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Abstract. In this paper, a novel algorithm is proposed to blindly detect
the number of transmit antennas by exploiting the time-diversity of
the fading channel. It employs a second-order moment and a fourth-
order statistic of the received signal when the transmission occurs over
a time-varying multiple-input single-output channel. When compared
with information theoretic algorithms, it does not require the num-
ber of received antennas be larger than the number of transmit anten-
nas, and when compared with existing feature-based algorithms, it does
not require a priori information about the transmitted signal, such as
preambles or pilots. Simulation results show that the proposed algo-
rithm exhibits a good performance over a wide range of signal-to-noise-
ratios (SNRs), and the probability of correct detection approaches one at
low SNR values for various numbers of transmit antennas. Furthermore,
it is robust to the modulation format and carrier frequency offset, and
exhibits a good performance in the presence of the noise power mismatch
and spatially correlated fading.

Keywords: Number of antenna detection · Second-order moment ·
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1 Introduction

With the advent of multiple-input multiple-output (MIMO) systems, the prob-
lem of the number of transmit antennas detection has emerged in both military
and commercial communications, such as spectrum surveillance, electronic war-
fare, and cognitive radio [1–6]. For the cognitive radio systems, the coexistence
of the secondary users (SUs) and the primary users (PUs) equipped with multi-
ple antennas ameliorates when the SUs have a priori information about the PUs
number of transmit antennas, as the interference tolerated by the PUs from the
SUs depends on that; hence, such knowledge allows the SUs to better adjust their
transmit power to avoid destructive interference to the PUs [3]. Furthermore, the
radio front end has a complexity, size and price that scales with the number of
transmit antennas. Recently, the antenna selection technique was proposed to
alleviate this cost and at the same time to capture many of the advantages of
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MIMO systems [7–9]; in this case, detecting and tracking the number of trans-
mit antennas is of interest to eliminate the need for additional signaling, which
introduces overhead and transmission latency [5].

There are two main approaches for the detection of the number of transmit
antennas: information-theoretic [1,2] and feature-based [3–6]. The Akaike infor-
mation criterion (AIC) and the minimum description length (MDL) algorithms
are two well-known information-theoretic methods. With these algorithms, the
problem of the number of transmit antennas detection is formulated as a model
order selection problem, which relies on the rank estimation of the received sig-
nal correlation matrix. However, such algorithms usually suffer from high com-
putational complexity, as they require the eigen-decomposition of the sample
covariance matrix. Further, they fail to detect the number of transmit antennas
when this is larger than the number of received antennas. On the other hand, the
existing feature-based algorithms rely on a priori information about the trans-
mitted signals, e.g., pilot patterns [3,4] or preamble sequences [5,6]. As such
information is actually not available at the blind receiver, it represents the main
drawback of these feature-based algorithms.

A novel feature-based algorithm for the blind detection of the number of
transmit antennas is presented in this paper, where a single receive antenna is
used. The proposed algorithm employs a second-order moment and a fourth-
order statistic of the received signal, and exploits the time-diversity of the fad-
ing channel. In contrast with the information theoretic algorithms, it does not
require the number of received antennas be larger than the number of transmit
antennas, and when compared with the existing feature-based algorithms, it does
not require a priori information about the transmitted signals.

The rest of the paper is organized as follows. The signal model is presented in
Section 2, the proposed algorithm is introduced in Section 3, simulation results
are provided in Section 4, and conclusions are drawn in Section 5.

Notation: Throughout the paper, bold-faced letters are used for vectors, [.]†

represents the transpose operator, (.)∗ denotes the complex conjugate, n! is the
factorial of n, Ex[.] is the statistical expectation of the random variable x, and
x̂ is the estimate of x.

2 System Model

A multiple-input single-output (MISO) block fading channel with nt transmit
antennas is considered, where nt is unknown at the receive-side [10]. We assume
that the receiver observes Nb blocks, each with a length of Nc symbols. Each
block is affected by independent and identically distributed (i.i.d.) fading char-
acterized by an (1×nt) matrix Hb, b = 1, ..., Nb, and corrupted by additive white
Gaussian noise. With the assumption of the Clarke-Jakes Doppler spectrum, the
block length is Nc = �0.2/fdTs�, where fd and Ts are the maximum Doppler fre-
quency and symbol period, respectively [10]. Thus, the received complex-valued
signal can be expressed as

rk,b = Hbsk,b + wk,b k = 1, ..., Nc, b = 1, ..., Nb, (1)
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where rk,b is the kth received symbol in the bth observation block, sk,b =
[s(1)k,b, s

(2)
k,b, ..., s

(nt)
k,b ]† represents the transmitted symbols from the nt transmit

antennas, whose variance Es[|s(m)
k,b |2] = σ2

s , m = 1, ..., nt is unknown at
the receive-side, wk,b is complex additive white Gaussian noise with zero-
mean and variance σ2

w assumed to be known at the receive-side, and Hb =
[h(1)

b , h
(2)
b , ..., h

(nt)
b ] denotes the channel coefficients, with h

(j)
b , j = 1, ..., nt as the

channel coefficient between the jth transmit antenna and the receive antenna
for the bth observation block. It is assumed that the channel coefficients in each
block are independent complex-valued Gaussian random variables with zero-
mean and variance EHb

[|h(j)
b |2] = σ2

h, where σ2
h is unknown at the receive-side.

3 Number of Transmit Antennas Detection

The proposed algorithm for the number of transmit antennas detection exploits
a second-order moment and a fourth-order statistic of the received signal, along
with the time-diversity of the fading channel, as subsequently presented.

Let us first consider the second-order moment and the fourth-order statistic
of the received signal within an observation block. By using (1) and the lin-
earity property of the statistical expectation, one can express the second-order
moment/ one conjugate, μ21,b

Δ= Es,w[|rk,b|2], as in (2). With the assumptions

that the additive noise, wk,b, is independent of the transmitted symbols, s
(m)
k,b ,

m = 1, 2, ..., nt, the symbols transmitted with different antennas are indepen-
dent, i.e., Es[s

(m1)
k,b s

(m2)
k,b ] = σ2

sδ(m1 − m2), with δ(.) as the Dirac delta function,

and by using that Es[s
(m)
k,b ] = 0 for the symmetric constellation points, μ21,b is

further expressed as

μ21,b = σ2
s

nt∑

m=1

|h(m)
b |2 + σ2

w. (3)

Similarly, for the fourth-order/ two-conjugate statistic, ω42,b
Δ= Es,w[|rk,b|4] −

2(Es,w[|rk,b|2)2, 1 one can easily obtain

1 Note that ω42,b is related to the fourth-order/ two-conjugate cumulant, with a dif-
ference of μ20,bμ22,b, where μ20,b and μ22,b are the second-order/ zero-and two-
conjugates, respectively.
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ω42,b = ωs
42σ

4
s

nt∑

m=1

|h(m)
b |4, (4)

where ωs
42 denotes the fourth-order/ two conjugate statistic for unit variance

constellations.
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the expectations of the second-order moment and fourth-order statistic in (3)
and (4) over channel distributions are
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Furthermore, with the modulation type and noise power2 known at the
receive-side, by employing (6) and (7), nt can be straightforwardly expressed
as

nt =
2ωs

42

(
μ21 − σ2

w

)2

ω42
. (8)

In practice, the statistical moments are estimated by time averages [12]. Fur-
thermore, an unbiased estimator is of interest, as on average, the expected value
of the parameter being estimated equals its actual value. For (8), the following
unbiased estimators are employed to estimate the corresponding statistics, i.e.,
μ21 , ζ

Δ= (μ21)
2 and ω42 , respectively.

μ̂21 =
1

NbNc

Nb∑

b1=1

Nc∑

k1=1

|rk1,b1 |2, (9)

ζ̂ =
1

Nb (Nb − 1) Nc (Nc − 1)

Nb∑

b1=1

Nb∑

b2=1
b2 �=b1

Nc∑

k1=1

Nc∑

k2=1
k2 �=k1

|rk1,b1 |2|rk2,b2 |2, (10)

2 Note that the deviation from this assumption is considered later in the paper, in
Section 4.
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It can be easily shown that E[μ̂21] = μ21, E[ζ̂] = (μ21)
2, and E[ω̂42] = ω42,

where E[.] Δ= EHb
[Es,w[.]]. It is worth noting that (μ̂(1))2 cannot be employed

for the estimation of ζ, as it results in a biased estimator.
With (8), (9), (10), and (11), one obtains the following decision statistic for

the number of transmit antennas,

Ψ =
2ωs

42(ζ̂ − 2μ̂21σ
2
w + σ4

w)
ω̂42

. (12)

It can be easily noticed that Ψ is a continuous random variable, whereas nt

takes discrete values; hence, regions of decision need to be set up to estimate the
number of transmit antennas, along with their corresponding thresholds. Since

E[Ψ ] ≈ 2ωs
42E[ζ̂ − 2μ̂21σ

2
w + σ4

w]

E[ω̂42]
=

2ωs
42

(
μ21 − σ2

w

)2

ω42

= nt, (13)

the decision is made according to the following criterion:

Γnt−1 < Ψ ≤ Γnt
→ n̂t = nt nt = 1, 2, 3, ... (14)

where Γ0, Γ1, Γ2, ... represent the decision thresholds, with Γ0 = −∞ and nt <
Γnt

< nt +1. A formal description of the proposed algorithm is presented below.

Algorithm 1

1. Acquire the measurement rk,b, k = 1, ..., Nc, b = 1, ..., Nb

2. Compute the decision statistic Ψ according to (12)
3. Initialize i = 1
4. Set the threshold value Γi

If Γi−1 < Ψ ≤ Γi

n̂t = i
else

5. Increment i = i + 1 and go to step 4
end

4 Simulation Results

In this section, we examine the detection performance of the proposed algorithm
through several simulation experiments.
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4.1 Simulation Setup

We consider a system employing spatial multiplexing transmission scheme, with
Nc = 100 (e.g., fd = 200 Hz and Ts = 10 μs). Unless otherwise mentioned,
Nb = 100 and the modulation is quadrature phase-shift-keying (QPSK). The
channel coefficients are independent complex Gaussian random variables with
zero-mean and variance σ2

h. The additive white noise is modeled as a complex
Gaussian random variable with zero-mean and variance σ2

w. The average SNR per
transmit antennas is defined as γ

Δ= 10 log
(

σ2
hσ2

s

σ2
w

)
dB. Without loss of generality,

we consider σ2
hσ2

s = 1. The thresholds to make a decision are set as Γnt
=

nt + 1/2, nt = 1, 2, .... The overall detection performance is presented in terms
of the probability of correct detection, P (n̂t = m|nt = m), m = 1, 2, ..., 4, and

the average probability of correct detection, Pc = 1
3

3∑
m=1

P (n̂t = m|nt = m),

obtained from 1000 Monte Carlo trials for each m.

4.2 Simulation Results

Fig. 1 shows P (n̂t = m|nt = m) versus SNR for different number of transmit
antennas, nt, nt = 1, ..., 4, and different Nb values. As can be seen, the proposed
algorithm exhibits a good performance over a wide range of SNRs for Nb = 100
and 1000, and the probability of correct detection goes to one even at negative
SNRs for Nb = 1000. The performance improves as either Nb or SNR increases,
which can be easily explained, as each leads to a reduced estimation error of the
statistics in (9), (10), and (11). Additionally, the probability of correct detec-
tion decreases as the number of transmit antenna increases; this is because the
variance of the decision statistic Ψ in (12) increases with nt, as confirmed by
simulation experiments.

In Fig. 2, the effect of the noise power mismatch, i.e, σ̂2
w − σ2

w, on the prob-
ability of correct detection is illustrated at SNR=10 dB. As can be observed,
the proposed algorithm is relatively robust to the noise power mismatch. This
can be easily explained, as the effect of the noise power mismatch on the test
statistic Ψ in (12) is not significant for a large enough observation interval.

Fig. 3 shows the effect of the frequency offset normalized to the data rate,
Δf , on Pc. As can be seen, the proposed algorithm is completely robust to the
carrier frequency offset. This is because such an effect is eliminated through the
absolute value operator in the definition of the second-order moment and the
fourth-order statistic.

Fig. 4 presents the effect of the modulation format on the average probability
of correct detection, Pc. As can be seen, while the proposed algorithm is rela-
tively robust to the modulation format at positive SNRs, a better performance
is achieved for M-ary PSK when compared with M-ary quadrature amplitude
modulation (QAM) at negative SNRs. This can be explained, as the effect of the
modulation format, ωs

42 is not totally eliminated through ω̂42 for M-ary QAM
due to less accurate estimates, particularly at negative SNRs.
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Fig. 1. The probability of correct detection, P (n̂t = m|nt = m) versus SNR for differ-
ent nt and Nb values.
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Fig. 2. The effect of the noise power mismatch on the probability of correct detection,
P (n̂t = m|nt = m) at SNR=10 dB.
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Fig. 3. The effect of the frequency offset on the average probability of correct identifi-
cation, Pc.
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Fig. 4. The effect of the modulation format on the average probability of correct iden-
tification, Pc.
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Fig. 5 shows the effect of the spatially correlated fading on Pc versus SNR
for a correlation coefficient ρ = 0, 0.4, 0.6, and 0.8. As can be observed, the
performance of the proposed algorithm is robust to the spatial correlation for

ρ < 0.6. This can be explained, as for low values of ρ, EHb

[
nt∑

m=1
|h(m)

b |2l

]
, l = 1, 2,

remains approximately equal to l!2ntσ
2l
h (see (6) and (7)), and (8) remains valid

for the number of transmit antennas detection.
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Fig. 5. The effect of the spatially correlated fading on the average probability of correct
identification, Pc.

5 Conclusion

A novel feature-based algorithm was introduced for the detection of the number
of transmit antennas. This relies on a second-order moment and a fourth-order
statistic of the received signal, and exploits the time diversity of the fading chan-
nels, while employing a single receive antennas. The proposed algorithm attains
a good performance at low SNRs, being robust to the carrier frequency offset
and relatively robust to the modulation format. Additionally, it exhibits a good
performance in the presence of noise power mismatch and spatially correlated
fading.
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