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Abstract. Understanding the performance of the cognitive radio sys-
tems is of great interest. Different paradigms have been extensively ana-
lyzed in the literature to perform secondary access to the licensed spec-
trum. Of these, Interweave System (IS) has been widely investigated for
performance analysis. According to IS, sensing is employed at the Sec-
ondary Transmitter (ST) that protects the Primary Receiver (PR) from
the interference induced. Thus, in order to control the interference at the
PR, it is required to sustain a certain level of probability of detection. In
this regard, the ST requires the knowledge of the received power. How-
ever, in practice, this knowledge is not available at the ST. Thereby per-
forming analysis considering the prior knowledge of the received power is
too idealistic, thus, do not depict the actual performance of the IS. Moti-
vated by this fact, an estimation model that includes received power esti-
mation is proposed. Considering a sensing-throughput tradeoff, we apply
this model to characterize the performance of the IS. Most importantly,
the proposed model captures the estimation error to determine the dis-
tortion in the system performance. Based on analysis, it is illustrated
that the ideal model overestimates the performance of the IS. Finally,
it is shown that with an appropriate choice of the estimation time, the
severity in distortion can be effectively regulated.

1 Introduction

For future wireless technologies, cognitive radio communication is emerging as
a possible solution to the problem of spectrum scarcity. The available cognitive
radio paradigms in the literature can be categorized into interweave, underlay
and overlay [1]. In Interweave Systems (IS), the Secondary Users (SUs) utilize
the licensed spectrum opportunistically by exploiting spectral holes in different
domains such as time, frequency, space and polarization, whereas in Underlay
Systems (US), SUs are allowed to use the primary spectrum as long as they
respect the interference constraints of the Primary Receivers (PRs). On the
other hand, Overlay Systems (OS) allow the spectral coexistence of two or more
wireless networks by employing advanced transmission and coding strategies.
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Due to its ease in deployment, IS is mostly preferred for performing analysis
among these paradigms. In this context, this paper focuses on the performance
analysis of the ISs considering a hardware deployment where sensing is employed
at the Secondary Transmitter (ST).

1.1 Motivation

Sensing is an integral part of the IS. At the ST, sensing is necessary for detecting
the presence and absence of a primary signal, thereby protecting the PRs against
harmful interference. Sensing at the ST is accomplished by listening to the power
received from the PT. For detecting a primary signal, several techniques such
as Energy Detection (ED), matched filtering, cyclostationary and feature-based
detection exist [2,3]. Because of its versatility towards unknown primary signals,
ED has been extensively investigated in the literature [4–8]. According to ED,
the decision is accomplished by comparing the power received at the ST to a
threshold. In reality, the ST encounters a variation in the received power due to
the thermal noise at the receiver and fading in the channel. This leads to sensing
errors described as misdetection or false alarm. The characterization of sensing
errors as probability of detection and probability of false alarm has been studied
in [9]. These sensing errors limit the performance of the IS.

In particular, probability of detection is critical for the primary system
because it precludes the PR from the interference induced by the ST. On the
other side, probability of false alarm accounts for the throughput attained by
the secondary system at the Secondary Receiver (SR). In this regard, ST has
to sustain a desired probability of detection and optimize its throughput. This
phenomenon is characterized as a sensing-throughput tradeoff by Liang et al.
[10]. According to it, the ST is able to determine a suitable sensing time that
achieves an optimum throughput for a given received power. Several contribu-
tions have considered the performance of IS based on sensing errors [10–12].
However, the analysis described in the literature is too idealistic and not feasible
for deployment, as it considers the perfect knowledge of the received power at
the ST.

With the presence of channel and noise in the system, the received power is
never known accurately, thus, needs to be estimated at the ST. Considering a
hardware deployment, it is important to determine the performance of the IS
based on received power estimation. A similar analysis is performed in [13], where
the authors employ the received power estimation to control transmit power at
the ST deployed as an underlay system. However, in this paper, we intend to
capture the effect of estimation on the performance of an IS. Now, to realize
received power estimation at the ST, it is necessary to allocate a certain time
interval for the estimation within the frame duration. With the introduction of
this estimation time, the system performance differs from its ideal behaviour.
Additionally, the employed estimation process itself induces a certain level of
error in the system. Hence, in order to understand the performance of the IS, it
is necessary to consider the aforementioned aspects.
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(a) (b)

Fig. 1. (a) A scenario demonstrating the interweave paradigm. (b) Frame structure of
interweave system with received power estimation.

1.2 Contributions

To realize the received power estimation, we consider a new frame structure.
According to it, in a single frame, the ST performs (i) received power estima-
tion, (ii) sensing, and (iii) data transmission. To perform analysis based on this
new frame structure, we propose a novel estimation model. Most importantly,
we evaluate the system performance with the inclusion of the estimation time
and the errors occurred due to estimation. Based on the analytical expressions,
we analyze the sensing-throughput tradeoff for the proposed estimation model.
Finally, we determine the confidence intervals for the estimated received power.
Particularly, based on these intervals, we capture the distortion in the perfor-
mance based on the upper and lower bounds. This distortion, however, depends
on the choice of design parameters depicted as probability of confidence and
estimation duration.

1.3 Organization

The rest of the paper is organized as follows: Section 2 describes the system model
that includes the interweave scenario and the signal model. Section 3 investigates
the sensing-throughput tradeoff for the estimation model and derives upper and
lower bounds for the performance parameters. Section 4 analyzes the numerical
results based on the obtained expressions. Finally, Section 5 concludes the paper.

2 System Model

2.1 Interweave Scenario

Cognitive Relay (CR) [14] characterizes a small cell deployment that fulfills the
spectral requirements for Indoor Devices (IDs). Fig. 1a illustrates a snapshot
of a CR scenario to depict the interaction between the CR with PT and ID,
where CR and ID represents the ST and SR respectively. In [14], the challenges
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involved while deploying the CR as an IS were presented. For simplification, a
constant false alarm rate was considered in the system model. Now, we extend
the analysis to employ a constant detection rate.

The medium access for the IS is slotted, where the time axis is segmented
into frames of length T . The frame structure is analog to the one illustrated in
[10]. However, unlike [10], the proposed frame structure uses τest to estimate and
τsen to sense the received power, where τest, τsen correspond to time intervals and
τest + τsen < T , cf. Fig. 1b. To incorporate the effect of fading in the model, we
assume that the channel remains constant for T . Hence, characterized by the
fading process, each frame witnesses a different received power. Therefore, to
sustain a desired probability of detection, it is important to perform estimation
τest followed by sensing τsen for each frame. The remaining time T − (τest + τsen)
is utilized for data transmission.

2.2 Signal Model

In the estimation and sensing phase, the received signal at the ST is sampled
with a sampling frequency of fs for given hypotheses, that depicts the presence
(H1) and absence (H0) of the primary signal, is given by

yrcvd[n] =

{√
hp,1 · xp[n] + w[n] : H1

w[n] : H0,
(1)

where xp[n] corresponds to a discrete sample at the PT, hp,1 represents the
power gain for the channel and w[n] is circularly symmetric complex Additive
White Gaussian Noise (AWGN) at the ST. xp[n] is an i.i.d. (independent and
identically distributed) random process. As the channel hp,1 is independent to
xp and w[n] is an i.i.d. Gaussian random process with zero mean and variance
E

[|w[n]|2] = σ2, the yrcvd is also an i.i.d. random process. The true received
power is defined as

P̄rcvd = E

[
|√hp,1 · xp[n]|2

]
. (2)

Based on (2), the received SNR at the ST is γrcvd = P̄rcvd
σ2 − 1.

Now, the data transmission at the ST is conditioned over the probability of
detection (Pd). In this context, the received signal at the SR is given by

ys[n] =

{√
hs · xs[n] +

√
hp,2 · xp[n] + w[n] : 1 − Pd√

hs · xs[n] + w[n] : Pd,
(3)

where xs[n] is an i.i.d. random process and corresponds to discrete signal trans-
mitted by the ST. Further, hs and hp,2 represent the power gains for chan-
nel, cf. Fig. 1a. The received SNRs over the links ST-SR and PT-ST are

γs =
E[|

√
hs·xs[n]|2]

σ2 and γp =
E[|

√
hp,2·xp[n]|2]

σ2 .
In the estimation phase, the estimated power received at the ST is given

as [4]
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Prcvd =
1

τestfs

τestfs∑
n

|yrcvd[n]|2. (4)

Prcvd determined in (4) using τestfs samples follows a non central chi-squared
distribution [15]. Considering large number of samples, thereby following simi-
lar approach as in [9], we apply the central limit theorem to approximate the
distribution for Prcvd as Gaussian distribution

Prcvd ∼ N
(

P̄rcvd,
2

τestfs
P̄ 2
rcvd

)
. (5)

Following the estimation of the received power, the ST performs sensing for
a duration of τsen, cf. Fig. 1b. The test statistics T (y) at the ST is evaluated as

T (y) =
1

τsenfs

τsenfs∑
n

|yrcvd[n]|2
H1

≷
H0

ε, (6)

where ε is the threshold and y is a vector with τsenfs samples. The probability
of detection Pd and the probability of false alarm Pfa corresponding to (6) is
determined as [9]

Pd(ε, τsen, P̄rcvd) = Q
⎛
⎝ ε − P̄rcvd√

2
τsenfs

P̄rcvd

⎞
⎠ , (7)

Pfa(ε, τsen) = Q
⎛
⎝ ε − σ2√

2
τsenfs

σ2

⎞
⎠ , (8)

where Q(·) represents the Q-function [16]. Subsequently, by sustaining the Pd

above a certain desired level P̄d

Pd(ε, τsen, P̄rcvd) ≥ P̄d, (9)

the ST precludes the interference to the primary system. Consequently, an opti-
mum performance is achieved when the ST operates at the desired level, i.e.,
Pd = P̄d. Hence, using (7) and (9), the threshold is evaluated as

ε(P̄d, τsen, P̄rcvd) =
(

Q−1(P̄d)
√

2
τsenfs

+ 1
)

P̄rcvd. (10)

2.3 Assumptions

As a preliminary step, for the proposed model, we consider only the estimation
of P̄rcvd at the ST. Hence, in this paper, it is assumed that the ST acquires the
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perfect knowledge about γp and γs from the SR over a feedback channel. The
inclusion of the imperfect knowledge of γp and γs in the proposed model poses an
interesting research direction. Moreover, we consider that all transmitted signals
are subjected to distance dependent path loss and the small scale fading gains.
The coherence time for the channel gain is greater than the frame duration.
However, we may still encounter scenarios where the coherence time exceeds the
frame duration, in such cases our characterization depicts a lower performance
bound. With no loss of generality, we consider that the channel gain (hp,1, hp,2

and hs) includes the distance dependent path loss and the small scale gain.
Finally, we target short term performance, according to which the performance
parameters are optimized for each frame.

3 Sensing-Throughput Analysis

3.1 Ideal Model (IM)

According to Liang et al. [10], the secondary throughput subject to a desired
probability of detection P̄d is given by

R̃s(τ̃sen) = max
τsen

Rs(τsen) =
T − τsen

T

[
C0(1 − Pfa(ε, τsen))P(H0)

+ C1(1 − Pd(ε, τsen, P̄rcvd))P(H1)
]
, (11)

s.t. Pd(ε, τsen, P̄rcvd) ≥ P̄d,

where C0 = log2(1 + γs) and C1 = log2

(
1 +

γs
γp + 1

)
.

P(H0) and P(H1) are the probabilities of occurrence for the respective hypoth-
esis. Based on (11), the ST is able to determine the suitable sensing time
τsen = τ̃sen such that an optimum throughput R̃s(τ̃sen) is achieved. According to
(11), the performance parameters for the IM are defined as R̃s, Pd and Pfa.

3.2 Estimation Model (EM)

The system described in [10] is good for performing analysis, however, to deter-
mine τ̃sen at the ST requires the knowledge of the received power P̄rcvd. Consid-
ering a hardware deployment, this information is not available at the ST. Unless
estimated, it is not possible to determine τ̃sen. According to the EM, the ST
estimates the P̄rcvd for a duration of τest as Prcvd and based on its value, the ST
determines τ̃sen for the given frame. The samples needed for estimation can be
utilized for sensing as well. However, for analytical tractability, in the proposed
model the estimation and sensing are considered to be disjoint in time. Now,
with the introduction of τest, the actual performance of the IS deviates from its
ideal performance. Moreover, the estimation itself causes distortion in the actual
performance of the IS. As a part of the proposed model, these aspects are dealt
in the following subsections.
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3.3 Actual Performance

With the introduction of the EM, we first characterize the performance of the IS.
To realize this, it is considered that the ST perfectly estimates the Prcvd, that is
Prcvd = P̄rcvd. In accordance with the proposed model, the sensing-throughput
tradeoff with perfect estimation is determined as

R̃P
s (τ̃P

sen) = max
τsen

RP
s (τsen) =

T − (τest + τsen)
T

[
C0(1 − Pfa(ε, τsen))

P(H0) + C1(1 − Pd(ε, τsen, P̄rcvd))P(H1)
]
, (12)

s.t. Pd(ε, τsen, P̄rcvd) ≥ P̄d.

According to the (12), for a given P̄d and estimation of P̄rcvd in the interval
τest, ST is able to determine the threshold as ε(P̄d, τsen, P̄rcvd). Finally, based on
the new sensing-throughput tradeoff (12), ST evaluates the suitable sensing time
as τsen = τ̃P

sen that achieves the optimum throughput R̃P
s . However, τ̃sen �= τ̃P

sen

due to the inclusion of the estimation time in the considered sensing-throughput
tradeoff. According to the EM, the performance parameters that characterize
the performance of the IS are R̃P

s , PP
d and PP

fa. Now, with the perfect estimation
of Prcvd, the constraint in (12) is sustained, hence, Pd = P̄d. However, with
τ̃sen �= τ̃P

sen, PP
fa and R̃P

s witness a deviation from their ideal behaviour.

3.4 Distortion

Previously, we determined the effect of estimation time on the performance. In
this section, we extend the analysis by considering the influence of estimation
error on the system performance. In this context, based on (5), we characterize a
confidence interval [PL

rcvd, P
U
rcvd] for a certain choice of probability of confidence

Pc and τest as

Prcvd =

⎧⎨
⎩

PL
rcvd =

(
Q−1

(
Pc+1

2

) √
2

τestfs
+ 1

)
P̄rcvd

PU
rcvd =

(
Q−1

(
1 − Pc+1

2

) √
2

τestfs
+ 1

)
P̄rcvd,

(13)

where Q−1(·) is the inverse-Q function [16]. Hence, we utilize this confidence
interval to depict the maximum estimation error in the estimated received power,
thereby characterizing maximum distortion in the performance parameters PP

d ,
PP
fa and R̃P

s . For Pc = 0.95, the PL
rcvd and PU

rcvd are equivalent to the lower and
upper bounds of the P̄rcvd.

This confidence interval further depicts the distortion in the system parame-
ters ε and τ̃P

sen. Hence, as an intermediate step, we first characterize the distortion
in terms of these system parameters. Subject to the received powers as PL

rcvd and
PU
rcvd, the expressions for the threshold are evaluated as

εL = ε(P̄d, τsen, P
L
rcvd) and εU = ε(P̄d, τsen, P

U
rcvd). (14)
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Clearly, due to difference in received power estimated at the ST, the expressions
in (14) differ from the one illustrated in (10). By inserting the thresholds εL and
εU in (12), the suitable sensing times computed at the ST are represented as

τ̃L
sen and τ̃U

sen. (15)

As a result, (14) and (15) clearly illustrates the distortion in the system param-
eters. Now, as a final step, we characterize the distortion in the performance
parameters in terms of the distorted system parameters and the true received
power. Consequently, we represent the distortion in R̃P

s , PP
d and PP

fa as a function
of (τ̃L

sen, ε
L) and (τ̃U

sen, ε
U) subject to true received power, i.e., P̄rcvd.

Following the above discussion, the distortion in the PP
d , in terms of upper

and lower bounds, due to the inclusion of estimation error in the received power
is determined as

PP
d =

{
PL
d = Pd(εL, τ̃L

sen, P̄rcvd)
PU
d = Pd(εU, τ̃U

sen, P̄rcvd).
(16)

It is evident that the distortion in the PP
d results in the violation of the reg-

ulatory constraint, c.f. (9). If this constraint is not sustained, it may result in
harmful interference at the PR. Hence, using (16), we are able to characterize
the situations where the IS may degrade the performance of the primary system.

On similar basis, the distortion in PP
fa in terms of upper and lower bound is

depicted as

PP
fa =

{
PL
fa = Pfa(εL, τ̃L

sen)
PU
fa = Pfa(εU, τ̃U

sen).
(17)

Finally, including the distortion in the probabilities PP
d and PP

fa from (16) and
(17) and the system parameters (ε, τ̃P

sen), the distortion in the optimum through-
put R̃P

s in terms of upper and lower bound is determined as

R̃P
s =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃L
s = T−(τest+τ̃L

sen)
T

[
C0(1 − Pfa(εL, τL

sen))P(H0)

+C1(1 − Pd(εL, τ̃L
sen, P̄rcvd)P(H1)

]

R̃U
s = T−(τest+τ̃U

sen)
T

[
C0(1 − Pfa(εU, τU

sen))P(H0)

+C1(1 − Pd(εU, τ̃U
sen, P̄rcvd)P(H1)

]
.

(18)

Based on the expressions (16), (17) and (18) characterized by the EM, it is
possible to depict the distortion for the IS from its actual performance. Moreover,
the severity in distortion can be controlled through Pc and τest. In particular, it is
important to select τest appropriately such that the distortion in the performance
doesn’t exceed beyond a certain level. This aspect is investigated more deeply
in the next section.
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4 Numerical Analysis

In this section, the performance of the IS for the EM is analyzed. In this regard,
we perform simulations to: (i) validate the expressions obtained in Section 3, (ii)
provide a mathematical justification to the Gaussian approximation considered
in Section 2. Although, the expressions derived using our sensing-throughput
analysis are general and applicable to all cognitive radio systems, however, the
parameters are selected in such a way that they closely relate to the deploy-
ment scenario described in Fig. 1a. Unless stated explicitly, the following choice
of the parameters is considered for the analysis, fs = 1 MHz, hp,1 = hp,2 =
−100 dB, hs = −80 dB, T = 100 ms, Pc = 0.95, P̄d = 0.9, σ2 = −100 dBm,
γrcvd = −10 dB, γp = −10 dB, γs = 10 dB and P(H1) = 1 − P(H0) = 0.2,
τest = 5 ms.

R
s
[b
it
s/

se
c/

H
z]

τest + τsen [ms]

Rs

RP
s

RU
s

RL
s

sim

0 2 4 6 8 10 12 14 16 18
0
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1

1.5

2

2.5
R̃s

R̃L
s

R̃P
s

R̃U
s

τest

Fig. 2. Sensing-throughput tradeoff for the ideal and estimation models with γrcvd =
−10 dB and τest = 5 ms.

Firstly, the analysis in terms of sensing-throughput tradeoff based on (11)
and (12) for the IM and the EM is performed. The curves Rs and RP

s in Fig. 2
depict the throughput based on the IM and the EM (actual performance) at the
ST. Due to the inclusion of received power estimation in the frame structure,
the ST produces no throughput at the SR for the interval τest. The sensing
times τ̃sen = 3.11 ms and τ̃P

sen = 3.06 ms are evaluated, which yield the optimum
throughputs as R̃s = 2.73 bits/sec/Hz and R̃P

s = 2.59 bits/sec/Hz, cf. Fig. 2.
This variation is due the inclusion of τest in the sensing-throughput analysis.
Hence, for the given choice of τest at ST, the ideal model overestimates the
optimum throughput by ≈ 5%.

Next, sensing-throughput analysis is performed, considering that the P̄rcvd

is estimated as PL
rcvd or PU

rcvd at ST. γrcvd = −10 dBm corresponds to P̄rcvd =
1.10 · 10−10mW. With Pc = 0.95 and τest = 5 ms, the confidence intervals are
determined as PL

rcvd = 1.05·10−10mW and PU
rcvd = 1.14·10−10mW, cf. (13). Fig. 2

demonstrates the throughput corresponding to distorted system parameter εL

and εU, cf. (14). The suitable sensing times are evaluated as τ̃L
sen = 7.21 ms and
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Fig. 3. (a) Distortion in optimum throughput versus the γrcvd with Pc = 0.95 and
τest = 5 ms. (b) Distortion in probability of detection versus the estimation time for
different γrcvd = {−10, −5, 0}dB.
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Fig. 4. (a) Distortion in probability of false versus the estimation time for different
γrcvd ∈ {−10, −5, 0}dB. (b) Distortion in optimum sensing time versus the estimation
time for different γrcvd ∈ {−10, −5, 0}dB.

τ̃U
sen = 1.76 ms. Finally, the distortion in the R̃P

s corresponding to the distortion
in the system parameters is demonstrated. The lower bound and upper bound
on the optimum throughput R̃P

s are determined as R̃L
s = 2.38 bits/sec/Hz and

R̃U
s = 2.84 bits/sec/Hz. It corresponds to 12.82% underestimation and 4.07%

overestimation of the optimum throughput. Therefore, based on the analytical
expressions determined under EM, it is possible to determine the severity of
distortion in the system performance.

Hereafter, we consider the theoretical expressions for the analysis. Next,
we determine the variation of the optimum throughput against the γrcvd ∈
[−13, 10]dB at ST with τest = 5 ms. It is evident from Fig. 3a that the distortion
in the R̃P

s decreases with increase in γrcvd. For γrcvd > −5 dB and τest = 5 ms,
the level of distortion is negligible. This is due to the fact that with increase in
Prcvd, Pfa shifts to a very low value such that 1 − Pfa ≈ 1. Moreover, for large
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γrcvd, the sensing-throughput curvature shifts to the right leading to a low τ̃P
sen,

thereby making distortion in terms of τ̃L
sen, τ̃U

sen insignificant. Hence, the system
becomes more tolerant due to the reduced distortion in the system parameters.
Besides that, by reducing τest, i.e., τest < 5 ms, it is possible to minimize the
margin between R̃s and R̃P

s , this however increases the level of distortion for IS.
This way, for a given choice of τest and maximum distortion in the R̃P

s , we can
define an operation regime for IS in terms of γrcvd, for example operation regime
with τest = 5 ms is defined as γrcvd ≥ −5 dB, cf. Fig. 3a. The extension of this
regime below −5 dB is only possible with the increase in estimation time, i.e.,
τest > 5 ms.

In addition to the R̃P
s , it is also important to depict the distortion in Pd. The

distortion in PP
d is characterized using (16). Clearly, PP

d remains constant, i.e.,
PP
d = P̄d with τest and for γrcvd ∈ {−10,−5, 0}dB. Fig. 3b reveals the distortion

in PP
d in terms of PL

d and PU
d . It is evident that the distortion is small for a

large value of γrcvd and it decreases with increase in τest. Most importantly,
it is observed that an PU

d depicted from PU
rcvd forms a lower bound whereas

PL
d forms an upper bound to PP

d . It is clear from the fact that, the distortion in
P̄rcvd ≤ PU

rcvd shifts the threshold to its right side ε ≥ εU, whereas the probability
density function corresponds to hypothesis H1 has a fixed expression subject
to P̄rcvd, hence, this shift in threshold causes the probability of detection to
decrease, i.e., PU

d ≤ PP
d . Similarly, εL ≤ ε corresponds to upper bound PP

d ≤ PL
d .

From the perspective of the secondary user, it is interesting to depict the
distortion in PP

fa. Fig. 4a analyzes the distortion in PP
fa according to (17) versus

τest for γrcvd = {−10,−5, 0}dB. Clearly, PP
fa decreases with increase in γrcvd and

remains constant with γrcvd. Analog to PP
d , PU

fa ≤ PP
fa ≤ PL

fa, hence, PL
fa and PU

fa

form an upper and lower bounds, respectively.
Apart from the performance parameters, the optimum sensing time τ̃P

sen

is an important system parameter that is closely related to the performance
parameters. Hence, Fig. 4b reveals the distortion in the τ̃P

sen versus the τest
for γrcvd ∈ {−10,−5, 0}dB, cf. (15). Similar to PP

d and PP
fa, τ̃L

sen and τ̃U
sen rep-

resents the upper and lower bound to τ̃P
sen. It is obvious from the fact that

larger value of estimated received power PU
rcvd shifts the curvature in the sensing-

throughput, that depicts the optimum sensing time, to a lower value, therefore,
τU
sen ≤ τP

sen ≤ τL
sen, cf. Fig. 4b.

5 Conclusion

In this paper, we considered the deployment of a cognitive radio as an inter-
weave system. For sustaining a minimum probability of detection, it requires the
knowledge of the received power at the ST. To acquire this knowledge, an esti-
mation has been included within the frame duration. In this regard, we proposed
an estimation model that characterizes the actual performance of the IS. More
specifically, the distortion in terms of bounds on the performance parameters has
been captured based on the analytical expression. Moreover, it has been indi-
cated that the severity in distortion can be confined by regulating the estimation
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time. Through theoretical and numerical analysis, it has been demonstrated that
for a given choice of estimation time, the distortion in the performance parame-
ters limits the operation regime, defined in terms of the received signal to noise
ratio, at the ST.

In future, we plan to depict the exact expression of distortion instead of
performance bounds. To pursue this, an outage constraint will be applied on
the probability of detection in place of received power, that is P(Pd ≤ P̄d).
In this way, we shall determine the estimation time subject to the new outage
constraint.
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