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Abstract. In this paper, we study the fundamental trade-off between
delay-constrained primary and secondary users in cognitive radio net-
works. In particular, we characterize and optimize the trade-off between
the secondary user (SU) effective capacity and the primary user (PU)
average packet delay. Towards this objective, we employ Markov chain
models to quantify the SU effective capacity and average packet delay in
the PU queue. Afterwards, we formulate two constrained optimization
problems to maximize the SU effective capacity subject to an average
PU delay constraint. In the first problem, we use the spectrum sensing
energy detection threshold as the optimization variable. In the second
problem, we extend the problem and optimize also over the transmission
powers of the SU. Interestingly, these complex non-linear problems are
proven to be quasi-convex and, hence, can be solved efficiently using stan-
dard optimization tools. The numerical results reveal interesting insights
about the optimal performance compared to the unconstrained PU delay
baseline system.

Keywords: Cognitive radios · Effective capacity · Delay constraints ·
Optimization · Quality of service (QoS)

1 Introduction

The rapid evolution and ubiquity of wireless connectivity, as well as the wide
proliferation of smartphones and powerful hand-held devices, mandate the han-
dling of a huge amount of data in applications such as wireless multimedia.
These applications are characterized by high bandwidth requirements and rela-
tively stringent delay constraints. The limited wireless spectrum presents a major
challenge and adds to the complexity of the problem.
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The concept of cognitive radios was originally introduced by J. Mitola III in
1999 as a paradigm shift due to the severe under-utilization of the spectrum in
some bands [1]. Cognitive radios enable opportunistic, or secondary users (SUs),
to share part of the spectrum with licensed spectrum owners, referred to as the
primary users (PUs), and possibly coexist with them in some paradigms.

Striking a balance between improving the performance of the opportunistic
SUs and maintaining QoS requirements for the PUs is crucial for cognitive radio
systems. This is particularly true for PUs running multimedia applications with
stringent QoS constraints, which are particularly sensitive to potential perfor-
mance degradation caused by the SUs. A significant portion of research in the
cognitive radios arena has focused on improving the ability of the SUs to com-
municate over their, inherently, unreliable links. This is achieved either through
improvements in SU data encoding schemes, e.g., [2], [3] or by proper adaptation
of the SU power and rate in response to the time-varying channel conditions to
achieve SU QoS requirements, e.g., [4], [5], [6].

Physical-layer channel models cannot be easily linked to QoS metrics. There-
fore, in [7], the notion of “Effective Capacity” was originally introduced to
express the maximum constant arrival rate that can be supported by a given
channel service process while satisfying a statistical QoS requirement as speci-
fied by the QoS exponent, θ. The effective capacity may be thought of as the
dual wireless concept to the “Effective Bandwidth” notion originally introduced
in [8].

Applied to cognitive radio systems, the effective capacity has been employed
to characterize the performance of the SU in [9]. The authors derived expressions
for the effective capacity of the SU for combinations of, both, fixed and adaptive
power and rate scenarios. To enhance the prediction of the PU channel state, the
authors in [10] proposed a feedback model, where the SU leverages the overheard
primary ARQ message and uses information gleaned from the PU feedback chan-
nel to improve its sensing. It was shown, analytically, and using simulations that
such side information can potentially increase the effective capacity of the SU.

In essence, the scheme in [10] minimizes the probability of PU re-transmission
failure. However, this does not automatically guarantee the PU’s ability to satisfy
delay constraints. In this paper, we incorporate an explicit QoS constraint on the
PU, namely an average delay constraint, which is more relevant to users engaged
in interactive or multimedia sessions. Thus, in this paper our prime objective is
to maximize the SU effective capacity under an average delay constraint on the
PU packets.

Our main contribution in this paper is two-fold. First, we develop a mathe-
matical model that incorporates delay constraints into the optimization of the
primary users and secondary users performance in cognitive radio networks. Sec-
ond, we formulate, establish quasi-convexity and efficiently solve two optimiza-
tion problems for maximizing the SU effective capacity subject to a constraint
on the PU average packet delay. Towards this objective, we analyze the Markov
chain models capturing the SU channel sensing model and the PU queue dynam-
ics. Next, we formulate, assess complexity (establish quasi-convexity) and solve
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our first (basic) optimization problem which decides the optimal spectrum sens-
ing energy detection threshold to maximize the effective capacity subject to the
average PU delay constraint. Afterwards, we generalize the problem to jointly
optimize over the energy detection threshold along with the SU transmission
powers, yielding superior performance. Finally, we solve the problems numeri-
cally and demonstrate promising performance results for plausible scenarios.

The rest of the paper is organized as follows. First, we introduce the sys-
tem model, assumptions and secondary user channel access model in Section
2. Afterwards, the basic and generalized optimization problems are formulated,
to maximize the SU effective capacity under an average PU delay constraint,
and examined for convexity in Section 3. Performance results confirming the
fundamental trade-off and the optimal solution are quantified under plausible
scenarios in Section 4. Finally, conclusions are drawn and potential directions
for future work are pointed out in Section 5.

2 System Model

We focus on a simple cognitive radio network with one PU and one SU for
mathematical tractability of the proposed model. We consider a time slotted
system with slots of equal duration, T seconds. All channels are assumed to
experience Rayleigh block fading where the channel remains constant over a
time slot and changes independently from one slot to another. The PU queue
has a Bernoulli packet arrival process with rate 0 ≤ λp ≤ 1 per slot and the
SU is assumed to be fully backlogged (always has a packet to transmit) at the
beginning of each time slot.

We assume a hybrid (underlay/interweave) cognitive radio model as intro-
duced in [11], whereby the SU senses the channel at the beginning of the slot for
N seconds, where N < T , in order to determine the mode of channel access, as
in the interweave model. Subsequently, the SU accesses the channel with high
power, Pi, if the primary user is idle. Otherwise, the SU accesses the channel
with lower power Pb < Pi and correspondingly lower rate (as in the underlay
model). The discrete-time SU channel input-output relation in the ith symbol
duration is given by

y(i) =
{

PU idle : hs(i)x(i) + n(i), i = 1, 2, · · ·
PU active : hs(i)x(i) + sp(i) + n(i), i = 1, 2, · · · ,

(1)

where x(i) is the complex channel input, y(i) denotes the complex channel output
and hs(i) is the channel fading coefficient between the secondary transmitter and
receiver and |hs(i)|2 = zs(i). The primary transmitted signal, as perceived by
the secondary receiver, is denoted sp(i), and n(i) denotes the additive white
Gaussian noise at the secondary receiver, with zero mean and variance of σ2

n.
We adopt a simple energy detection spectrum sensing mechanism whereby

the RF energy measured at the secondary transmitter is compared to an energy
detection threshold, η, to decide whether the PU is active or idle. The channel
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sensing problem is known to be modeled as a binary hypothesis testing problem
[12]. Under these assumptions, the optimal Neyman-Pearson detector is [9]:

Y =
1

NB
ΣNB

i=0 |y(i)|2 ≶H0
H1

η, (2)

where NB denotes the number of complex symbols in the N (in seconds) sensing
duration with B (in Hz) channel bandwidth. The test statistic Y is chi-square
distributed with 2NB degrees of freedom. In this case, the probability of detec-
tion can be derived as follows

Pd = Prob{Y > η|H1} = 1 −
γ

(
NBη

(σ2
n+σ2

sp)
, NB

)
Γ (NB)

, (3)

where γ(x, s) is the lower incomplete gamma function and Γ (x) is the Gamma
function. The probability of false alarm can be written as follows

Pf = Prob{Y > η|H0} = 1 −
γ

(
NBη
σ2

n
, NB

)
Γ (NB)

. (4)

2.1 The Secondary User Access Model

We employ a classic SU access model adopted earlier in the literature, e.g., [1,11],
which is represented by the Markov chain in Fig.1. The prime objective of this
model is to capture the secondary user access decision and transmission param-
eters, namely, power and rate, depending on the spectrum sensing outcome and
the instantaneous capacity of the secondary user channel. This is instrumental
in characterizing the secondary user effective capacity for a statistical QoS con-
straint, θ, as shown later in the sequel. Thus, the secondary user transmission
parameters have four cases, depending on the sensing outcome:

1. The PU channel is busy and the SU detects it as such: SU transmits with
the lowest acceptable power Pb and rate rb.

2. The PU channel is idle while the SU detects it busy (false alarm (FA)): the
SU sends its packet with power Pb and rate rb as in case (1).

3. The PU channel is busy while the SU detects it idle (mis-detection (MD)):
the SU sends with power Pi and rate ri, where Pi > Pb and ri > rb.

4. The PU channel is idle and the SU detects it as such: the SU sends with
power Pi and rate ri.

On the other hand, the secondary user channel has two states, OFF and
ON, depending on whether the secondary user transmission rate exceeds the
instantaneous channel capacity or not, respectively. This is caused by the time-
varying fluctuations in the SU channel.

Next, we present the SU effective capacity (EC) subject to statistical QoS
constraints. It has been established in [7] that the EC for a given QoS exponent,
θ, is given by

EC = − lim
t→∞

1
θt

loge E

{
e−θS(t)

}
= −Λ(−θ)

θ
, (5)
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Fig. 1. SU access and transmission model.
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Fig. 2. A discrete-time Markov chain modeling the PU queue evolution.

where S(t) =
∑t

k=1 r(k) represents the time accumulated service process and
{r(k), k= 1, 2, ...} is the discrete and ergodic stochastic service process.

For Markov modulated processes, like the model in Fig.1 , it has been shown
in [13] that the effective capacity can be reduced to

EC =
−1

θTB
loge (sp(Φ(−θ)R)) , (6)

where sp(.) denotes the spectral radius of a matrix, R represents the transition
probability matrix of the secondary user Markov chain and θ is the delay expo-
nent. Φ(θ) = diag(φ1(θ), . . . , φM (θ)) is a diagonal matrix whose elements are
the moment generating functions of the processes in the M states.

2.2 Modeling the Primary User Queue

The primary user queue evolution is modeled formally by the discrete-time
Markov chain shown in Fig. 2 with Bernoulli arrival rate λp. The primary user
service rate (i.e. queue length decreases by one), μp, depends only on two parame-
ters, namely, the arrival rate and the primary channel outage probability, denoted
δ, as follows,

μp = (1 − λp)(1 − δ). (7)

As the SU always uses the spectrum with different powers and rates depend-
ing on the PU activity, the primary channel outage may occur in two cases: first,
if the SU attempts to transmit on the PU channel with power Pb and rate rb,
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which in addition to the PU rate, r, brings the total rate on the channel above
the instantaneous capacity. Alternatively, PU channel outage occurs when the
SU attempts to transmit on the PU channel with power Pi on a busy channel
due to mis-detection. Therefore, we can express the primary outage probability
as follows:

δ = PdProb{zp(i) < φ1} + (1 − Pd)Prob{zp(i) < φ2}, (8)

where zp(i) = |hp(i)|2 and hp(i) is the fading coefficient of the PU transmission

channel, φ1 = 2
r
B −1

SINR1
and φ2 = 2

r
B −1

SINR2
. SINR1 and SINR2 denote the average

signal to interference plus noise ratios for the PU in each outage case.
Solving the Markov chain in Fig. 2 which is M/M/1 queue with steady-state

probability of the PU queue having i packets, πi, then using simple queuing
analysis (see [14]), π0 can be derived as

π0 =
δ(μp − δλp)

μp(1 + δ) − δ2λp
, (9)

and the utilization factor of the primary user queue, ρ, is

ρ =
δλp

μp
, (10)

and, finally, the expected delay for the PU packets can be derived as [14]

Dp =
ρ(π0 − δ(1 − ρ)2)

δ2λp(1 − ρ)2
. (11)

3 SU Effective Capacity Optimization Under PU Average
Delay Constraint

In this section, we study the problem of balancing the conflicting QoS require-
ments for the primary and secondary users in cognitive radio networks. In par-
ticular, we attempt to maximize the SU effective capacity (defined for a given
statistical QoS exponent, θ) subject to an average PU delay constraint, denoted
Dmax. Towards this objective, we formulate two optimization problems. The first
(basic) problem solves for the optimum energy detection threshold, η, that max-
imizes the SU effective capacity subject to the aforementioned PU constraint.
The key insight guiding the choice of the energy detection threshold, η, is that
it affects the power level used by the SU which, in turn, affects the channel
outage probability. For this reason, increasing η always degrades the PU delay,
yet, enhances the SU effective capacity up to some point beyond which it starts
decreasing, as shown in Fig. 3. The explanation of this behavior is that when
η exceeds the sensed PU RF energy, the SU will always detect an idle channel,
and use high rate and power, hence, causing higher interference. On the other
hand, when 0 � η � Esp

(i) (Esp
(i) is the PU energy as perceived by the SU),

the probability of miss-detection decreases with increasing η; as η gets closer to
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Fig. 3. The effect of the energy detection threshold, η, on the SU effective capacity for
different sensing durations, N .

the sensed PU RF energy, the SU sensing is more reliable, hence, its effective
capacity increases.

Fig. 3 shows the SU effective capacity for different values of the sensing dura-
tion, N . We notice that the relation between effective capacity and energy thresh-
old can always be divided into the two modes discussed above; one increasing and
the other is monotonically decreasing/non-increasing. We also notice that if we
increase N from 0.002 sec to 0.005 sec, the SU effective capacity increases due to
the more accurate estimate of the PU channel activity. On the other hand, when
we increase N beyond 0.005 sec, the SU effective capacity decreases because the
slot portion dedicated to data transmission, T − N , decreases linearly with N .

3.1 Basic Problem Formulation

In this section, we maximize the SU effective capacity with respect to the spec-
trum sensing energy detection threshold, η, subject to the PU average delay
constraint. Thus, the basic optimization problem can be formulated as

P1 : max
η

−1
θTB

loge(sp(Φ(−θ)R))

s.t. Dp ≤ Dmax, (12)

where Dmax is the maximum allowable average PU delay which represents the
predefined QoS for the PU. Next, we establish an important complexity reduction
result for P1 which facilitates an efficient solution using standard optimization
solvers.

Theorem 1. P1 is a quasi-convex problem in η.

Proof. In order to establish this result, we must assess the quasi-concavity
of the SU effective capacity as well as the convexity of the delay constraint.
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We first establish the convexity of the constraint with respect to the optimiza-
tion variable, η. From (8-11), the expected PU delay, Dp, is given by

Dp =
−1

(1 − λp)(1 − δ)
+

(1 − λp)(1 − δ)
(1 − λp − δ2)(1 − λp − δ)

. (13)

Since Dp consists of two terms, it suffices to prove that each term is convex in
η. This follows from the fact that the summation of convex functions is convex.
This can be validated be examining the Hessian of each term. Performing partial
differentiation of each term with respect to δ, then from (3) and (8), we get the
partial derivative of δ in terms of η. The Hessian of the first term, denoted f , is
given by:

f ′′ =
qe−x

(1 − δ)2
x(NB−x) (1 − NB − x) , (14)

where x = ηNB
σ2

n+σ2
sp

, q is a positive constant. It turns out from (14) that the
Hessian is positive definite only under the condition that

η � (σ2
n + σ2

sp)
(

1 − 1
NB

)
. (15)

For a stable system (0 < ρ < 1 and 0 � Pd � 1), η will never violate this
condition, then the first term of the constraint function is convex over the opti-
mization domain. Similarly, we can prove that the second term is also convex
over the optimization domain, and, hence, the constraint in (12) is convex.

Second, we establish the quasi-concavity of the objective function, namely the
SU effective capacity. To prove this, we must show that the function inside the
logarithm (in (6)) is quasi-convex. This is based on the fact that if an arbitrary
function U is quasi-convex and a function g is monotonically non-decreasing,
then the function f defined as f(x) = g(U(x)) is also quasi-convex [15]. Since the
log function is non-decreasing, then it suffices to prove that its interior function
is quasi-convex to establish the desired result. From (3), (4), (6) and ((28) in [9]),
the objective function can be written as in (16) where zs = |hs|2 and α1, α2, α3

and α4 are the fading channel thresholds for no outage for the four SU sensing
outcome cases stated in Section 2.1.

EC = −1
θTB

loge

{
e−θrb(T−N) [ρ (1 − κ2)p(zs > α1) + (1 − ρ) (1 − κ1)p(zs > α3)]

+ e−θri(T−N) [ρκ2p(zs > α2) + (1 − ρ)κ1p(zs > α4)] + ρ (1 − κ2)p(zs < α1)
+ (1 − ρ)κ2p(zs < α2) + (1 − ρ) (1 − κ1)p(zs < α3) + (1 − ρ)κ1p(zs < α4)}

(16)

where κ1 = γ
(

ηNB
σ2

n
, NB

)
/Γ (NB) and κ2 = γ

(
ηNB

σ2
n+σ2

sp
, NB

)
/Γ (NB). From

(16), we have eight terms that can classified into three categories. First cate-
gory is

f1 = q1 (1 − κ1) , (17)

second category is of the form

f2 = q2ρ = q2
c1 − c2Pd

k1 + k2Pd
, (18)
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and the last category is of the form

f3 = q3ρPd or f3 = q4ρPf , (19)

where q1, q2, c1, c2, k1, k2, q3 and q4 are positive constants. For the first category

f ′′
1 = q

(
e

− ηNB

σ2
n

)(
ηNB

σ2
n

)(NB− ηNB

σ2
n

)(
1 − NB − ηNB

σ2
n

)
, (20)

which is convex only on the region indicated in (15), thus it is quasi-convex.
Similarly, we can prove that all other terms are quasi-convex. Hence, their sum-
mation is quasi-convex. Thus, the effective capacity is quasi-concave in η since
it is the negative of a quasi-convex function.

3.2 The Generalized Optimization Problem

In this section, we generalize the basic problem P1 to optimize over the energy
detection threshold, η, along with the SU transmission powers, Pb and Pi. As
expected, the expanded policy space for the generalized problem yields noticeable
performance improvement, as confirmed by the numerical results in Section 4,
compared to the basic problem where the transmission powers are given and fixed
throughout. Thus, the generalized optimization problem can be formulated as
follows

P2 : max
η,Pb,Pi

−1
θTB

loge(sp(Φ(−θ)R))

s.t. Dp ≤ Dmax

0 � Pi � P
0 � Pb � P,

(21)

where P is the maximum SU transmission power. In preparation for our main
result in this section establishing the quasi-convexity of P2, we utilize the fol-
lowing two definitions from optimization theory.

Definition 1. The Hessian of a multi-variate function f(x) is:

Hn(x) =

⎡
⎢⎣

f ′′(x)11 · · · f ′′(x)1n
...

...
...

f ′′(x)n1 · · · f ′′(x)nn

⎤
⎥⎦ , (22)

where f ′′(x)ij = ∂2f
∂xi∂xj

. The function f(x) is convex if its Hessian Hn(x) satis-
fies Hn(x) � 0 which means that the Hessian matrix is positive semi-definite.

Definition 2. The bordered Hessian of a multi-variate function f(x), where
x = (x1, x2, . . . , xn), is given by:

Hb
n(x) =

⎡
⎢⎢⎢⎣

0 f ′(x)1 · · · f ′(x)n

f ′(x)1 f ′′(x)11 · · · f ′′(x)1n
...

...
...

...
f ′(x)n f ′′(x)n1 · · · f ′′(x)nn,

⎤
⎥⎥⎥⎦ (23)
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where f ′(x)i = ∂f
∂xi

. If |Hb
n(x)| ≤ 0 for all n and x, then the function is quasi-

convex (Note that the condition that |Hb
1| ≤ 0 is automatically satisfied).

Theorem 2. P2 is a quasi-convex problem in the optimization variables
η, Pb, Pi

Proof. For problem P2, n = 3 as we have three optimization variables. We
first start by establishing the convexity of the constraint with respect to the
three optimization variables. Using (13) and (22), we can show that the delay
constraint is convex and the other two constraints are affine in the optimization
variables1.

The only remaining step towards establishing the proof is to show the quasi-
concavity of the objective function, EC, with respect to the three optimization
variables. This involves characterizing the determinants of the bordered Hessian
of the EC, defined in (23). Hence, from (23) and (16) we can simply show that
|Hb

2| ≤ 0 and |Hb
3| ≤ 0 are satisfied and, hence, all terms are quasi-convex over

the same domain 1. Thus, the effective capacity is quasi-concave in η, Pb and Pi

since it is the negative of a quasi-convex function.

4 Numerical Results

In this section, we present the numerical results which confirm the fundamental
trade-off under investigation, between the secondary user effective capacity and
the primary user average packet delay. Moreover, we characterize the optimal
solution using standard optimization tools for convex problems, e.g., CVX [15].
The system parameters used throughout this section are as follows: rb = 1.4
Mbps, ri = 5.7 Mbps, Pb = 1 unit power, Pmax = 2 unit power, Pi = 3 unit
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Fig. 4. Comparing the performance of the baseline (delay unconstrained system) to
the optimal solutions of P1 and P2 (Dmax = 0.057 sec)

1 Details are omitted due to space limitations.
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Fig. 5. The role of the primary user utilization, ρ.

power, P = 3 unit power, B = 5 MHz, T = 0.1 sec, N = 0.002 sec, λp = 0.1 and
θ = 0.2.

In Fig. 4, the effective capacity in (bit/sec/Hz) is plotted against the delay
exponent, θ, for three different systems. The baseline is is a system with no
constraints on the average PU packet delay and, hence in essence, it represents
the case where the PU queue is stable “primary stability constraint”. Thus the
base line consider only maximizing the SU effective capacity which does not
provide any delay guarantees for PU. On the other hand, P1 represents the
optimal solution for the basic problem which optimizes only over the energy
detection threshold, η. P2 represents the optimal solution for the generalized
problem which optimizes over the three variables, η, Pb and Pi. A number of key
observations are now in order. First, it is straightforward to observe that the SU
effective capacity monotonically decreases under the three systems as the delay
exponent increases, i.e. the statistical delay constraint becomes stricter. Second,
the baseline (unconstrained PU delay) system achieves the highest SU effective
capacity, as expected. However, it is also worth noting that the performance
loss, due to the finite PU delay constraint in P1 and P2 diminishes as the
SU statistical delay constraint, represented by the delay exponent, θ, becomes
tighter. Third, we notice that the optimal solution for P2 outperforms that of
P1 due to the expanded policy space under the generalized problem, P2. It is
worth noting that, both, P1 and P2 are subject to a tight delay constraint on
the PU average delay with Dmax = 0.057 sec.

In Fig. 5, the effective capacity of the SU is plotted versus the primary user
utilization factor, ρ, for the three systems. The most interesting observation
is that all systems exhibit noticeably different performance for low to moderate
PU utilization factor. However, under high PU utilization factor The P2 exhibits
superior performance to both the unconstrained system and P1. This behavior
is attributed to the fact that as the PU utilization increases, the PU is using the
channel more frequently and the probability of interference increases and, hence,
the SU EC decreases. However, if we optimize over the transmission powers as
in P2, this helps sustaining high SU EC. Also, we notice that the difference
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between the unconstrained system and P1 diminishes as the PU utilization
factor increases which is also attributed to higher interference.

5 Conclusions

In this paper we investigate a fundamental trade-off in delay-constrained cog-
nitive radio networks. In particular, we characterize and optimize the trade-off
between the secondary user effective capacity and the primary user average delay.
Towards this objective, we employ Markov chain models to characterize the sec-
ondary user effective capacity and the average packet delay in the primary user
queue. First, we formulate two constrained optimization problems to maximize
the secondary user effective capacity subject to an average primary user delay
constraint. Afterwards, the two formulated problems are proven to be quasi-
convex and, hence, can be solved efficiently using standard techniques. Finally,
the numerical results reveal interesting insights about the optimal performance
compared to the unconstrained PU delay baseline system studied earlier in the
literature.
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