
Kalman Filter Enhanced Parametric Classifiers
for Spectrum Sensing Under Flat Fading

Channels

Olusegun P. Awe(B), Syed M. Naqvi, and Sangarapillai Lambotharan

Advanced Signal Processing Group, Loughborough University, Loughborough, UK
{o.p.awe,s.m.r.naqvi,s.lambotharan}@lboro.ac.uk

Abstract. In this paper we propose and investigate a novel technique
to enhance the performance of parametric classifiers for cognitive radio
spectrum sensing application under slowly fading Rayleigh channel con-
ditions. While trained conventional parametric classifiers such as the one
based on K-means are capable of generating excellent decision boundary
for data classification, their performance could degrade severely when
deployed under time varying channel conditions due to mobility of sec-
ondary users in the presence of scatterers. To address this problem we
consider the use of Kalman filter based channel estimation technique for
tracking the temporally correlated slow fading channel and aiding the
classifiers to update the decision boundary in real time. The performance
of the enhanced classifiers is quantified in terms of average probabilities
of detection and false alarm. Under this operating condition and with
the use of a few collaborating secondary devices, the proposed scheme
is found to exhibit significant performance improvement with minimal
cooperation overhead.

Keywords: Cognitive radio · spectrum sensing · Kalman filter ·
machine learning · fading channels

1 Introduction

Cognitive radio (CR) is an enabling technology for dynamic spectrum access
that will form an integral part of future wireless devices [1]. A core require-
ment for the successful implementation of CR system is spectrum sensing.
It enables CR devices to detect the presence or absence of primary user’s (PU)
signal in the licensed frequency bands so that secondary users (unlicensed users)
can opportunistically utilize these frequency bands in a manner that no disrup-
tive interference is caused to the PU’s transmissions [1], [2]. Over the last one
decade, several techniques have been proposed for performing spectrum sensing
in CR systems, the most widely used of which are the energy detection, matched
filtering and cyclostationary detector schemes [3].

In the energy detection method, during sensing interval the secondary user
(SU) computes the accumulated energy of the signal received at its terminal
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within the band of interest and compares the result to the measurement obtained
for the ambient noise. Although the technique has great potential for ubiquitous
applications due to its relative simplicity and capability for blind signal detec-
tion, its performance often degrade when there is uncertainty about the actual
ambient noise power [2], [3]. Matched filtering technique is implemented by cor-
relating the received signal and known PU signal and the outcome is used as
a basis for deciding whether the PU signal is present or not [4]. The scheme
is capable of yielding excellent detection performance when the waveform of
the PU signal is known apriori and there is perfect knowledge of the PU-SU
channel. Evidently, this technique can not be successfully used in an alien radio
frequency environment where a priori knowledge of the PU signal is lacking.
Another constraint on the use of the method is that the PU and SU must be
perfectly synchronized during sensing time which would be difficult to achieve
especially when the signal-to-noise ratio (SNR) of the PU-SU channel is low.
Cyclostationary detectors are built to take advantage of known, unique features
that are usually present in transmitted PU signals (e.g. cyclic prefix, spreading
codes, modulated carriers, etc.) which are repetitive in nature by using them
as signatures for detecting the PU signal’s presence or absence. Although the
technique offers robust performance in the presence of noise uncertainty and low
SNR, its use is limited to applications where the signal characteristics of the
PU is known apriori which makes it impractical for use in scenarios involving
frequency re-use. It also requires long sensing time and is characterized by high
computational complexity [2].

In fairly recent times, machine learning (ML) techniques have gained atten-
tion for solving the spectrum sensing problem and the performance evaluation
of this approach is found to be better than most of the traditional sensing
methods. For example in [5], semi-supervised parametric classifiers based on the
K-means clustering and expectation-maximization (EM) algorithms are pro-
posed. The supervised support vector machine (SVM) binary classifier and K-
nearest neighbour (kNN) techniques are also proposed in [4] and [5] while the
unsupervised variational Bayesian (VB) learning based method is presented in
[6]. The general idea behind all these ML schemes is to train the SUs by using
features that are derived from the traffic pattern in the licensed band of interest
so that if the SUs are operated in an environment similar to the one captured by
the training features, the SUs can use the knowledge of the traffic pattern that
has been acquired to distinguish between when the channel is being occupied by
the PU and otherwise [7]. It should be noted, however, that in practical scenarios
for the deployment of CRs, the SU or PU may be physically mobile and as such
the channel conditions characterizing the training and operating environments
may differ, thereby the CR might fail to reliably and efficiently detect the true
status of the PU’s activities under monitoring.

To the best of our knowledge, the deployment of parametric classifiers by
mobile SUs for spectrum sensing purpose under time varying channel conditions
has not been considered in the literature. In this paper, we investigate the per-
formance of SUs that depend on these classifiers for spectrum sensing under
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flat fading channels and propose a novel Kalman filter channel estimation based
technique for enhancing their performance under these practical operating con-
ditions.

The rest of the paper is as organized as follows. The problem statement is pre-
sented in section 2. In section 3, we describe the system model, assumptions and
proposed algorithms. The simulation results obtained are discussed in section 4
followed by conclusion in section 5.

2 Problem Statement

A spectrum sensing network consisting of a fixed PU transmitter (PU-TX), a
collaborating sensor node (CSN) co-locating with the PU, N PU receivers (PU-
RX), a secondary base station (SBS) which plays the role of a data clustering
center as well as the SUs’ coordinator and M SUs as illustrated in Fig. 1 is con-
sidered. It is assumed that the PU’s activity is such that it switches alternately
between active and inactive states allowing the SUs to be able to opportunis-
tically use its dedicated frequency band and operate within the PU’s coverage
area. During the training phase, all SUs sense the energy of the PU-SU channel
at their respective locations during both states and report it to the SBS where
clustering is performed and appropriate decision boundary is generated. It is
assumed that the training data from individual SU is independent but identi-
cally distributed.

Let us suppose that based on the decision boundary that is generated from
the training data, the PU has been declared to be inactive while all the SUs
are stationary. Consider also that SU-c3 that is initially at point ‘A’ is using the
PU’s band while having to transit to point ‘B’ as shown. We assume that the
channel condition characterizing the SU’s trajectory is flat fading (e.g. traveling
through a heavily built-up urban environment). This description equally applies
where multiple mobile SUs share the PU’s band and are able to cooperate. Since
the training process of a learning technique normally takes a long time, under
this scenario it is impractical for the mobile SU(s) to undergo re-training while
in motion owing to the dynamic nature of the channel gain and if sensing infor-
mation is exchanged among SUs, it could be received incorrectly due to the
channel fading and noise resulting in performance loss [8],[9]. In addition, signif-
icant amount of energy and other resources are required to communicate sensing
results periodically to other users and in a bid to conserve resources, SUs may
prefer not to share their results [10]. To be able to detect the status of the PU
activities correctly and efficiently, the onus is therefore on the individual mobile
SU as it travels to cater to making well informed decision by dynamically adjust-
ing its decision boundary at the SBS in a manner that the changes in channel
conditions are taken into consideration, doing so with minimal cooperation over-
head.

To address this challenge, in this paper we propose a framework whereby each
SU incorporates a channel tracking sub-system that is based on the Kalman fil-
tering algorithm which enables the SU to obtain an online, unbiased estimate
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of the true channel gain as it travels. The estimated channel gain can then be
used to generate energy features for updating its decision boundary in real time.
To investigate the capability of the proposed scheme, without loss of generality,
we adopt the energy vectors based K-means clustering platform earlier proposed
in [5] due to its simplicity.
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Fig. 1. A spectrum sensing system of a primary user and mobile secondary users net-
works.

3 System Model, Assumptions and Algorithms

Consider that the PU transmitter is located at a coordinate xpu as shown in
Fig. 1 and the mobile SU of interest SU-c3, is located initially at xm

su. During the
training period, all SUs carry out sensing of the PU’s channel at their respec-
tive locations and collectively report the estimated energy to the SBS where
K-means clustering is performed and the cluster centroids are computed. The
jointly reported sensing data can be used to obtain a high-dimensional decision
plane at the SBS and can enable immobile SUs to be able to take advantage
of space diversity and contain hidden node problem. Prior to SU-c3 being in
motion, let φ(xm

su, n) represent the channel gain between the PU-TX and SU-c3
at a time instant n. Given that the PU signals are statistically independent,
an estimate of the discrete-time signal received at the SU-c3 terminal can be
written as

xm(n) =
{

s(n)φ(xm
su, n) + ηm(n), H1 : PU present

ηm(n), H0 : PU absent
(1)

where the channel coefficient φ(xm
su, n) is assumed to be zero-mean, unit-variance

complex Gaussian random variable whose magnitude squared is the power atten-
uation P att

xpu→xm
su

, between PU-TX and SU-c3 which can be described by

P att
xpu→xm

su
= |φ(xm

su, n)|2
= Lp(‖xpu − xm

su‖2) · δxpu→xm
su

· γxpu→xm
su

, (2)
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where ‖ · ‖2 implies Euclidean norm, Lp(ρ) = ρ−d is the path loss component
over distance ρ, d is the path loss exponent, δxpu→xm

su
is the shadow fading

component and γxpu→xm
su

represents the small scale fading factors. The remaining
parameters in (1) are s(n) which is the instantaneous PU signal assumed to be
circularly symmetric complex Gaussian with mean zero and variance E|s(n)|2 =
σ2

s and ηm(n), which is assumed to be an independent and identically distributed
complex zero-mean Gaussian noise with variance E|ηm(n)|2 = σ2

η. Throughout
this consideration, the shadow fading effect is assumed to be quasi-static and the
channel gain, φ(xm

su, n) is assumed to be time-invariant while SU-c3 is stationary
at point ‘A’ during training and becomes a fading process as it transits from point
‘A’ at coordinate xm

su to point ‘B’ at coordinate xj
su. We further assume that in

order to reduce cooperation overhead, although the traveling SU is to be aided
by the SBS and other collaborating device within the network, it is primarily
responsible for the continuous monitoring of the PU’s activities while using the
PU’s band and would vacate the band immediately when the PU becomes active.

3.1 Energy Vectors Realization for Secondary Users Training

During the training interval, given that the PU operates at a carrier frequency
fc and bandwidth ω, if the transmitted PU signal is sampled at the rate of fs

by each SU, the energy samples sent to the SBS for training purpose can be
estimated as [11]

ψi =
1
N s

Ns∑
n=1

|xm(n)|2 (3)

where n = 1, 2, ..., Ns and Ns = τfs is the number of samples of the received
PU signal used for computing the training energy sample at the SU while τ
is the duration of sensing time for each energy sample realization. When the
PU is idle, the probability density function (PDF) of ψi follows Chi-square
distribution with 2Ns degrees of freedom and when Ns is large enough (say,
Ns � 250) [12], this PDF can be approximated as Gaussian through the cen-
tral limit theorem with mean, μ0 = σ2

η and variance, σ2
0 = 1

Ns
[E|η(n)|4 − σ4

η].
However, for an additive white Gaussian noise, E|η(n)|4 = 2σ4

n so that we have
σ2
0 = 1

Ns
σ4

η. Similarly, when the PU is active, the distribution of ψi can be
approximated as Gaussian with mean, μ1 = |φ(xm

su, n)|2σ2
s + σ2

η and variance,
σ2
1 = 1

Ns
[|φ(xm

su, n)|4E|s(n)|4 + E|η(n)|4 − (|φ(xm
su, n)|2σ2

s − σ2
η)2].

Let Ψ = {ψ1, ..., ψL} be the set of training energy vectors obtained at the
SBS during the training period where ψl ∈ Rq, and q is the dimension of each
training energy vector which corresponds to the number of collaborating SUs
and antenna per SU. If Ψ ∈ {H0,H1} is fed into the parametric classifier, the
output of the classifier is the cluster centroids (means) that can be used to gen-
erate the decision boundary which optimally separates the two clusters, H0, H1.
This decision boundary can then be used for the classification of new data points
when the classifier is deployed in an environment similar to where it has been
trained given any desired false alarm probability. A simple K-means clustering



240 O.P. Awe et al.

algorithm for computing the cluster centroids at the SBS is shown in Algorithm
1. However, in the realistic deployment scenario under consideration involving a
mobile SU which travels through a fading channel environment where frequent
re-training is impractical, relying on the hitherto, optimal decision threshold
obtained at the initial point of training would result in detection error. There-
fore, in order to achieve high probability of detection and low false alarm, the
cluster centroids computed at the SBS have to be continuously updated and the
decision boundary adjusted correspondingly.

Algorithm 1. K-means Clustering Algorithm for
CR Spectrum Sensing
1. ∀ m = 1, ...,M , initialize cluster centroids

C1, ..., CK , ∀ k = 1, ...,K given Ψ, K.
2. do repeat
3. for k ← 1 to K
4. do Dk ← { }
5. for l ← 1 to L
6. do i ← argmini‖Ci − ψl‖2
7. Dk ← Dk ∪ {ψl}
8. do Ck ← |Dk|−1

∑
ψl∈Dk

ψl,∀ k

9. until convergence
10. CH0 ← min{|C1|, ..., |CK |}

3.2 Tracking Decision Boundary Using Kalman Filter Based
Channel Estimation

In order to be able to track the changes in the cluster centroids under slow fading
channel condition due to the mobility of the SU, we introduce the Kalman fil-
tering technique to enable the mobile SU to obtain an online, unbiased estimate
of the temporally correlated fading channel gain. Since the PU is assumed to be
alternating between the active and inactive states, a collaborating sensor node
(CSN) that is co-locating with the PU is activated during the SU’s travel period.
The sensor node’s duty is to broadcast a signal known to the SUs (e.g. pilot sig-
nal) periodically during the PU’s idle interval for the benefit of the mobile SUs
to enable centroid update and avoid causing harmful interference to the PU’s
service. The role of the CSN in the proximity of the PU is similar to that of
the helper node used for authenticating the PU’s signal in [13] and the rationale
behind incorporating a sensor node co-locating with the PU is to ensure that the
channel between the PU and the mobile SU is captured by the CSN-to-mobile
SU channel. It should be noted that our model is equally applicable in the case
where there are multiple and/or mobile PUs and can accommodate any other
collaborating sensor node selection method. The mobile SU on the other hand
makes a prediction of the dynamic channel gain based on its speed of travel and
combines this prediction with the noisy observation from the collaborating node
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via the Kalman filtering algorithm to obtain an unbiased estimate of the true
channel gain.

Let the discrete-time observation at the mobile SU terminal due to the trans-
mitted signal by the CSN be described by

z(t) = s(t)φ(t) + �(t) (4)

where s(t) is a known pilot signal, �(t) is a zero mean complex additive white
Gaussian noise at the receiver with variance, σ2

� and φ(t) is a zero mean circularly
complex Gaussian channel gain with variance σ2

φ, t is the symbol time index. If we
let Ts be the symbol period of the pilot signal, the normalized Doppler frequency
of the fading channel is fdTs where fd is the maximum Doppler frequency in
Hertz defined by fd = v

λ , v is the speed of the mobile and λ is the wavelength
of the received signal. The magnitude of the instantaneous channel gain, |φ| is a
random variable whose PDF is described by

pφ(φ) =
2φ

ν
exp(

−φ2

ν
), φ ≥ 0 (5)

where φ is the fading amplitude and ν = φ2 is its mean square value. Further-
more, the phase of φ(t) is assumed to be uniformly distributed between 0 and 2π.
It should be noted, though, that by virtue of the location of CSN in the network,
it is assumed that φ(t) also captures the channel gain between the PU-TX and
SU-c3 during every observation interval. For the flat fading Rayleigh channel,
the following Jake’s Doppler spectrum is often assumed

Sφ(f) =

{
1

πfd

√
1−(f/fd)2

, |f | ≤ fd

0, |f | > fd

(6)

where f is the frequency shift relative to the carrier frequency. The correspond-
ing autocorrelation coefficient of the observation signal, z(t) under this channel
condition is given by [14]

Rφ(ε) = E[φ(κ) · φ∗(κ − ε)]

= σ2
φJ0(2πfdε) (7)

for lag ε where J0(·) is the zeroth order Bessel function of the first kind. It should be
noted that in the actual deployment for cognitive radio, the idle time of the PU is
long enough so that it is possible to periodically obtain the noisy observation (mea-
surement) of the channel gain, z(t) during the PU’s idle time [15]. The mobile SU
can apply the Kalman filter algorithm described in section 3.3 to obtain an unbi-
ased estimate φ̃ of the true fading channel gain φ which can then be used to update
the cluster centroids at the SBS and also for tracking the temporally dynamic opti-
mal decision boundary. Since our target is to use the Kalman filtering to realize the
best estimate φ̃ of φ, a prediction of the dynamic evolution of the channel gain is
required in addition to the noisy observation z(t). For simplicity, we propose to
use a first order autoregressive model (AR − 1) which has been shown to be suffi-
cient to capture most of the channel tap dynamics in Kalman filter based channel
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tracking related problems [14]. It should be noted too that the AR − 1 model is
widely acceptable as an approximation to the Rayleigh fading channel with Jake’s
Doppler spectrum [16], [17]. The AR − 1 model for approximating the magnitude
of time varying complex channel gain can be expressed as

φAR−1
t = α · φAR−1

t−1 + ζ(t) (8)

where t is the symbol index, 0 < α < 1 and ζ(t) is complex additive white
Gaussian noise with variance σ2

ζ = (1 − α2)σ2
φ. When α = 1, the AR − 1 model

for the dynamic evolution of φ in (8) becomes a random walk model [14]. One
way of obtaining the coefficient of the AR − 1 model, α expressed as

α =
RAR−1

φ [1]

RAR−1
φ [0]

(9)

is by using correlation matching criterion whereby the autocorrelation function
of the temporally correlated fading channel is matched with the autocorrelation
function of the approximating AR model for lags 0 and 1 such that RAR−1

φ [0] =
Rφ[0] and RAR−1

φ [1] = Rφ[1]. However, if the evolution of the dynamic channel
gain is modeled by a higher order AR process, the required coefficients can be
obtained by solving the Yule-Walker set of equations [17].

Remarks: The optimal estimate of the channel gain that is obtained via
the Kalman filter is sufficient to enable the mobile SU avoid frequent and total
dependence on the CSN or other SUs for information regarding the status of
PU-TX and the associated overhead.

3.3 Kalman Filtering Channel Estimation Process

At this point having obtained α, we combine the observation equation (4) and
state evolution equation (8) to form a Kalman filter set of equations as [18]

φ̂t|t−1 = αφ̂t−1|t−1 (10)

Mt|t−1 = α2Mt−1|t−1 + σ2
ζ (11)

Kt =
Mt|t−1

Mt|t−1 + σ2
�

(12)

φ̂t|t = φ̂t|t−1 + Kt(z(t) − αφ̂t|t−1) (13)

Mt|t = (1 − Kt)Mt|t−1 (14)

where Kt is the Kalman gain , Mt|t is the variance of the prediction error and
φ̂t|t is the desired optimal estimate of φt. It is pertinent to mention here that
in the rare event that the PU is active for an unexpectedly prolonged period of
time so that it becomes impossible to obtain an observation, the situation can
be treated as missing observation. Suppose this occurs at a time t, the Kalman
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filtering prediction step described by (10) and (11) remains the same while the
correction step in (13) and (14) will become

φ̂t|t = φ̂t|t−1 (15)

Mt|t = Mt|t−1 (16)

and if the period of missing observation is extremely prolonged, the significance
on the detection of PU status is that the mobile SU loses its ability to track the
fading channel for that period so that the only effect taken into consideration
is the path loss. Consequently, it could be seen that even under this situation
the proposed scheme does not perform worse than the alternative where the
channel tracking is not considered (path loss only model). A simple algorithm
for implementing the proposed enhanced classifier is presented in Algorithm 2.

Algorithm 2. Kalman Filter Enhanced Parametric
Classifier based Spectrum Sensing Algorithm
1. Generate cluster centroids, Ck ∀ k = 1, ...,K at the

SBS using Algorithm 1.
2. Initialize parameters α, Mt−1|t−1 and σ2

ζ at the SUs.
3. if SU begins motion, t ← 1
4. repeat
5. SU obtains z(t) in (4) during PU’s idle interval and

computes φ̂t|t and Mt|t using (10) - (14).
6. Compute new energy samples at SU using φ̂t|t in

step 5 and update cluster centroids at the SBS.
7. Use updated centroids from step 6 to decide the PU

status, H0 or H1.
8. t ← t + 1
9. until SU ends motion
10. end if

4 Simulation Results and Discussion

For simulation purpose, the average power of the fading process is normalized to
unity and the mobile SU under consideration (SU-c3) is assumed to be equipped
with an omnidirectional antenna while traveling at a constant velocity of 6
km/hr. We considered a single PU which operates alternately in the active and
inactive modes, so that the number of clusters, K is 2. The symbol frequency of
the PU is 10 ksymbol/s transmitted at the central carrier frequency of 1.8 GHz.
As the SU travels, to model the effects of the scatterers, we assume that a total
of 128 equal strength rays at uniformly distributed angles of arrival impinge on
the receiving antenna, so we have a normalized Doppler frequency of 1e-3. Dur-
ing training the path loss exponent, d is assumed equals to 3 while the shadow
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Fig. 2. Time varying channel gain (CG) tracked at [a] SNR = 5 dB and [b] SNR =
20 dB.
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Fig. 3. Mean square error performance of the AR-1 based Kalman filter at normalized
Doppler frequency = 1e-3, tracking duration, Ts = 100, 500 and 1000 symbols.

fading component δxpu→xm
su

and the small scale fading factor, γxpu→xm
su

are both
assumed equal to 1, the PU signal is BPSK and transmit power is 1 Watt. The
training energy samples at the SUs are computed using Ns = 1000. When SU
is in motion, the waveform of the temporally correlated Rayleigh fading process
to be tracked is generated using the modified Jake’s model described in [19].
To test the enhanced classifier, we assume the mobile SU-c3’s trajectory is at
an approximately constant average distance to PU-TX throughout the duration
of travel and energy samples for updating the centroids are computed using
Ns = 1000.
In Fig. 2, we show the ability of the Kalman filter in tracking the true channel

gain when the pilot signals are received from the CSN at SNR of 5 dB and 20
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Fig. 4. Average probabilities of detection and false alarm vs SNR, tracking SNR = 5
dB, number of samples, Ns = 1000 and 2000, tracking duration = 1000 symbols.
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Fig. 5. Average probabilities of detection and false alarm vs SNR, tracking SNR = 5
dB, number of samples, Ns = 2000, tracking duration = 1000 symbols.

dB respectively over an observation window of 1000 symbol duration. It could
be seen that as the pilot’s SNR is increased, the performance of the tracker also
improves. The mean square error performance of the AR-1 based Kalman filter
is shown in Fig. 3 at normalized Doppler frequency of 1e-3 where at the same
SNR the tracking error reduces for different duration of tracked pilot symbols
(tracking duration). This shows that the longer the tracking duration the bet-
ter the overall performance of the tracker. It is also seen that the average error
reduces from 5e-2 to 16e-5 with increase in tracking SNR from 0 dB to 40 dB
when the tracking duration, Ts = 1000. The effect of the number of PU’s signal
samples, Ns used for computing the energy features for training, tracking and
testing on the average probabilities of detection (PdAv) and false alarm (PfaAv)
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is shown in Fig. 4. Here, a considerable improvement in PdAv is observed as Ns

is increased from 1000 to 2000.
In Fig. 5, we show the performance of the enhanced classifier in terms of PdAv

and PfaAv and compared this with the path loss only model. Here, the pilot
symbols from the CSN are assumed to be received at the SNR of 5 dB each time
the decision boundary is updated. When the PU’s signal is received at SNR of
20 dB, it could be seen that the enhanced classifier attains PdAv of unity at zero
PfaAv while at PU’s operating SNR of 0 dB, PdAv of about 0.91 is achieved
at PfaAv equals 0.07 in spite of the degradation in sensing path. This is in con-
trast to what obtains from the path loss only model where at the SNR of 20
dB, PdAv is only about 0.83 at a non-zero PfaAv. In summary, a performance
improvement of about 20 percent is observable in the enhanced scheme with only
very slight increase in overall system’s complexity.

5 Conclusion

In this paper, we investigated the use of parametric classifiers in cognitive radio
network for spectrum sensing purpose under slowly varying flat fading conditions
involving mobile secondary users and proposed a novel Kalman filter based chan-
nel estimation technique to enhance their performance. Simulation results show
that by utilizing few collaborating secondary devices, the average correct detec-
tion probability of about 90% can be achieved at 0 dB given 2000 samples of
the PU signal, while keeping the average false alarm probability below 10%.
In the future, we intend to extend this work to the detection of spatial spectrum
hole while considering other realistic cognitive radio deployment scenarios.
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