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Abstract. In this paper, a centralized Power Control (PC) scheme aided
by interference channel gain learning is proposed to allow a Cognitive
Radio (CR) network to access the frequency band of a Primary User
(PU) operating based on an Adaptive Coding and Modulation (ACM)
protocol. The main idea is the CR network to constantly probe the band
of the PU with intelligently designed aggregated interference and sense
whether the Modulation and Coding scheme (MCS) of the PU changes in
order to learn the interference channels. The coordinated probing is engi-
neered by the Cognitive Base Station (CBS), which assigns appropriate
CR power levels in a binary search way. Subsequently, each CR applies
a Modulation and Coding Classification (MCC) technique and sends the
sensing information through a control channel to the CBS, where all the
MCC information is combined using a fusion rule to acquire an MCS
estimate of higher accuracy and monitor the probing impact to the PU
MCS. After learning the normalized interference channel gains towards
the PU, the CBS selects the CR power levels to maximize total CR net-
work throughput while preserving the PU MCS and thus its QoS. The
effectiveness of the proposed technique is demonstrated through numer-
ical simulations.

Keywords: Cognitive Radio · Centralized power control · Spectrum
sensing · Cooperative Modulation and Coding Classification · Adaptive
coding and modulation

1 Introduction

Radio Spectrum is well known to be a limited resource. Ever since its first
commercial usage, regulations for limiting services to specific frequency bands
have been enforced. This rulemaking process assumes that a static assignment
of services to frequency bands not only facilitates the financial exploitation of
the Radio Spectrum, but also limits interference and supports the construction
of cheap and less complicated transceivers, a major technological restraint.

Nowadays though, the burst in service demand has led us to rethink the static
nature of this architecture. Taking into account also the fact that some frequency
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bands are being underutilized and that others accommodate services resilient to
interference, the research community proposed the idea of the Dynamic Spec-
trum Access (DSA) [1]. Some DSA techniques suggest the use of frequency bands
by unlicensed users, also called Secondary Users (SUs), when the licensed ones
(PUs) are absent or even their coexistence as long as the received interference by
PUs is below a certain threshold. This flexible structure enables us to exploit the
Radio Spectrum resource more efficiently. A candidate technology to reach this
objective and enhance the operation of the SUs is the Cognitive Radio (CR) [2].
The main functionalities of the CR are the Spectrum Sensing (SS), which con-
sists of methods detecting the existence or type of licensed primary signal, and
the PC, the adaptive adjustment of transmit power. Unlicensed SUs equipped
with these CR mechanisms can apply DSA techniques and help us resolve both
Radio Spectrum underutilization and congestion.

One important SS mechanism is the identification of the PU signal type. An
interesting approach to address this problem could be the classification of the
modulation and coding scheme (MCC) [3,4]. As far as the modulation classi-
fication is concerned, features like the signal cumulants of 2nd, 3rd, 4th, 6th
and 8th order which have distinctive theoretical values among different modu-
lation schemes [5] are estimated and then fed into a powerful classification tool,
the Support Vector Machine (SVM) [6]. For the coding identification part, the
exploited statistical features are the log-likelihood ratios (LLRs) of the received
symbol samples [7,8]. The detection technique in this case involves the compar-
ison of the average LLRs of the error syndromes derived from the parity-check
relations of each code.

The second CR enhancement mentioned before is the PC strategy based
on which the SUs are accessing the frequency band of the PU. This vast topic
has been thoroughly investigated from many aspects depending on the system
model, the optimization variables, the objective functions, the constraints and
other known or unknown parameters. An interesting approach to the PC problem
tackled by the research community within the wireless network context has been
the centralized one. Based on this, a central decision maker, the Base Station,
gathers local information from the users through a control channel, elaborates
an intelligent selection of their operational parameters, such as their transmit
power, channel or time schedule, and communicates it to them. In this gen-
eral context, the research community has formulated and tackled PC problems
to achieve common or different signal to interference plus noise ratio (SINR)
requirements, maximum total system throughput, maximum weighted through-
put, maximum worst user throughput or minimum transmit power, subject to
QoS constraints from individual users, like SINR, data rate or outage proba-
bility. In the CR regime, the centralized PC problem retains its basic form but
with some small alterations. One critical modification is the knowledge of the
interference channels from the CR transmitters to the PU receivers. Previous
work has considered perfect CR-to-PU channel knowledge [9,10], limited-rate
feedback from the PUs on CR-to-PU channel gains [11], imperfect CR-to-PU
channel knowledge [12] and CR-to-PU channel uncertainty knowledge attained
through SS or channel gain cartography [13].
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An even more challenging PC problem in CR networks is the one without
any prior knowledge of the interference channels and cooperation from the PU
link. The additional burden in this case is learning the CR-to-PU channels using
eavesdropped information from the PU feedback channel. A solution for one SU
coexisting with one PU was given in [14] based on a probing and sensing model.
Nevertheless, the most sophisticated methods suitable for learning the interfer-
ence channel gains of multiple SUs through probing with the use of even binary
feedback are derived from multiple input multiple output (MIMO) and beam-
forming research scenarios. Previous researchers have exploited a slow random
exploration algorithm [15], the one-bit null space learning algorithm [16] and an
analytic center cutting plane method (ACCPM) based learning algorithm [17].

In this paper, a centralized PC method aided by interference channel power
gain learning is demonstrated which concerns multiple SUs and a PU and max-
imizes the total SU throughput subject to maintaining the PU QoS. This case
study considers the PU link changing its MCS based on an ACM protocol and
operating in its assigned band together with a CR network accessing this band
and having knowledge of this ACM protocol. Our idea is to apply an algorithm
in order to first estimate the interference channel power gains by exploiting SS
feedback and finally maximize the total SU throughput. This CR-to-PU channel
knowledge is acquired by having the coexisting cognitive SUs constantly prob-
ing in a binary search trial and error way and checking whether the CR network
caused the PU MCS to change. The detection of the PU MCS is performed in a
cooperative way at the CBS which gathers the MCC feedback from all the SUs
through a control channel and combines them using a hard decision fusion rule.
The proposed DSA application concerns only the SU system without adding
any complexity in the infrastructure or a control channel between the PU sys-
tem and the SU one in order to exchange information about the channel gains
or the induced interference.

The remainder of this paper is structured as follows: Section 2 provides the
system model and the problem formulation. Section 3 introduces the cooperative
MCC. Section 4 analyzes the interference channel power gain learning. Section 5
shows the results obtained by the combination of the above. Finally, Section 6
gives the concluding remarks and future work in this topic.

2 System Model and Problem Formulation

Initially, the outputs of the MCC procedure and the way they are employed
have to be described. All the SUs are equipped with a secondary omnidirectional
antenna only for sensing the PU signal and an MCC module which enables them
to identify the MCS of the PU. Specifically, each SU collects PU signal samples
using a standard sensing period TS , estimates the current MCS and transmits
it through a control channel to the CBS. The MCS observation of the SUi over
the nth sensing period is expressed as MCSn

i and a detailed description about
its estimation can be found in [3,4].

Furthermore, at system level a PU link and N SU links exist in the same
frequency band as shown in Fig. 1. As far as the interference to the PU link is
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Fig. 1. The PU system and the CR network

concerned, this is caused by the transmitter part of each SU link to the receiver
of the PU link. Considering strong interference links, this may have a severe
effect on the MCS chosen by the PU link. In addition, a channel access method
allows SU links not to interfere with each other. In this scenario, the unknown
interference channel gains and the PU channel gain are static and no fading
channel models are considered.

Here we focus on channel power gains G, which in general are defined as
G = ‖g‖2, where g is the channel gain. From this point, we will refer to channel
power gains as channel gains. The aggregated interference to the PU side is
defined as:

IPU =
N∑

i=1

GIiPSUi
(1)

where GIi is the SUi-to-PU interference channel gain and PSUi
is the SUi trans-

mit power. Additionally, the SINR of the PU is defined in as:

SINRPU = 10 log
(

GPUPPU

IPU + NPU

)
dB (2)

where GPU is the PU link channel gain, PPU is the PU transmit power and NPU

is PU receiver noise power. From a PU system perspective, an ACM scheme is
applied with a set of possible MCS’s. The ACM protocol changes the MCS of
the PU link to more or less robust modulation constellations and coding rates
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depending on the level of the SINRPU . Each MCS operation has a specific min-
imum required SINRPU value, denoted as SINRth, which whenever violated,
an MCS adaptation happens. Assuming that NPU remains the same at the PU
receiver side and that the PU transmitter retains its transmit power, the SINRth

values correspond to particular maximum allowed IPU values, designated as Ith.
Hence, whenever the PU is active, for every MCS there are interference thresh-
olds Ith over which the PU is obliged to change its transmission scheme to a
lower order modulation constellation or a lower code rate and whose levels are
unknown to the CR network.

In this paper, we address the problem of total SU throughput (U tot
SU ) maxi-

mization without causing harmful interference to the PU system, which can be
written as:

maximize
PSU

U tot
SU (PSU) =

N∑

i=1

log2

(
1 +

GSUi
PSUi

NSUi

)
(3a)

subject to
N∑

i=1

GIiPSUi
≤ Ith (3b)

0 ≤ PSUi
≤ Pmax

i i = 1, . . . , N (3c)

where PSU is the power vector [PSU1 , ..., PSUN
], Pmax

i is the maximum transmit
power level of the SUi transmitter, GSUi

is the channel gain of the SUi link and
NSUi

is the noise power level of the SUi receiver. The channel gain parameters
GSUi

and the noise power levels NSUi
are considered to be known to the CR

network and not changing in time. An observation necessary for tackling this
problem is that the GIi gains normalized to Ith are adequate for defining the
interference constraint. Therefore, the new version of (3b), will be:

N∑

i=1

Gnorm
Ii PSUi

≤ 1 (4)

where Gnorm
Ii

= GIi

Ith
.

This optimization problem is convex and using the Karush-Kuhn-Tucker
(KKT) approach a capped multilevel waterfilling (CMP) solution is obtained
[18] for each SUi of the closed form:

P ∗
SUi

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pmax
i if 1

λGnorm
Ii

− NSUi

GSUi
≥ Pmax

i

0 if 1
λGnorm

Ii

− NSUi

GSUi
≤ 0

1
λGnorm

Ii

− NSUi

GSUi
otherwise

(5)

where λ is the KKT multiplier of the interference constraint (4) and which can
be determined as presented in [18]. Once, all the parameters of the optimization
problem are established, the aforementioned analytical solution can be directly
calculated. In the following sections, we deal with the learning of the unknown
parameters described in the constraint (4).
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3 Cooperative Modulation and Coding Classification

A general description of cooperative SS is that each SU performs a SS technique
independently, forwards its observation to the CBS via a control channel and
finally the CBS using a fusion rule combines this information to get to a deci-
sion. In this paper, a hard decision fusion of observations obtained by MCC is
considered using a plurality voting system [19]. Based on this voting system, the
CBS collects all the MCC feedback over the nth sensing period and decides the
MCS of the PU, denoted as MCSn. Let C = {c1, .., cK} denote the set of the
MCS candidates of the ACM protocol, which are considered to be equiprobable,
K the number of elements of this set and Vcj the vote tally associated with the
class cj .

During the voting procedure, the CBS first gathers the votes of the nth

period, which in our case are the MCSn
1 , ...,MCSn

N and support elements of the
class set C. All the votes are of same importance and no use of weight factors is
made. With every vote MCSn

i , the CBS increases by one the vote tally Vcj of
the cj class supported by this vote. After casting every vote of the nth period to
the corresponding vote tally, the CBS identifies the MCSn as:

MCSn = arg max
cj∈C

Vcj . (6)

Even though plurality voting is a simple and not sophisticated method which
elects the MCS value that appears more often than all of the others, it produces
the correct voting output under the condition that some SUs have sensing chan-
nels of moderate quality. Its equivalent voting system for binary data fusion, the
majority one, has been used by the research community to improve the detection
and false alarm probabilities with satisfactory results.

4 Interference Hyperplane Learning

From here on, the equality extreme of the constraint (4) will be referred to as
the interference hyperplane. In this section, a binary search probing method
is described for estimating the interference hyperplane. First of all, a binary
indicator is defined which shows whether the CR network is generating IPU above
or below the Ith based on the MCSn fusion output of the MCSn

i observations.
Whenever the CBS detects a deterioration of the MCS from the (n− 1)th to the
nth period, the indicator In changes state as shown below:

In =
{

1 if MCSn �= MCSn−1

0 if MCSn = MCSn−1 . (7)

In addition, the feasible set of this problem is defined as ΩN = {PSU|0 ≤
PSUi

≤ Pmax
i , i = 1, . . . , N}, an N -dimensional rectangle with 2N corners. The

objective of this section is to find a geometric method for determining this hyper-
plane which crosses ΩN . The only exploitable feedback of this method is the In

which specifies whether the SU power allocation PSU, chosen by the CBS, just
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before the beginning of the nth period causes or not harmful interference. In
other words, if the SU power allocation before the beginning of the nth period
is expressed as Pn

SU = [Pn
SU1

, ..., Pn
SUN

], In demonstrates whether this chosen
point in ΩN is above or below the interference hyperplane.

Thus, the main challenge of this method is how to intelligently select a series
of points in ΩN , for which we only know whether they are above or below the
desired hyperplane, in order to estimate this hyperplane. Also, this series has
to be limited within the N -dimensional rectangle, since the CBS cannot assign
power levels beyond this region. Another challenge that has to be taken into
account is the total number of these probing/testing points. The more trial
points are used, the more MCS deteriorations the CR network likely causes,
which is a considerable damage to the PU QoS. So, this geometric method must
find the interference hyperplane with the lowest number of trial points possible.

The core idea for solving the problem is the limitation of the feedback In. A
binary indicator would be ideal to determine a threshold in the 1-dimensional
case by using binary search. Still, in the N -dimensional case a binary search-like
method must have some kind of directivity to identify the hyperplane-threshold.
Hence, the question becomes how can binary search be applied in this scenario.
Basically, to detect an N -dimensional plane one has to find N linearly inde-
pendent points upon it. Furthermore, if each point belongs to a 1-dimensional
ordered set, like a line segment, the binary indicator In could be used for a binary
search upon the set to find this point. Consequently, for this idea to work, N
line segments which cross the hyperplane need to be found and with the lowest
number of trial points possible.

To locate N line segments crossing the hyperplane, a number of end points
need to be known with some of them below the N -dimensional plane and the
rest above it. Considering that any combination of points from different sides
creates line segments which cross the hyperplane, if points above and below the
N -dimensional plane belong respectively to groups A and B and NA and NB are
the number of points in these groups, then the number of possible line segments
is NANB . As mentioned before, the required number of line segments is N , but
since the lowest number of trial points possible is demanded the problem is to
find NA and NB points minimizing NA + NB while NANB ≥ N .

Taking into account some facts from the nature of this problem, the aforemen-
tioned end point search can be simplified. Given that the interference hyperplane
crosses ΩN , there is always a known point below this N -dimensional plane, the
[0, ..., 0], and one above it, the [Pmax

1 , ..., Pmax
N ]. So, in the worst case scenario,

N −1 more points are needed to define N line segments crossing the hyperplane.
To simplify the end point search, it is proposed to examine randomly the corners
of the ΩN . After these segments are found, binary searches are performed on
each one of them so as to detect the N intersection points of the line segments
and hence the interference hyperplane.

A detailed description of the binary search method on a line segment with
arbitrary end points should also be given. Assuming 2 points, p1 and p2, in
the N -dimensional space, every point p(θ) lying on the line segment defined by
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them is expressed using the parametric equation p(θ) = θp1 + (1 − θ)p2, where
θ ∈ [0, 1]. So, basically the binary search is performed within the θ region [0, 1].

Once, the intersection points of the line segments and the interference hyper-
plane are estimated the GIi gains normalized to Ith can be found as the solution
of an N × N system using the equality of the constraint (4):

⎡

⎢⎢⎢⎣

Gnorm
I1

Gnorm
I2
...

Gnorm
IN

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Pcross
1

Pcross
2
...

Pcross
N

⎤

⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎣

1
1
...
1

⎤

⎥⎥⎥⎦ (8)

where Pcross
i , i = 1, . . . , N , are the intersection points as row vectors.

Algorithm 1. Interference hyperplane learning geometric algorithm
Sense MCS0

n = 1
Transmit P1

SU = [Pmax
1 , ..., Pmax

N ]
Sense MCS1

if I1 = 0 then
Let SUs transmit at maximum

else
repeat

n = n + 1
Transmit at Pn

SU, a random corner point of ΩN

Sense MCSn and cast point Pn
SU to group A or B

until NANB ≥ N
Combine points in A and B to create line segments
for k = 1, . . . , N do

Select a line segment with endpoints Pk
A ∈ A and Pk

B ∈ B
repeat

n = n + 1
Transmit at Pn

SU, the midpoint of Pk
A and Pk

B

Sense MCSn

if In = 0 then
Pk

B = Pn
SU

else
Pk

A = Pn
SU

end if
until ‖Pk

A − Pk
B‖ ≤ ε

Define Pcross
k as the midpoint of Pk

A and Pk
B

end for
Calculate normalized Gnorm

Ii
using (8)

end if

Additionally, it is necessary to determine the maximum probing/testing
points needed to detect the intersection points and thus the interference hyper-
plane, since it was explained that a large number of probing/testing points could
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degrade the PU QoS. Supposing that each binary search is performed with accu-
racy ε, it is well known that the maximum attempts for each line segment of
length dk, where k = 1, . . . , N , are �log2(dk

ε )�. Even though the lengths dk cannot
be precisely estimated, because a random selection of corner points is performed
and so the line segments do not have a standard length, an upper bound can
be derived for the total binary search attempts of the procedure. The maximum
length a line segment can have in ΩN , dmax, is of the diagonal defined by the

points [0, ..., 0] and [Pmax
1 , ..., Pmax

N ] and calculated as

√
N∑

i=1

(Pmax
i )2. Therefore,

the following
N∑

k=1

�log2(dk

ε
)� ≤ N�log2(dmax

ε
)� (9)

holds and presents an upper boundary of O(Nlog2(N)) performing trials. This
result proves the scalability of this geometric algorithm, presented in Algo. 1,
which can be used even when the SUs of the CR network are large in number.

A simple example of how this geometric algorithm progresses in time for
N = 2 SUs is given in Fig. 2. The binary searches were performed on the
line segments OB and BC in order to find their intersection points with the
interference line, E and D. Once, these points are obtained it is easy to define
the interference line.

Fig. 2. A 2D graphical example of the geometric algorithm
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5 Results

Following, the performance of the aforementioned geometric algorithm and the
probing progress of each PSUi

vs time are presented. For testing the performance,
a case of CR network with N = 3 SUs was considered. The following diagrams
in Fig. 3 represent geometrically the probing/testing point coordinates which
gradually converge to the coordinates of the intersection points Pcross

i .
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Fig. 3. Geometric algorithm progress in time for N = 3 SUs

As seen in Fig. 3, testing power allocation points are tried with a time step of
200ms and it is considered that Pmax = 300mW and TS = 100ms for every SU.
Also, at each time step the output of the cooperative MCC process is assumed
to be correctly estimated and thus the binary indicator In contributing in the
geometric algorithm is always accurate. An important aspect of the algorithm
is the convergence time which for the examined CR network is 3200ms. After
the interference hyperplane learning process finishes, the CBS is able to directly
find the optimal power allocation based on (5).
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6 Conclusions

In this paper, a centralized Power Control (PC) scheme aided by an interference
hyperplane learning algorithm is proposed to allow a CR network and a PU
coexist in a frequency band. The leading idea of this algorithm is to exploit
the SS feedback from the cooperative MCC procedure and perform consecutive
binary searches in the power allocation set to define points of the interference
hyperplane and thus the hyperplane itself. The algorithm is of O(Nlog2(N)) time
complexity, which makes it ideal even for large CR networks, and guarantees that
the minimum number of probing/testing points possible is performed. The last
remark is essential for the PU QoS, since the more trials are performed by the
CBS for the hyperplane learning, the more likely it is to surpass the interference
hyperplane and deteriorate the PU MCS. Moreover, it must be mentioned that
the proposed learning algorithm achieves better time complexity than the ones
used in previous work related with binary feedback learning. In [15], a slow
convergence rate stochastic gradient algorithm was utilized, [16] suggested an
algorithm of O(N2log2(N)) time complexity and [17] applied an optimization
technique based learning algorithm of O(N2) time complexity.

Improving some of the problem aspects could lead our future work in this
subject. Initially, an enhanced fusion rule of the MCC observations could be
suggested using soft decision rules based on the sensing link quality of each SU.
Furthermore, the cooperative MCC process is assumed to perfectly recognize
the PU MCS, but under low quality sensing link conditions this is not true.
An introduction of a reliability factor indicating how accurate the output of the
MCS fusion rule is and therefore how reliable the binary indicator In is could
be useful so that binary searches using uncertainty could be carried out. Finally,
an online version of the proposed geometric algorithm could be implemented to
tackle fading interference channels and not only static ones.
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