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Abstract. The explosion of mobile applications, wireless data traffic and their 
increasing integration in many aspects of everyday life has raised the need of 
deploying mobile networks that can support exponentially increasing wireless 
data traffic. In this paper, we present a Hybrid Satellite Terrestrial network, 
which achieves higher data rate and lower power consumption in comparison 
with the current LTE and LTE-Advanced cellular architectures. Furthermore, 
we present a feasibility study of the proposed architecture, in terms of its com-
pliance with the technical specifications in the current standards. 

Keywords: Hybrid satellite terrestrial · 5G · Control and user plane separated 

1 Introduction 

The increasing demand for data in mobile communication networks has resulted in 
the need for developing sufficient and advanced network infrastructures to support 
higher capacity and data rate. The forecasts in [1] shows that by 2018 the mobile data 
traffic will be 6.3 times higher than it was in 2013. In addition to this, the global CO2 
emissions of the mobile communications sector are expected to rise to 178 Megatons 
in 2020 [2]. Consequently, alternative approaches in the design and operation of fu-
ture mobile networks are being investigated. The concept under investigation in this 
paper is the separation of the control (C)-plane and the user (U)-plane in the Radio 
Access Network (RAN). The C-plane provides ubiquitous coverage via the macro 
cells at low frequency band. On the other hand, the U-plane functionality is provided 
by the small/data cells at a higher frequency band, such as 3.5, 5, 10 GHz, where new 
licensed spectrum is expected to be available for future use. The use of such bands for 
small cells can lead to a significant increase in capacity, since they can offer band-
width up to 100 MHz [3]. Likewise, cross-tier interference is avoided by operating the 
macro and small cells on separate frequency bands, thus leading to improvement in 
spectral efficiency. The C-plane and U-plane are not necessarily handled by the same 
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node and are separated. Consequently, this gives the network operators more flexibili-
ty, since the C-plane (control/macro cells) manages UEs connectivity and mobility 
[4]. The separated plane architecture also enables reduction in energy consumption as 
it leads to longer data cell sleep periods due to their on demand activation [5], [6]. 
Furthermore, base station (BS) cooperation in the U-plane can be done more effec-
tively since control signalling can be performed through a separate wireless path. 

In this paper, a hybrid satellite terrestrial network architecture is presented, where a 
satellite is deployed to provide C-plane functionality, while femtocells are deployed 
to provide U-plane functionality. The operating frequency band for the satellite is 
considered to be L-band (1-2 GHz), as proposed in Inmarsat’s BGAN system [7]. 
Satellites have cognitive capability, i.e. real-time intelligence which can be used to 
maximise the utilisation of available radio resources and to improve link performance. 
Such intelligence includes knowledge of the location of UEs and femtocells within its 
coverage, which enables associating UEs to the most suitable femtocells. In general, 
satellites offer much wider spatial coverage compared to macro BSs. A typical satel-
lite can offer control signalling to a whole country, thus leading to significant reduc-
tion in physical infrastructure and maintenance cost, when compared with using the 
latter for control signalling. The feasibility of the proposed network architecture is 
based on the “dual connectivity” feature, which enables the simultaneous transmission 
of the U-plane and the C-plane by different nodes. 

The purpose of this paper is to present the hybrid architecture, and compare it with 
existing cellular technologies, for a variety of scenarios, as well as to examine the 
compliance of its simulation results with the state of the art cellular standards. The 
rest of the paper is organised as follows. In section 2, the definition of the hybrid sa-
tellite terrestrial network architecture is presented, by defining the functions of the 
network elements. Section 3 describes the techniques applied in the hybrid network to 
achieve an effective resource utilisation at the terrestrial and satellite parts. In  
section 4, the details and the assumptions of the network simulations are presented. In 
section 5, a performance comparison between LTE, LTE-Advanced and the Hybrid 
architecture is made for different scenarios. In section 6, the compliance of the per-
formance results with the current 4G standards is investigated and the suggestions to 
be taken into consideration in the promising 5G cellular standards are also presented. 
Finally section 7 concludes this paper. 

2 Network Architecture 

The International Telecommunication Union (ITU) defines a “hybrid satellite terre-
strial system” as the one that employs satellite and terrestrial components that are 
interconnected, but operate independently of each other [8]. In such systems, the sa-
tellite and terrestrial components use separate network management systems and can 
operate in different frequency bands. An illustration of the proposed Hybrid network 
is shown in Figure 1, where the UE is operating in dual mode, communicating  
simultaneously both with the satellite and the eNBs. 
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Fig. 1. Hybrid Satellite Terrestrial Architecture 

From a higher level architectural point of view, as the satellite can provide cover-
age to the whole terrestrial network, it is used as a Home Subscriber Server (HSS) 
entity, carrying detailed information about the subscribers. In addition, since the satel-
lite can communicate with the backbone network, such as the Serving Gateway  
(S-GW), for both data and signalling purposes, it can also serve as a Mobility Man-
agement Entity (MME), which is responsible for the mobility management of the 
users. 

The terrestrial part of the network consists of femtocells/eNBs that are intercon-
nected with fibre optics network. In addition, fibre optics is also used for the connec-
tions between the eNBs and the backbone network. This assumption enables reliable 
and fast data transfer among the terrestrial network elements, which minimises trans-
mission errors and latency.  

The reason for having two paths for the C-plane communication is that for some 
User Equipment (UE) activities, signalling from both the U-plane (eNB) and the  
C-plane (satellite) are required for successful operation. For example, power coordi-
nation and handover procedures require accurate measurement, which cannot be pro-
vided through the satellite channel due to high latency. Hence, cooperation of both 
data and signalling planes is essential for the smooth UE operation.  

3 Resource Utilisation 

The main advantage of separating the C-plane from the U-plane in cellular networks 
is the ability to replace part of the resources reserved for the signalling of the U-plane, 
with actual data. In general, the complete separation of the two planes is not possible, 
due to the fact that some of the C-plane functionalities have to be in the U-plane to 
support the reliability of the actual data transmission. In that sense, part of the Down-
link Control Information (DCI) needs to occupy some of the available physical  
resources reserved for data transmission. 



526 T. Spathopoulos et al. 

 

Fig. 2. Percentage usage of REs in the U-plane for the 3 architectures 

 
Fig. 3. Percentage usage of REs in the C-plane 

The information that each physical channel needs to carry, is related to the occu-
pied physical resources in the Orthogonal Frequency Division Multiplexing (OFDM) 
resource grid. These physical resources are called Resource Elements (REs).  

In general, from the total available resources in an OFDM resource grid, 25% is 
occupied by the C-plane and 75% by the U-plane [9]. Regarding the U-plane (terre-
strial) communication of the hybrid network, one of the C-plane signalling channels 
that must be used to support data transfer is the Physical Hybrid ARQ Indicator 
Channel (PHICH), which is responsible for providing ARQ acknowledgements [10]. 
Since the reliability of the useful data transfer is also based on a variety of upper layer 
protocols, it is possible to loosen the acknowledgment restrictions and reduce the 
resources reserved for the PHICH by a factor of 1/6 (from what was suggested in 
Release 8 LTE Resource Grid). By doing so, it is possible to substitute the rest 5/6 of 
the REs used for PHICH with actual data. In Figure 2, a comparison between the 
number of REs used for the U-plane in LTE, LTE-Advanced and the hybrid architec-
ture is presented. The figure shows that about 1.7% reduction in the U-plane control 
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signalling is achieved by separating the C-plane from the U-plane in LTE-Advanced 
as compared in LTE. Furthermore, the hybrid architecture can offer about 8.3% re-
duction in the U-plane control signalling, as compared to LTE, due to the reduction in 
the number of REs used for PHICH. 

The following assumptions are made regarding the resources reserved for the con-
trol signalling of the C-plane in the hybrid architecture: a) Since the Reference Sig-
nals (RSs) are closely related with the number of antennas used in the system, and 
since the C-plane is responsible for low data rate communication, by deploying a 
single beam (single antenna) satellite it is possible to reduce the number of REs re-
served for the RSs. b) In addition to that, since the serving satellite is used as an 
HSS/MME, it contains information about all the UEs. Furthermore, since the UEs 
communicate with the same satellite, part of the transmitted control information re-
mains the same. Consequently, it is possible to reduce the transmission of the Primary 
and Secondary Synchronisation Channels (PSS and SSS) by 50% of the time.  
By doing so, as it can be seen in Figure 3, the resources reserved for the control in-
formation of the C-plane are further reduced thus, occupying less bandwidth on the 
satellite. 

4 Network Simulations 

In order to provide the performance results of the proposed network, a case study of 
providing high speed data coverage to the whole UK area was simulated in Matlab. 
For the calculation of the satellite’s power consumption, the formula of the Friis equa-
tion was used, 

 
(1) 

considering Gt =10dB and Gr =1.5dB as the typical antenna gains of the transmitter 
and receiver respectively, Pr = -80 dBm for the minimum receive power, λ the wave-
length, and d the distance of the satellite orbit from the earth user (36,000 km for 
GEO and 800 km for LEO). In addition, the same equation was used to calculate the 
power consumption of the terrestrial part of the network, assuming as total eNBs’ 
power needs, the sum of power required for pure wireless transmission needs between 
each active eNB and its edge serving user. The assumption made for the terrestrial 
part was that each femtocell/eNB could serve an area with radius Rfemto = 10m  and 
each Macro BS (used for signaling in LTE-Advanced), could serve an area with ra-
dius Rmacro = 5km. Moreover, for the calculation of the capacity provided per km2 , the 
Shannon’s capacity law was used  
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, (2) 

where B = 20 MHz the available bandwidth per cell, No = -174 dBm/Hz the noise 
spectral density and Io the interference produced by the neighboring active eNBs as-
suming that the requirement of having and existing line-of-sight (LOS) path between 
the UE and the satellite is satisfied. 

5 Network Performance and Comparison Between Different 
Scenarios 

In this section, a comparison of the proposed architecture with LTE and LTE-
Advanced has been done for different scenarios. Initially, since the satellite is exclu-
sively responsible for providing the C-plane functions, the overall performance of the 
hybrid network is mainly based on the selection of satellite orbit. The performance 
specifications of a Geostationary Earth Orbit (GEO) satellite and a Low Earth Orbit 
(LEO) satellite are presented in Table 1. As it can be seen, a LEO satellite constella-
tion presents better performance in terms of power consumption and latency of signal 
transmission, compared with a GEO satellite. However, the latter offers wider cover-
age and less capital and operating expenditures (CAPEX and OPEX), which is a topic 
beyond the scope of this paper, since a single GEO satellite can provide coverage 
even to a whole continent. Furthermore, the inter-satellite handovers that occur in 
LEO constellations increase the C-plane complexity and may also introduce further 
delay in the control functionality,  which are however factors that are not taken into 
consideration in this paper. 

For purely power reduction objectives and in order to substantiate the superiority of 
the hybrid network, a LEO satellite constellation is assumed to be deployed for the  
C-plane functions. The different scenarios simulated, represent three different case stu-
dies. In i) all UEs are active and all eNBs are switched on, in ii) all UEs are active and 2 
out of 25 eNBs/km2 are cooperating to enhance local performance, and in iii) when 13 
out of 25 eNBs/km2 are considered to serve idle users and are switched off.  

In the simulations, 5 UEs per eNB was considered on average and the available 
bandwidth was 20MHz per eNB. In addition, the coverage radius of each eNBs was 
considered to be 10m. The performance results regarding the U-plane capacity 
achieved per architecture are shown in Table 2 and are illustrated in Figure 4. As it 
can be seen, the hybrid architecture achieves the highest capacity in all scenarios. This 
is a result of the reduction in the resources reserved for the PHICH, as discussed in 
section 3. At this point it is worthy to mention that it is impossible to switch off any of 
the unused or underused eNBs in LTE, because the desired “always connected” beha-
viour of the UEs will be interrupted. 

Regarding the power consumption of the C-plane, only the performance results of 
LTE-A and the Hybrid architecture are presented. Power consumption of LTE is 
omitted due to the fact that it is a non-separated architecture, and the corresponding  
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C and U-planes are transmitted simultaneously, by the same eNB. As a result, the 
power consumption of the C-plane and U-plane are the same. In Table 3, the C-plane 
power consumption for the separation architectures is presented. As it can be seen, for 
all the scenarios, the hybrid architecture consumes the least power for wireless signal 
transmission in terms of mW/km2

. In Table 4, the power consumption for wireless 
transmission purposes of the network as a whole is illustrated (C-plane and U-plane) 
and a comparison of the different scenarios is presented in Figure 5. As it was ex-
pected, the power consumption of a separated architecture is higher than the power 
consumption of a non-separated architecture. This is due to the fact that in a separated 
architecture, umbrella coverage network elements are set on top of the already exist-
ing network infrastructure for providing the C-plane functions and thus, their power 
consumption has to be added to the network’s total power consumption. However, the 
results in scenario iii, which represents the non- peak traffic hours of the network, 
show that the power consumption of the hybrid network can be less, compared with 
both LTE-Advanced and LTE. This shows that the proposed architecture represents a 
strong candidate for future mobile energy efficient technologies. 

Table 1. Specifications of Different Satellite Deployment Scenarios. 

Satellite 
Orbit 

Power 
Consumption 

[mW/km2] 

Earth to satellite 
transmission 
dalay [ms] 

RRC_IDLE to 
RRC_CONNECTE

D delay [ms] 
GEO at 

36,000 km 
119.71 120 800 

LEO at 800 
km 

0.059116 2.6 280.8 

Table 2. U-Plane Capacity per Architecture. 

Technology U-plane capacity [Gbps/km2] 
 Scenario i Scenario ii Scenario iii 

LTE 357.95 359.06 N/A 

LTE-A 358.81 359.92 357.94 

Hybrid 363.3 364.42 362.42 

Table 3. Power Consumption of the C-Plane 

C-plane  C-plane power consumption [mW/km2] 
 Scenario i Scenario ii Scenario iii 

LTE-A 
deploying 5km  

macro BSs 
0.061459 0.061534 0.062457 

LEO satellite 
(800km) 

0.059116 0.059116 0.059116 

GEO satellite 
(36,000km) 

119.71      119.71  119.71 
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Table 4. Power Consumption of the Whole Network 

Technology Total network’s power consumption [mW/km2] 
 Scenario i Scenario ii Scenario iii 

LTE 12.112 12.163 N/A 

LTE-A 12.173 12.224 11.988 
Hybrid with 
LEO satellite 

12.171 12.222 11.986 

Hybrid with 
GEO satellite 

131.822 131.873 131.673 

 

 

Fig. 4. Capacity per architecture 

 

Fig. 5. Power consumption of each network 
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6 Compliance of the Proposed Hybrid Architecture with 4G 
Cellular Standards 

The performance requirements for a mobile technology to be considered as 4G or 
beyond 4G, must comply with the requirements of the International Mobile Tele-
communication (IMT) Advanced standard. These requirements suggest that the aver-
age spectral efficiency must be greater than 2.2 bits/s/Hz, and also the C-plane latency 
for the transmission from RRC_IDLE to RRC_CONNECTED state, must be less than 
100msec [11]. 

Through simulating the network with the specifications described in section 4, the 
Hybrid network architecture achieves 2.85 bits/s/Hz, considering femtocells with 10m 
radius that serve on average 5 UEs per cell. Regarding the C-plane latency, as it was 
also discussed in Section 5, the deployment of a GEO satellite results in C-plane la-
tency of 800 ms and the deployment of LEO satellite in 280.8 ms. Of course both 
results are not compliant with the IMT-Advanced requirements however, they can be 
considered as a suggestion in the development of future cellular technologies, such as 
the promising 5G. In that sense, in order to allow the deployment of such technologies 
in future mobile standards, it is suggested to loosen the above C-plane restriction to 
800 ms for GEO or 300ms for LEO satellites. It is worthy to mention, that such a 
delay in the states’ transition, occurs due to the fact that the state of the art satellite 
network architectures may not be capable of processing large amounts of data (as the 
ones discussed in this paper), retransmitting them to the backhaul network for further 
process. However, extensive research is being made on advanced satellite network 
architectures that will be capable of high speed data processing without retransmis-
sion, fact that will enable future network architectures, as the one proposed in this 
paper, to be implemented offering gigabit end user services. Integrating such ad-
vanced satellite payloads in the proposed architecture, it will definitely meet the IMT-
Advanced latency specifications. 

In addition to the above mentioned requirements, it is also useful, to present a 
comparison of the hybrid network’s performance regarding the LTE-Timers. The 
most important of them are: T300; T301 and T310, which indicate the maximum 
delay for a connection establishment and re-establishment request, as well as for 
physical layer problems. The possible values according to LTE-Advanced are within 
the ranges [400-8000] ms for T300 and T301, and [50-2000] ms for T310. Hence, 
according to the limitations in the wireless signal processing, the single return through 
the satellite signal transmission has an average delay of 500ms for GEO and 25 ms for 
LEO satellites, which fit within the LTE-Timer range. Furthermore, the values also 
imply that even if a transmission fails, it is possible to retransmit the desired signal 
before the expiration of the timer. 

7 Conclusion 

The proposed Hybrid Satellite Terrestrial architecture gives encouraging results  
towards its consideration for possible deployment in future mobile networks.  
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The hybrid architecture, compared with state of the art technologies, gives the highest 
capacity per square meter and the lowest power consumption per square meter for 
wireless transmission purposes. Moreover,  the technical specifications of the pro-
posed architecture complies with the 4G standards. The spectral efficiency and the 
transmission delay meet the requirements of IMT-Advanced and the LTE-Advanced 
timers, respectively. The delay that occurs in the state transmission between the 
RRC_IDLE and the RRC_CONNECTED state, does not meet the C-plane delay re-
quirements suggested from IMT-Advanced. However, this issue provides a design 
drive for satellites to minimize the latency beyond the theoretical bound as much as 
possible and enable such hybrid architectures to be deployed in future mobile  
standards. 

Regarding the technical specifications of the satellite part to meet the bandwidth 
and data rate specifications for the transition from the current existing technologies to 
the suggested network architecture, there are already deployed mobile satellite sys-
tems can provide enhanced broadband capabilities and services. One of such is Inmar-
sat’s Global Xpress system, which offers seamless worldwide coverage with ad-
vanced data rates up to 50Mbps [12]. In that sense, the UE convenience will be easier 
to be achieved.  

As a final comment, the feasibility of the proposed architecture was based on the 
technical specification derived from the simulations made. Of course the issues of 
CAPEX and OPEX definitely play an important role for the realistic implementation 
of the Hybrid network, as well as for its comparison with the existing technologies. 
Assuming that for the U-plane, the same optical fiber network is going to be used for 
the interconnection among the femtocells/eNBs for each separation architecture, the 
investigation of the network’s cost mainly focuses on the C-plane implementation.  
However, in case of such a study, the results have to be derived considering the whole 
lifecycle of the network, since by deploying a satellite, the maintenance cost of the  
C-plane is nowhere near the maintenance cost of the macro BSs network used in 
LTE-Advance. 
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