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Abstract. Accurate localization of Primary Users (PUs) is an extremely
useful procedure which can improve the performance of Cognitive Radio
(CR) by more efficient dynamic allocation of channels and transmit pow-
ers for unlicensed users. In this paper, we analyze the performance of a
Compressive Sensing (CS) method which simultaneously yields the PU
transmitter locations and transmit powers for any channel in a Cogni-
tive Radio Network (CRN). Additionally, we propose a novel approach
of selectively eliminating Secondary User (SU) power observations from
the set of SU receiving terminals such that pairs of the remaining SUs are
separated by a minimum geographic distance. The modified algorithm
demonstrates substantial performance improvements compared to ran-
dom deployment of receiving terminals. Simulations were run for both
the cases of uniform and Gaussian distributions for the SU random loca-
tions. The simulation results indicate that the new approach significantly
reduced the number of received power measurements from SU terminals
required to achieve a particular level of performance.

Keywords: Cognitive Radio · Radio Environment Map · Compressive
sensing · Localization power · Measurements

1 Introduction

The spectrum scarcity along with inefficient spectrum usage has motivated the
development of Cognitive Radio (CR). The increasing demand of high data rates
due to large numbers of portable hand-held devices initiated significant research
in the field of interference mitigation and effective spectral utilization. CR pro-
vides a promising solution to the existing problem by efficiently using the under-
utilized spectrum to facilitate services by Dynamic Spectrum Sharing (DSS) for
both licensed and unlicensed users. CR technology is based on the concept of
learning the state of channel use of PUs, and subsequent efficient allocation of
channels and transmit parameters to SUs. This allocation takes into account
maximum acceptable interference levels to PUs and the throughput and perfor-
mance requirements of SUs.
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In a Cognitive Radio Network, both PUs and SUs share the same channels.
Since SUs have lower priority, the channel use is constrained by a maximum
acceptable level of interference to PUs. Many efforts have been made in previ-
ous literature [1][2] to tackle the issue of interference mitigation but only a few
research papers have been published on channel collision avoidance based on
the utilization of a Radio Environment Map (REM). To generate a REM, the
locations of the transmitters and their transmit power levels need to be accu-
rately estimated. From this estimation, the received power level throughout a
two dimensional area may be estimated. For the REM, the received power levels
interpolated over a two dimensional geographic area are obtained through the
use of analytic equations for signal propagation.

In CR, the REM is extremely useful in secondary user channel and transmit
parameter selection. This selection must be made with the dual requirements of
SU communication effectiveness and bounded interference to PUs. The bounded
interference to PUs can only be maintained if the PU locations and received
power levels from other PUs, are known by SUs. Therefore an accurate REM is
crucial for effective CR operation.

In [3], a cooperative algorithm is formulated that takes the received signal
strength at each SU to create a weighting function and uses it to compute the
location of multiple PUs. Although it has relatively low computational complex-
ity, it requires a high density of SUs, and the performance degrades with channel
fading. The work in [4] and[5] is based on the concept of using sectorized anten-
nas to detect Direction of Arrival (DOA) of a signal. The phase information of a
received signal is exploited to estimate the position of PUs. However, this tech-
nique might not be feasible for a practical CRN implementation due to antenna
requirements which may be impractical for portable devices.

In this paper we adopt a Compressive Sensing (CS) technique to retrieve the
locations of multiple transmitting PUs in a CRN. The approach relies on a loca-
tion fingerprinting approach, where a certain geographic area is discretized into
equally spaced grid points. The PUs are assumed to be positioned at a subset
of the grid points. The SUs are also assumed to be positioned at some known
locations in the area of interest. Each SU measures Received Signal Strength
(RSS) from target PUs. From this set of measurements, there is an attempt to
recover the PU locations and transmit power levels. It is usually the case that the
number of PUs is much smaller than the number of grid points. Consequently,
the set of equations for power levels transmitted by PUs is underdetermined and
there are many possible solutions. When the number of PUs is much smaller
than the number of grid points, the sparsest solution for the set of equations
yields accurate power levels at the correct grid points. Compressive sensing can
be used to obtain the data required for the formulation of the REM. Similar
techniques were used in [6], [7], [8] and [9].

In a physical system, some of the SUs will be closely geographically located.
Having closely placed SUs introduces correlated observations which increases the
observation coherence. This may have a negative impact upon the performance
of CS algorithm. To improve the performance of the CS algorithm, we propose a
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novel approach. The measurements of closely spaced SUs are removed from the
set such as to increase the minimum distance separation between adjacent SUs
in the measurement set. Our method achieved superior detection of multiple PUs
with significantly fewer SU measurements, compared to random deployment of
SUs.

In this paper, the locations of SUs are specified by two dimensional vectors.
Both the cases of uniform distribution and Gaussian distribution were considered
for the random assignment of SU positions. Irrespective of distribution used, our
novel approach of pre-selecting SU power measurements appears to reduce the
number of measurements required to achieve reliable detection. Section 2 dis-
cusses the background of compressive sensing. Sections 3-5 describe the system
model. Section 6 presents the simulation results which validate the effectiveness
of our proposed method. The conclusion is given in Section 7.

2 Compressive Sensing

The CS technique is an approach for the solution of an under-determined set
of equations for which the solution vector is known to be sparse. Some data
vectors are sparse while others can be made more sparse by an appropriate basis
transformation. A typical example would be the time frequency pair. A signal,
which is a linear combination of several frequency components, can be easily
retrieved by exploiting the sparsity in frequency domain. The complex Fourier
Transform basis functions can be used to represent the time domain signal with
few non-zero coefficients. In such case the CS algorithm can be used to obtain
a sparsest solution vector to a set of underdetermined equations. The sparse
vector, xN×1 is the solution with the minimum number of non-zero elements.
If yM×1 is the raw observation vector obtained by the SU power measurments,
there exist the following relationship,

y = φx, (1)

where φM×N is a measurement matrix, representing the power propagation
losses from each grid point to each SU. In [7] it states that, a matrix φ satis-
fies Restricted Isometry Property (RIP) condition, when all subsets of S columns
chosen from φ are nearly orthogonal. Once this is true, there is a high probability
of completely recovering the sparse vector with at least M = CK × loge(N/K)
measurements (where K is the number of PUs and C is a positive constant)
using l1 -minimization algorithm [10]. This can be can be expressed as,

min ‖x‖1 = min
∑

i

|xi|

subject to
y = φx. (2)

This formulation is valid for a noiseless scenario but when external noise is
considered the algorithm is modified to a Second-Order Cone Program for an
optimized solution for a defined threshold [10]. This can be stated as,
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min ‖x‖1 = min
∑

i

|xi|

subject to
‖y = φx‖2 ≤ ε, (3)

where ‖·‖p is the lp−norm and ε is the relaxation constraint for measurement
errors. The sparest solution for x is the solution with minimum ‖x‖0. How-
ever, the CS algorithm is effective because the same solution vector usually has
minimum l0 norm and minimum l1 norm.

3 System Model

Let us consider a square area discretized into equally spaced P ×P grid where, K
PUs are randomly positioned at unique grid points. For simplicity of illustration,
we assume that each PU is assigned a single dedicated sub-channel to carry out
duplex communication with the base station. Now to observe radio environment
and detect the free spectrum, M SUs are deployed randomly in the area of inter-
est. Unlike [6] and [8] the SUs are not placed on the grid points. We adapted a
more realistic approach of allowing the SUs to be placed at some known locations
in the area. They have the added flexibility of being positioned at non-discretized
points on the map. The SUs are controlled and managed by a central node called
the Fusion Centre (FC). There exist a common control channel between central
node and SUs for effective communication of RSS observations and channel allo-
cation information. The FC processes the signal level measurements and manages
SU channel allocation. The most crucial assumption in the model is that, spa-
tial coordinates of both the grid points and SUs are known a priori by the FC
which receives sensing information from each individual SU. The received power
at a SU is a function of distance between the PU and SU as well as shadowing
loss. The wireless channels are corrupted by noise and are also considered to be
affected by lognormal shadowing. The simplified path-loss model as a function
of distance may be described as,

PathlossdB(d) = K1dB + 10ηlog10(
d

d0
) + α, (4)

where,

d is transmission distance in meters,
d0 is the reference distance of the antenna far field,
K1 is a dimensionless constant,
η is the propagation loss exponent,
α is the shadowing loss in dB.

K1 is a unit-less constant that relies on the antenna characteristics and average
channel attenuation and K1dB = 10log10(K1) [11]. α accounts for the random
attenuation of signal strength due to shadowing where α in dB scale is a Gaussian
random variable with zero mean and standard deviation σdB = 5.5dB [3]. This
model was used in [3] for both multipath and shadowing characterization.
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4 Localization Using Compressive Sensing

This section combines the location dependent RSS information at each SU to
formulate a sparse matrix problem, which can then be solved using the CS
method to obtain the exact location of PUs in a CRN. Our grid layout consists of
N grid points, with grid resolution w in both x-axis and y-axis. The N grid points
are located at {Vn, 1 ≤ n ≤ N}, where Vn is a two dimensional position vector.
The M SUs are located at {Um, 1 ≤ m ≤ M}, where Um is also a two dimensional
position vector. Earlier in Section 3 we mentioned K PUs are positioned only at
K discrete grids where K < N . The FC is assumed to have prior knowledge of Vn

and Um. Using the distance information and signal propagation model described
in (4) a measurement matrix Φ is constructed. The entries of the matrix are the
channel gain and are expressed using the following equations,

dmn =‖ Um − Vn ‖2, (5)

Φmn = 10
−PathlossdB(dmn)

10 , (6)

where dmn is the distance between mth SU and nth grid point and Φmn is the
pathloss between mth SU and nth grid point. Let Y be a M × 1 column vector
where the mth element, Ym, represents the summation of received power from
K PUs on mth SU.

Ym =
K∑

k=1

Qm,k, (7)

where,

Qm,k = 10
Qm,k,dB

10

and,

Qm,k,dB = Pk,t − PathlossdB(dmk)

where, Qm,k is the power received at SU m which
was transmitted by PU k,
Pk,t is the power transmitted by user k,

and, dm,k is the distance between SU m and PU k.

Equation (6) and (7) may be combined to formulate a CS problem similar to
(2). It is assumed that the FC has complete knowledge of Φ. Therefore,

Y = ΦX (8)

with XN×1 being a N×1 column vector that is to be recovered using CS approach
described in Section 2. In a realistic scenario, the observations are corrupted
with noise power vector Pn. The elements of Pn are statistically independent
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with variance σ2
n, and are chi-square distributed with 1 degree of freedom. We

can include the effect of additive noise by,

Yn = ΦX + Pn. (9)

Since the model assumes having only few PUs on a large grid size N , the vec-
tor XN×1 satisfies the sparsity requirement for accurate recovery using a CS
algorithm. Due to its sparse condition, the vector will have only few nonzero ele-
ments representing the transmit powers while the indices corresponding to non-
zero elements indicate the grid points on which transmitting PUs are located.
Hence using a single compressed sensing problem we can jointly estimate both
the locations and transmit powers of multiple PUs by solving (3) described in
Section 2. From the estimation, FS can approximate the received power level
throughout a two dimensional area, using the path loss model in (4).

5 Data Processing

Based on the problem formulation in Section 4, YM×1 is a power observation
vector with each row representing sum of RSS received from K PUs on mth SU,
and ΦM×N is the measurement matrix with channel gain from each grid point.
The small grid separation adds large coherence between the columns of the mea-
surement matrix and this may violate the RIP condition[12]. A matrix trans-
formation may be employed to increase the incoherence between the columns.
We adopt a data processing technique described in [6] and [8] to decorrelate the
rows which are the observation of signal strength from grid points on each SU.
Let T be a processing operator,

T = QR+ (10)

where, Q = orth(ΦT )T . The built in function of Matlab, orth(B) returns an
orthonormal basis of the range of B, and BT returns the transpose of B. R+is
the Moore-Penrose pseudoinverse of a matrix R, where R = Φ. Applying the
operator T on both sides of (9) yields,

QR+(Yn) = QR+ΦX + QR+Pn = QΦ+ΦX + QR+Pn = Ax + ω

Y
′
= AX + ω. (11)

Let Y
′
be QR+(Yn), the noisy processed observation vector. A = QΦ+Φ be the

processed measurement matrix and ω = QR+Pn is the processed measurement
noise. The row vectors are being orthogonalised by Q while the columns are
decorrelated by the influence of Φ+Φ. Hence we can claim that matrix A satisfies
the RIP condition. Note that [6] and [8] considered Φ+Φ = IN , as a diagonal
identity matrix. Although Φ+Φ acts like an identity on a portion of the space
in the sense that it is symmetric. However it is not an identity matrix. After
applying the processing operator, CS may be used to recover the sparse vector
from processed observation Y

′
, via l1-minimization program [6].
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6 Simulation and Results

The localization accuracy of the CS algorithm can be effected by certain external
factors such as Signal to Noise Ratio (SNR), shadowing, density of SUs and
distribution of SUs. This section analyses the dependency of these factors on the
performance parameters of three l1 constrained optimization algorithms (L1-
Magic, OMP and CoSAMP) to produce an accurate result. L1 Magic, CoSAMP,
and OMP are three numerical algorithms for constrained l1 vector optimization
[13], [14] and [15]. The performance parameters are categorized as,

DetectionRatio =
[

PUDet

PUTotal

]

Normalized Error Per Grid =
1
N

‖Xorg − Xest‖

where PUDet is the number of detected PUs; PUTotal is the sum of the PUs in
the network; Xorg is the original sparse vector; Xest the recovered vector using
CS algorithms. The average absolute error between the vectors Xorg and Xest is
obtained by simulation. This is used to evaluate the accuracy of the algorithms
to reconstruct a sparse vector with minimum non-zero coefficient. Furthermore
to study the impact of each factor, the simulation is analyzed independently to
demonstrate the robustness and reliability of the algorithms.

6.1 Simulation Setup

The simulation is carried out on a 43 × 43 (i.e. N = 1849) square grid with
a grid separation of 80m. Among the 1849 grid points, 10 PUs are uniformly
distributed on the grid points. The transmit power is random and uniformly
distributed over the range of 1 to 5 Watts. The scenario consists of 160 SUs
with a two dimensional, zero mean, Gaussian spatial distribution with standard
deviation σsd. The shadowing factor is log normal distributed.

Simulation (I) - Impact of SNR. Signal to noise ratio is one the crucial
factors effecting the performance of each algorithm. SNR is calculated at the
receiver as the ratio of sum of received powers at a SU to σ2

n. Where,

σ2
n is the variance of the additive, zero mean, Gaussian noise.

Then,

SNR(dB) = 10 log10(
1
M

M∑

i=1

Yi

σ2
n

).

Yi is the received RSS from all transmitting PUs at ith SU. As the received signal
power is position dependent, SNR will vary with respect to the positioning of
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SUs. Such scenario prompted us to take the average SNR over M elements of the
observation vector. Fig 1(a) and (b) shows the plots for detection ratio of PUs
and normalized error per grid versus average received SNR in dB. As shown in
Fig. 1 (a) when SNR < 12dB, L1-Magic performs better than CoSAMP however
when SNR > 15dB, CoSAMP outperforms L1-Magic and OMP. At a higher SNR
= 25dB, both CoSAMP and L1-Magic achieved a detection ratio of 1 while OMP
is at 0.6. Fig. 1(b) shows that, with gradual increase in SNR, CoSAMP generates
fewer normalized errors per grid compared to L1-Magic and OMP. Even at a low
SNR = 15dB, CoSAMP produces 50% and 54% less errors compared to L1-Magic
and OMP.

Fig. 1. (a) SNR vs detection ratio and (b) SNR vs normalized error per grid

Similation (II) - Sampling Ratio. Sampling ratio M
N is another major factor

that has a significant impact on the performance of these algorithms. In this
simulation we start with 200 SUs to detect the position of 10 PUs, where at
each iteration 20 SUs are randomly removed to observe the effect of reduced
sampling points. The SNR is kept constant at 25dB. The plots in Fig.2 follows
a similar trend as in Fig. 1. At very low sampling ratio of 0.05, almost all three
algorithms fails to recover an accurate sparse solution as solving an undermined
system with such small number of measurements is not feasible regardless of
any methods used. However with increase in sampling ratio CoSAMP achieves
detection ratio of 1 using 10% less SUs compared to L1-Magic. OMP seems
to require higher number of SUs to meet the accuracy of CoSAMP and L1-
Magic. Similar conclusion can be drawn from Fig. 2(b), where the graph of
normalized error per grid for CoSAMP as a function of sampling ratio decreases
much rapidly compared to the other two algorithms. Results from simulation (I)
and (II) indicate that, CoSAMP is more robust and can perform with superior
results compared to other two algorithms. The next set of simulations will be
carried out using CoSAMP algorithm only.
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Fig. 2. (a) Sampling ratio vs detection ratio (b) sampling ratio vs normalized error
per grid

Refinement of Secondary User Set. From the theory of CS we learn that,
columns with higher incoherence increases the probability of accurate recovery
in CS [12]. In a typical scenario, we randomly distribute the SUs in the area of
interest. This might cause a few SUs to be placed very closely to each other.
Though close sensor spacing might be useful for some localization algorithms
such as weighted centroid [3], this condition produces similar observations at
different SUs and does not yield good performance using CS. The effectiveness
of our technique to refine the SU measurement set was verified by Matlab. To
test our refinement technique, we extracted two sets of SU positions from both a
uniform and Gaussian spatial distribution. Our Matlab script takes the 2D posi-
tion matrix of SUs and min− dist (minimum distance separation parameter) as
an input and generates a refined set of SUs such that each SU is separated from
an adjacent SU by min − dist. We assume in Section III that the spatial coor-
dinates of the SUs are known a priori to FC. The known coordinates are then
used to calculate the distance between pairs of SUs. The script identifies pairs of
SUs with min−dist separation and removes one of the SUs from each pair. The
script iterates through a loop until all SUs have a min−dist or greater separation
between them. Fig. 3 shows that, as we sweep across minimum distance sepa-
ration between SUs, the number of SU curve deceases even while maintaining a
detection ratio of 1 for both sets of SUs. Our novel approach achieved reduction
in the number of SU measurements by 21% and 30% for uniform distribution
and normal distribution, respectively. The algorithm fails at a minimum distance
separation of 400m for uniform and 600m for normal. This because at that point
there are insufficient measurements to solve an undetermined linear system.

Simulation (III) - SU Distribution. In this section we observe the impact
of the spread of a particular spatial distribution, used to obtain location of
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Fig. 3. (a) spread of distributions vs detection ratio (b) spread of distributions vs
coherence (c) spread of distributions vs SNR

SUs in a CRN. The two dimensional SU positions are two dimensional random
vectors with statistically independent elements. Two cases were considered. In
the first case each element is uniformly distributed over [−Xmaxσsd,Xmaxσsd].
In the second case, each element is zero mean Gaussian distributed with standard
deviation {Xmaxσsd}.

While keeping the SNR constant and the number of SUs and PUs constant,
the σsd is varied in the range [1, 6]. The following simulation is carried on
CoSAMP algorithm only. Fig. 4 shows the impact of σsd on the detection ratio
of CoSAMP; coherence of the measurement matrix Φ and average SNR at SUs.
When σsd < 2 both sets of SUs generate poor detection of PUs. This is because of
high coherence of Φ as shown in Fig. 4(b). As σsd > 2, coherence of measurement
matrix for both plots monotonically decreases which enables CS algorithm to
perform efficiently. Fig. 4(a) shows that, each set of SUs from different spatial
distribution reaches a maximum detection ratio before dropping to a minimum.
This behavior can be explained from the SNR plot in Fig. 4(c). When σsd > 1,
SUs are being spread out widely across the area causing some SUs to have
large distance separation from target PUs. This reduces the RSS and lowers the
average SNR at the SUs. The SNR reaches a minimum, where it is difficult for
CS algorithm to offer perfect recovery. However the rate at which average SNR
decreases is dependent on distribution. Normal distribution having an infinite
tail, might push some SUs further away from the area of interest. This influences
the performance by having corrupted observations and can reduce the average
SNR significantly. From the plots we can observe that, when σsd is too large,
CS fails to perform efficiently in spite of having lower coherence between the
columns of Φ.



Localization of Primary Users by Exploiting Distance Separation 461

Fig. 4. (a) spread of distributions vs detection ratio (b) spread of distributions vs
coherence (c) spread of distributions vs SNR

7 Conclusion

In this paper we formulated a sparse problem to jointly determine the locations
and transmission power of target PUs in a CRN using CS algorithm. Useful
information about PUs can be extracted with selective positioning of SUs. We
proposed a novel approach of pre-selecting a refined set of SUs from a ran-
domly distributed set. A minimum distance separation is used as a constraint
to remove closely placed SUs as well as highly correlated observations. This
enables CS algorithms to accurately reconstruct a unique sparse vector with
location and transmit power level information for transmitting PUs. Simula-
tion results suggest that our approach achieved a reliable determination of PU
positions and transmit powers in a practical CRN with a small number of SUs,
as sensing stations. Reliable determination was demonstrated when the number
of SUs are very close to the theoretical measurement bound of CS. To further
test the effectiveness of our method, simulations were run for two spatial prob-
ability distributions for SU positions. In both cases our approach achieved the
maximum detection ratio with relatively few secondary users performing receive
power sensing.
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