subcarrier has a bandwidth of 78.128 kHz, and the noise variance is σ2 = −60
dBm. A CR system is assumed to share the PU spectrum based on IA technique.
For all nodes in this scenario, the PU and SUs, are equipped with 2 antennas
MT = MR = 2, and each node sends one data stream. Channel realizations have
been drawn from independent and identically distributed Gaussian distribution
with zero mean and unit variance. The circuit power consumption of the transmit
circuit and receive circuit is assumed to be P k

ct = P k
cr = 32 dBm for all users.

The minimum data-rate requirement for the PU is RQ = 25 Mbits/s. For the
purpose of performance comparison, the following algorithms are considered in
the simulation:

1. EN-EF: Resource management is performed according to the proposed
energy-efficient method as described in Algorithm 1.

2. SP-EF: The resources are allocated aiming at maximizing the spectral effe-
ceincy as described in [9].

Fig. 1 depicts the average system energy efficiency versus the maximum per-
user transmit power budget Pmax

k . At low SNR regime, it can be observed that
the energy efficiency of EN-EF algorithm increases as the maximum per-user
transmit power budget increases until reaching the maximum energy efficiency.
After that, this scheme slightly decreases and converges to a specific energy
efficiency value, where any additional increase in the transmitted power is not
beneficial from energy efficiency point of view. It is noted for EN-EF algorithm
that as the number of users increases the energy efficiency performance gets
more benefit from the multiuser diversity, which is translated to commence an
additional power gain to the system and save energy. On the other side, the
energy efficiency of SP-EF algorithm behaves identical to EN-EF at low SNR
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Fig. 2. Network energy efficiency versus the number of users when per-user power
budget Pmax

k = 10 dBm.

regime while its energy efficiency performance dramatically decreases with the
increase of the maximum per-user transmit power budget since each user uses
the maximum power budget to maximize the sum-rate of the system. It is noted
that the energy efficiency of SP-EF scheme at middle and high SNR regimes
decreases as the number of SUs increases since each user uses its power budget
and, hence, as the number of SUs increases the used power increases. This result
is more clarified in Fig. 2 where this figure presents the energy efficiency of both
schemes with the number of users when per-user power budget Pmax

k = 10 dBm.
It is noted that the energy efficiency of EN-EF scheme increases with the num-
ber of users while SP-EF scheme decreases.

6 Conclusion

In this paper, we propose an energy-efficient resource allocation algorithm for
MIMO-OFDM CR systems that underly a PU. The optimization problem is for-
mulated as a non-convex mixed-integer problem, in which the per-user power
budget and the QoS of the PU are considered. The problem is handled through
two steps. In the first step, frequency scheduling is performed to allocate the sub-
carriers among the SUs. In the second step, the power allocation is considered by
exploiting Dinkelbach’s method, where an iterative power allocation algorithm is
proposed for maximizing the system energy efficiency. Simulations show that the
proposed scheme provides considerable gains on energy efficiency with ensuring
the QoS of the PU.
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