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Abstract. In this paper, we introduce a belief propagation based tech-
nique to combat the effects of primary user emulation attacks (PUEA)
in Cognitive Radio (CR) Networks. Primary user emulation attacks have
been identified as the most serious threat to CR security. In a PUEA, a
malicious user emulates the characteristics of a primary user and trans-
mits over idle channels. As a result, secondary users that want to use
the channels are tricked into believing that they are occupied and avoid
transmitting on those channels. This allows the malicious user to use
the channels uncontested. To moderate the effects of PUEA, we propose
a defence strategy based on belief propagation. In our solution, each
secondary user examines the incoming signal and calculates the proba-
bility that it was transmitted from a primary user. These probabilities
are known as beliefs. The beliefs at secondary users are reconciled to an
agreed decision by comparison to a predefined threshold. The decision is
made by a secondary user on whether it is believed that received trans-
mission on a channel originated from a legitimate primary user or from
a primary user emulation attacker.

Keywords: Cognitive radio networks · Belief propagation · Primary
user emulation attacks · Security

1 Introduction

Traditional spectrum allocation methods allocate spectrum over large geographic
regions and time spans to primary users (PUs). Primary users are licensed by
a government regulatory office, such as the Federal Communications Commis-
sion in the United States. Channels in the licensed spectrum bands are allocated
exclusively to primary users and are inaccessible to other users [1]. Users, other
than primary users who could potentially use these channels, are called sec-
ondary users (SUs). It has been shown that the traditional allocation method
of fixed channel allocation to primary users is leading to a very low utilisation
across the licensed spectrum [2] [3]. Cognitive Radio, a collection of intelligent
methods designed to use the radio spectrum in an efficient and dynamic manner,
has been proposed as a solution to the frequency spectrum shortage. Cognitive
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Radio proposes to increase the efficiency of radio spectrum use by allowing sec-
ondary users to use channels when they are unoccupied by primary users. In this
way, the average percentage of time for which the channels are actively carrying
communication signals is increased. As a result, the total data throughput for
the same bandwidth allocation is also increased. This must be achieved, while
bounding the interference to a level which causes negligible degradation to the
quality of primary user communications[1].

Despite its tremendous potential, Cognitive Radio is yet to be accepted as
the solution to the radio spectrum shortage problem. One of the reasons for
this is cognitive radio networks are susceptible to a number of types of jamming
attacks. The most exploited area in cognitive radio is the spectrum sensing phase,
where secondary users scan the frequency spectrum looking for available chan-
nels which are unoccupied by primary users. During this phase, if an attacker is
able to mimic the signal properties of a primary user, he would be able to trick
secondary users into believing that available channels are being used by primary
users. This would result in secondary users vacating channels and leaving them
available for malicious users to utilise uncontested. This form of attack is called
a Primary User Emulation Attack (PUEA).

The remainder of this paper is organized as follows. In section 2, we introduce
our system model. In section 3, our defense strategy based on belief propagation
is presented. In section 4, we present our simulation result and analysis. Lastly,
In section 5, we conclude the paper.

1.1 Related Work

A number of mitigation techniques have been proposed to combat primary user
emulation attacks. The most promising of these use localisation of the transmit-
ter. A number of methods exist for localisation of transmitters. These localisation
methods can be classified into two categories: distributed localisation and cen-
tralised localisation. The first approach uses secondary user cooperation. This
type of method involves secondary users trying to solve the localisation problem
individually using information from cooperating nodes. The second approach is
the central approach. In this approach nodes are scattered around the network
and collect snapshots of the transmitted signal. These measurements are sent to
a central node that processes the information and makes a decision on whether
the suspect is a legitimate user or an attacker.

Locdef [4] is a localisation method that uses both localisation of the trans-
mitter and signal characteristics to determine if the transmitter is a malicious
user or not. The Locdef scheme uses sensor nodes scattered around the network
to take snapshots of the incoming Received Signal Strength (RSS) at different
locations in the network. These measurements are sent to a central location for
processing. By identifying peaks in the RSS, a central node is able to determine
the location of the transmitted signal. Locdef uses a three stage verification
scheme to determine the validity of the incoming signal. The first stage uses the
RSS of the signal to determine if it is coming from a primary user location or
not. In the second stage the receiver looks at the energy of the received signal.



Mitigation of PUEA Using BP 465

The reason for this is that secondary users are not able to transmit at high
power levels, whereas primary users often are. If a suspect passes the first two
stages, the scheme moves on to the last stage where it compares the signal char-
acteristics of the incoming signal with the known characteristics of the idle pri-
mary user. If the characteristics of the incoming signal do not match the known
signal characteristics of the primary user, the transmitter is deemed to be a
malicious user.

Papers [5] and [6] present two primary user emulation attack mitigation
schemes based on authentication and encryption. In [6] the author outlines a
centralised scheme in which each primary user is given a unique ID number and
a random variable (HM) by a centralised base station. Every time a suspect
becomes active, the base station goes through a two-step authentication process
to insure that the suspect is a valid primary user. Before a primary user can
access the network, the user must send their ID number to the BS for authen-
tication. The primary user ID is compared to a pool of identification numbers
that correspond to all primary users in the area. If the ID number corresponds
to one of the ID numbers in the pool, the scheme moves on to step two of the
authentication process. If it does not, the user is treated as a malicious user and
is ignored. The second step of the process is called the information displacement
step. In this step the HM variable is multiplied by an encryption matrix which
returns a value M that is compared to a set of expected values. If the value cor-
responds to the expected values, the transmitter is authenticated as a primary
user. If it does not, the transmitter is treated as a malicious user and is ignored.

In [1] the author presents a technique based on belief propagation. This
technique uses cooperation between secondary users to localise a transmitter.
Comparing this to the known location of a primary user each secondary user is
able to determine with a certain probability whether the transmitter is a pri-
mary user. The author denotes this probability as a belief. Secondary users in the
network calculate their own local belief and exchange them to their neighbours.
Then, each secondary user calculates a final belief using its own beliefs and all
the beliefs from its neighbours. This paper modifies the algorithm described in
[1] and suggests a useful procedure for determining whether the received signal
originates from an attacker or not. Our paper presents substantial improvements
to the algorithm described in [1].

2 System Model and Assumptions

In this section, we describe the basic system model that is used throughout this
paper. To model the relationship between the transmit signal power and the
received signal power, the author in [1] considers both path loss and log normal
shadowing of the channel. Using these assumptions, we define an equation for
the received signal strength from a primary user k as:

Pr(PUk) = Pt(PUk)d
−α
PUk

h, (1)

where, Pr(PUk) represents the received signal power from primary user k, Pt(PUk)

represents the transmit power of the primary user k, dPUk
represents the distance
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between a secondary user and a primary user k, h is the shadow fading constant
defined as h = eab where a = ln10

10 , b is defined as a random Gaussian variable
with a mean 0 and variance σ2, and α is a propagation loss exponent. From Eq.
(1) we are able to derive a similar equation to define the received signal power
from an attacker as:

Pr(attacker) = Pt(attacker)d
−α
attackerhattacker, (2)

where, Pr(attacker) represents the received signal power from the attacker,
Pt(attacker) represents the transmit power of the attacker, dattacker represents
the distance between the attacker and a secondary node and hattacker is a shad-
owing constant similar to the one used in Eq. (1).

3 Detecting PUEA Using Belief Propagation

3.1 Original Belief Propagation Method

Belief propagation provides high accuracy detection of primary user emulation
attacks. In belief propagation, each secondary user performs local observations
and calculates the probability that an incoming signal belongs to a primary user.
To accurately detect the presence of a malicious user, neighbouring nodes must
communicate with each other and exchange local observations. Local observa-
tions are exchanged in the form of messages. Each secondary user computes a
belief about whether the suspect is a primary user or an attacker according to its
own local observations and the sum of all incoming messages from all its neigh-
bours. A final belief is calculated using the sum of all beliefs of all SUs. This
final belief is compared to a predetermined threshold. If the final belief is above
the threshold, the suspect is deemed to be a primary user. If it is below, the
suspect is considered to be a malicious user. The belief propagation framework
is based on pairwise Markov Random Fields (MRF)[7].

Relative power observations of secondary users represent a pattern of receive
powers generated by the location of the transmit station. The exchange of infor-
mation between secondary users enables recognition of patterns for the purposes
of determining whether or not the transmission originates at a known primary
user location. In MRF we define Yi as the local power observation at secondary
user i, and Xi as the state of the suspect observed at user i. If Xi=1 the suspect
is a primary user, if Xi=0 the suspect is a malicious user. The local function
at user i is defined as φi(Xi, Yi). The local function represents the observations
made by a secondary user i about whether the suspect is a primary user or not.
The compatibility function ψij(Xi, Yj) is used to model the relationship between
secondary users. The higher the compatibility function between two users is the
more relevant the local observations of the two users become to each other. For
example, if SU1 is 1m away from SU2 and SU1 is 30m away from SU3, then
local observations that come from SU2 to SU1 will contribute more to the final
belief of SU1 than local observations that come from SU3. The joint probability
distribution of unknown variable Xi is given by:
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P ({Xi}, {Yi}) =
I∏

i=1

φi(Xi, Yi)
∏

i�=j

ψij(Xi, Yj), (3)

where, I denotes the number of SUs in the network. We aim to compute the
marginal probability at secondary user i, which we denote as the belief. The
belief at a secondary user i is given in Eq. (4). It is the product of the local
function at user i and all messages coming into user i from all the neighbours
of i:

bi(Xi) = kφi(Xi, Yi)
∏

i�=j

mij(Xi), (4)

where, mij is a message from a secondary user i to a secondary user j and, k is
a normalisation constant that insures that the beliefs sum to 1. Therefore:

k =
1∏

i�=j mij(1)
. (5)

In order to compute the belief at each user, we introduce a message exchange
equation that is used to iteratively update the belief at each secondary user. In
the lth iteration a secondary user i sends a message ml

ij(Xi) to secondary user j
which is updated by:

ml
ij(Xi) = C

∑

Xi

ψij(Xi, Yj)φi(Xi, Yi)
∏

k �=i,j

ml−1
ki (Xi), (6)

C is another normalisation constant such that mij(1)+mij(0) = 0, and therefore:

C =
1

∏
k �=ij ml−1

ij (1)(ψij(1, 0) + ψij(1, 1))
. (7)

Finally, after all secondary users finish computing their beliefs, these beliefs
are added up and averaged to derive a final belief. The final belief is then com-
pared to a predefined threshold. If the final belief is higher than the threshold,
the suspect is believed to be a primary user. If the final belief is lower than the
threshold the suspect is believed to be a malicious user:

Honest,
1
M

M∑

i=1

bi ≥ bτ

Malicious,
1
M

M∑

i=1

bi < bτ , (8)

where, M is the total number of secondary users in the network,
M∑
i=1

bi denotes

the sum of all the beliefs of all the secondary users on the network and bτ denotes
the pre-set threshold. It is possible that some users would relay false information
to other users in the network. However, false information by a small number of
nodes would not influence the final belief value significantly.
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Local Function. The local function represents the local observations at a single
secondary user. Each secondary user calculates its own local function which
corresponds to a probability of a suspect being a primary user. To calculate
the local function we must compute two probability density functions (PDFs).
The first PDF is computed using the RSS measurements that are acquired from
the primary user and is denoted by PDFpuk

. The second is a PDF that is
computed using RSS measurements acquired from the attacker and is denoted
by PDFattacker. The local function corresponds to the similarity between the
two PDFs. If the PDFs are the same the local function returns a probability
equal to 1, which indicates that the suspect is transmitting from a primary user
location. The further apart the distributions are the lower the local function and
the higher the probability that the suspect is an attacker. The received signal
from the primary user can be obtained using the following equation:

Pr1(PUk)

Pr2(PUk)
=

(
d1(PUk)

d2(PUk
)

)−α (
h1(PUk)

h2(PUk)

)
, (9)

where, Pr1(PUk) and Pr2(PUk) are the RSS values from a primary user(PUk)
to SU1 and SU2, d1(PUk) and d2(PUk) are the distances between PUk and SU1

and SU2. h1(PUk) and h2(PUk) represent the shadow fading between PUk and
secondary users SU1 and SU2. It is assumed that the channel response is a
circular Gaussian variable CN (0,1). If we define q as:

q =
h1(PUk)

h2(PUk)
, (10)

we can then define Bi,j as:

Bi,j =
(

d1(PUk)

d2(PUk
)

)−α

, (11)

therefore, the primary user’s PDF of q can be written as follows:

PDFPUk
(q) =

1
| Bi,j |

2 q
Bi,j

(( q
Bi,j

)2 + 1)2
. (12)

The PDF for the attacker is defined in a very similar way to the PDF of a
primary user. SUs collect RSS measurements which they then exchanged with
their neighbours. We define Pr1(attacker) and Pr2(attacker) as the received sig-
nal strength from the attacker to SU1 and SU2 respectively, and the distances
between SU1 an SU2 and the attacker as d1(attacker) and d2(attacker) respectively.
We can then define the value of A as follows:

Ai,j =
(

d1(attacker)

d2(attacker)

)−α

=
Pr1(attacker)/Pr2(attacker)

π
, (13)
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therefore, the attackers PDF can be written as follows:

PDFattacker(q) =
1

| Ai,j |
2 q

Ai,j

(( q
Ai,j

)2 + 1)2
. (14)

To compare the two PDFs we use the Kullback Leibler distance. The Kullback
Leibler distance is defined as:

KL(PDFPUk
,PDFattacker) =

∫ ∞

0

PDFPUk
log

PDFPUk

PDFattacker
dq. (15)

The Kullback Leiber (KL) distance calculates the difference between the two
PDFs. If the difference between the PDFs is large the KL formula will return
a large number and if the distance is small the KL formula will return a small
number. To obtain the local function from the KL distance we use the following
formula:

φ = exp(−min
k

KL(PDFPUk
,PDFattacker)). (16)

The local function returns a probability that a suspect is a primary user. The
higher the probability the more likely the suspect is a primary user, the lower
the probability the less likely it is that the suspect is a primary user.

Compatibility Function. The compatibility function is essential for coopera-
tion between secondary users. In the belief propagation framework, the compat-
ibility function is a scalar. The higher the compatibility function between two
SUs the more relevant the two SUs are to each other. A reasonable compatibility
function may be defined by the following expression:

ψi,j(Xi, Yj) = exp(−Cdβ
Xi,Yj

), (17)

where, C and β are constants and, dXi,Yj
represents the distance between sec-

ondary users i and j. The compatibility function is heavily dependent on the
distance between the two secondary users. If the distance between the secondary
users is large then the compatibility function tends to zero. If the distance
between secondary users is small the compatibility function tents to 1.

The compatibility function is used to insure that SUs that are far away do
not have a large contribution to a particular SUs beliefs. The reason for this is
that secondary users at different locations suffer from different shadow fading
and the more distant users are the less likely to make a significant contribution
to the accuracy of a SUs belief. It also insures that closer cooperating SU beliefs
have a greater impact on the belief of a SU.

Complete Algorithm. The belief propagation algorithm used in this paper is
summarised in Algorithm 1. Each secondary user performs measurements and
calculates their PDFPUk

and their PDFattacker using Eq. (11) and Eq. (13).
Using these measurements, each secondary user iteratively computes their local
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and compatibility functions using Eq. (16) and Eq. (17). Each secondary user
then computes and exchanges messages with all its neighbouring nodes. The last
step of the algorithm is where each secondary user calculates their belief using
their own local observations and the product of all the messages from all their
neighbours.

After a number of iterations the mean of all the beliefs is calculated and
compared to a predefined threshold. If the final belief is lower than the threshold
the suspect is thought of as an attacker, if the final belief is greater than the
threshold the suspect is deemed a primary user. The algorithm converges when
there is no significant change in the final belief from the previous iteration to
the current iteration. Therefore, the algorithm terminates when:

| f l−1
b − f l

b |
f l−1

b

< 0.001, (18)

where, f l
b = 1

M

M∑
i=1

bi, for the lth iteration.This insures that Algorithm 1 con-

verges when there is a change corresponding to less than 0.1% between iterations.

Algorithm 1. Complete defence strategy against the PUEA
using belief propagation
1: Each secondary user performs measurements using Eq.

(11) and Eq. (13)

2: While |f l−1
b −f l

b|
f l−1
b

< 0.001

3: for Each iteration do
4: Compute the local function using Eq. (16) and the

compatibility function using Eq. (17)
5: Compute messages using Eq. (6)
6: Exchange messages with neighbours
7: Compute beliefs using Eq, (4)
8: end for
9: Break
10: The PUE attacker is detected according to the mean of all

final beliefs based on comparison against threshold.
11: Each SU will be notified about the characteristics

of the attacker’s signal and ignore them in the future.

3.2 New Belief Propagation Method

This section provides an outline of the changes that were made to the origi-
nal technique presented in [1]. The two most significant improvements made to
the old algorithm are the new simplified local function the new compatibility
function.
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Local Function. The local function that was used in the original technique
suffered from being overly complicated and introducing a high level of complex-
ity into the algorithm making it slow to converge. Our key contribution is the
identification of a simpler more efficient local function. The new local function
is just as accurate as the previous function. However, instead of doing a large
number of numerical evaluations of integrals for each secondary user in the net-
work, the new function calculates a simple arithmetic equation that allows the
system to grow linearly instead of exponentially. The new local function that
exhibits these desirable characteristics is:

φi,j =
| Ai,j − Bi,j |
Ai,j + Bi,j

. (19)

The local function is a measure of the similarity between the RSS measure-
ments from a PU and the RSS measurements from a suspect. The closer the
correlation between the two RSS values the more likely it is that the suspect is a
primary user. The method used to obtain the local function in the old algorithm
was computation time intense and had large computational complexity. This
was primarily due to the fact that the KL distance was used to calculate the
difference between the two probability density functions. The problem with the
KL distance is that it uses an integral to determine the dissimilarity between two
functions. As the number of secondary users on the network increases, we see a
significant difference between the two methods. This is primary due to the fact
that the local function has to be evaluated for each pair of secondary users in
the network. As the number of SUs in the network increases the number of cal-
culations of the local function increase exponentially. In the sections that follow
we present results that prove that our new local function achieves results that
are more accurate and efficient than those obtained by the old local function.

Compatibility Function. The compatibility function that was presented in
the original paper discouraged cooperation between secondary users in the CR
network and as a result decreased the accuracy of the final belief. This was
primarily due to the fact that the compatibility function returned values that
were very close to zero unless secondary users are located in close proximity.
To increase cooperation between SUs we propose the following compatibility
function:

ψi,j(Xi, Yj) = exp
(

− dXi,Yj

100

)
. (20)

This compatibility function insures that secondary users that are close to
each other are able to cooperate and share their result effectively to increase the
accuracy of the results. The goal of the modified function is to insure that the
messages between secondary users on the network are more relevant. We show
in the next section that the new compatibility function is able to improve the
performance of the algorithm by allowing a greater degree of cooperation.
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4 Simulation Results and Analysis

In this section we present the results of the original BP algorithm against the
improved BP algorithm. We chose to use similar simulation parameters as those
presented by the authors in [1]. We set the path loss exponent α as 2.5, the
transmit power of the secondary user is 0.1W (since the malicious user is also
using a cognitive radio this is also the transmit power of the malicious user, we
assume this corresponds to a transmission range of about 20 meters). There are
30 secondary users, one primary user and one malicious user deployed in a 100m
by 100m grid.

4.1 Original BP Results and Analysis

This section outlines the results that were obtained in [1]. The authors went
through a number of scenarios where they moved the locations of the primary
and malicious users around the grid. They noted that as the distance between
the primary user and malicious user increased, the final belief decreases, meaning
that it is easy to distinguish between a primary user and a malicious user if they
are far apart. Fig. 1 shows the plot that was obtained using the original BP
algorithm.

Fig. 1. Final belief Vs Distance (original technique).

We see from the results presented by the authors that the original algorithm is
able to distinguish between a legitimate primary user and a malicious user with
fairly high accuracy. However, the algorithm that is proposed in the original
paper has several deficiencies. The key among these is its high computational
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complexity. During our simulations we observed an exponential growth in the
computational complexity as the number of secondary users in the network is
increased. Fig. 2 shows the effects that increasing the number of secondary users
has on the computational complexity.

Fig. 2. Computational time of the old technique.

From these results we concluded that although the original algorithm is fairly
effective in identifying a malicious user from a primary user, its high computa-
tional complexity means that it is not a feasible option for implementation using
low power consumption cognitive radio terminals. We identified that the primary
reason for the high computational complexity of the original BP algorithm is the
computation of the local function. The Kullback Leibler function that is used
to evaluate the difference between the primary user probability density function
and the attackers probability density function was recognised as the main prob-
lem. The reason for this is that the KL function evaluates the difference between
two function using an integral expression. If there are n secondary users in the
network the KL function has to be evaluated once for each pair of secondary
users, which means that it is calculated n2 times. This is a serious deficiency
which makes this algorithm infeasible for practical networks, where the number
of users is large.

4.2 New BP Results and Analysis

To combat the deficiencies of the original algorithm, we present a new and
improved algorithm that makes two important improvements which increase the
accuracy and decease the computational complexity of the original algorithm.
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To decrease the computational complexity of the original algorithm we propose
a new simplified local function which provides the same level of accuracy with a
reduced level of complexity. In addition, we modify the old compatibility func-
tion to help increase the level of cooperation between secondary users in the
network.

Computational Complexity / Run Time. The most significant improve-
ment obtained by the new technique is the reduced computational complexity
and run time of the algorithm. The new algorithm is able to reduce the run
time of the original algorithm by a introducing a simplified local function. The
new local function insures that the computational complexity grows much slower
than in the old algorithm which insures that the algorithm is flexible, scalable
and still just as effective. Table 1 presents results that were obtained using an
Intel(R) Core(TM) i7-3930k CPU and all simulations were performed and timed
using MATLAB.

Table 1. Algorithm run times

Number of users Comp time Old Comp Time New
5 22 seconds 0.0491 seconds
10 101 seconds 0.0496 seconds
15 262 seconds 0.0564 seconds
20 648 seconds 0.0682 seconds
25 1337 seconds 0.071 seconds
30 2605 seconds 0.10 seconds

From Table 1 it is clear that the new algorithm is much less computation-
ally complex than the original algorithm. We note that the run times of the new
algorithm increase slowly as the number of secondary users in the network is
increased. This presents a significant step forward for the algorithm and allows
it to be utilised in larger and more complex networks.

Performance and Accuracy. In addition to the reduced computational com-
plexity of the new algorithm, the new algorithm exhibits superior performance
to the algorithm presented in [1]. This is primary due to the introduction of a
modified compatibility function that allows for a larger degree of cooperation
between secondary users. The greater the degree of cooperation between sec-
ondary users in the network the lower the chance of false or missed detection
of a malicious user. Fig. 3 shows a comparison between the performance of the
new algorithm and the performance of the original algorithm.

The perfect BP algorithm would result in a final belief value of 1 when the
malicious user and the primary user are at the same location and would result
in 0 in all other cases. Through analysis of results we observe that the new
algorithm has an average final belief that is smaller than the average of the final
belief of the old algorithm. This simple and effective comparison shows that the
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Fig. 3. Comparison of performance between the old and the new techniques.

new algorithm is not just less complicated but also detects PUEA with a higher
degree of accuracy.

5 Conclusion

In this paper we present a belief propagation based algorithm to combat the
effects of primary user emulation attacks on cognitive radio networks. We intro-
duce key improvements to the algorithm described in [1] in relation to both
performance and computational complexity. Through simulation we were able
to show that our technique has lower complexity and improved accuracy rela-
tive to the technique in [1]. We have shown that the new technique reduces the
time of convergence of the BP algorithm from hours to less than a few seconds.
Furthermore, despite the simplification of the algorithm we were able to accu-
rately distinguish between primary user and primary user emulation transmis-
sions. These improvements are a direct result of the new local and compatibility
functions, which reduce complexity and allow a greater degree of cooperation
between secondary users on the CR network. The new algorithm is scalable,
efficient, and effective and may be implemented in a low complexity secondary
user terminal. The new algorithm provides a significant step forward in the
mitigation of primary user emulation attacks in cognitive radio networks using
belief propagation.
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