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Abstract. Software defined radio (SDR) transitions the communication signal 
processing chain from a rigid hardware platform to a user-controlled paradigm, 
allowing unprecedented levels of flexibility in parameter settings. However, 
programming and operating such SDRs have typically required deep knowledge 
of the operating environment and intricate tuning of existing code, which adds 
delay and overhead to the network design. In this work, we describe a bi-
directional transceiver implemented in MATLAB that runs on the USRP plat-
form and allows automated, optimal selection of the parameters of the various 
processing blocks associated with a DBPSK physical layer. Further, we provide 
detailed information on how to create a real-time multi-threaded design wherein 
the same SDR switches between transmitter and receiver functions, using stan-
dard tools like the MATLAB Coder and MEX to speed up the processing steps. 
Our results reveal that link latency and packet reception accuracy are greatly 
improved through our approach, making it a viable first step towards protocol 
design within an easily accessible MATLAB environment. 
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1 Introduction 

Software Defined Radio (SDR) is a means of making radio programmable and multi-
modal. It’s a fundamental building block of dynamic spectrum access, in which the 
radio can sense unused spectrum and dynamically alter its transmission parameters to 
leverage this spectrum [1]. Apart from tunability in frequency, an SDR may also alter 
its transmission power, modulation, specific algorithms for channel estimation and 
packet decoding, among others, to best adapt to the changing environment, thereby 
giving it a “cognitive” ability [6].  

In addition, timing is an important concern that needs to be addressed. To properly 
facilitate communications among nodes, a wireless system must be able to perform 
operations in a specific amount of time, a multiple of some small time unit. For this 
reason, we rely upon a construct that can send and receive a packet in a fixed slot time. 
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1.1 Design Overview 

Our system architecture and operational steps are shown in Fig. 1. In the initialization 
step, the system allows the user to set a set number of parameters for the entire tran-
sceiver chain. We next begin a parameter exploration stage in a simulation-only envi-
ronment. The transmitter and receiver codes are executed with the user-supplied pa-
rameters as constants, and all other possible variations (both in terms of the settings of 
processing blocks as well as entire algorithms themselves) are considered. From this a 
feasible set of parameter options are presented that give 99% accuracy in the packet 
reception rate at the receiver. Note that this is a ‘best case’ scenario, as the actual 
wireless channel will introduce further channel outages. Once the user selects one of 
the possible feasible configurations returned by the search, the code is transferred to 
the actual USRP radios for over-the-air experiments.  

Our approach involves first designing a number of (i) state diagrams to reflect the 
logical and time-dependent operational steps of our system and (ii) block diagrams to 
reflect the sequential order of operations. Furthermore, we structure the MATLAB 
code in a way that enables slot time-synchronized operations. For the eventual im-
plementation, we use MATLAB Coder to generate C code. Finally, we compiled the 
C code into MEX executables that could be called directly from MATLAB on an 
Ubuntu 64-bit platform that serves as the host computer for the USRPs.  

2 Background and Related Work 

2.1 Prior and Existing SDR Programming Tools 

An SDR-based test-bed that implements a full-duplex OFDM physical layer and a 
CSMA link layer along with some strategies for establishing bidirectional communi-
cations is described [5]. It involves MATLAB R2013a, MATLAB Coder on USRP-
N210 and USRP2 hardware. The PHY layer, based on 802.11a, incorporates timing 
recovery, frequency recovery, frequency equalization, and error checking. The CSMA 
link layer involves carrier sensing based on energy detection and stop-and-wait ARQ. 
However, this approach requires additional development efforts for improving speed 
and enabling full-duplex.  

2.2 IEEE 802.11 and 802.11b 

We adopt the IEEE 802.11b physical and medium access control (MAC) layer frame 
structure specifications in our implementation [9], with some modifications. In MAC 
header information, we incorporate the Frame Control, Duration/ID, Address 1 and 2 
(at 16 bits instead of 32), and Sequence Control.  This approach maintains all the 
MAC header information within 64 bits, which for us is one USRP frame. 
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2.3 Differential Binary Phase Shift Keying (DBPSK):  

We use DBPSK as the differential component enables us to recover a binary sequence 
from the phase angles of the received signal at any phase offset, without compensat-
ing for phase. In addition, DBPSK requires only coarse frequency offset compensa-
tion, without any close-loop techniques.  If residual frequency offset is less than 
DBPSK symbol rate, then the bit error rate (BER) approaches theoretical values.   

3 Detailed System Design 

To clearly identify the transmitting and receiving node for a given SDR pair, we use 
the terms designated transmitter (DTx) and designated receiver (DRx). This avoids 
ambiguity in describing a bi-directional communication link, where the transmitter 
must complete its packet transfer and then switch to a receiver role to get the ac-
knowledgement (ACK). Thus, in the subsequent discussion, the DTx transitions be-
tween transmitter and receiver functions alternatively, and vice versa happens for the 
DRx.  

3.1 State Diagrams 

In implementing the CSMA/CA-based protocol at the intersection of the link and 
physical layers, we identify 4 main states (Fig. 2) at the DTx. 

1. Energy Detection State: At START, a new packet arrives, and gets stored in a 
transmit buffer. The DTx begins sensing energy in the channel. The DTx decides 
to move either to a backoff state or to a transmit state depending on whether the 
channel is busy or not. A random amount of time is chosen uniformly from a pro-
gressively increasing time interval. DTx continually senses the channel and only 
when the channel is free, it decrements the backoff time, or freezes it otherwise. 
When the backoff time counts down to zero, the DTx attempts to transmit.  

2. Transmit (Tx) state: In the transmit state, two possibilities exist. The transmission 
is successful (with the reception of an ACK), or transmission is not successful due 
to collision with transmissions (with no reception of ACK).  

3. Receive (Rx) state: As soon as the transmission is completed, the DTx moves to Rx 
state, searching and decoding the PLCP header in the received ACK. The DTx then 
progresses to transmit a new frame and this continues till the last frame is success-
fully transmitted. On the other hand, if no ACK is received, the DTx enters the 
backoff state with an increased backoff time and re-attempts transmission.  

4. End of transmission state: When transmission is successful, the DTx reaches the 
end of transmission (EOT) state. Now, the DTx might remain idle or progress to 
transmit another packet. In the latter case, the DTx re-sets its backoff time and 
moves into the backoff state for that duration. 
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3.2 System Blocks 

Within each of the substates in the state diagrams (Figs. 2 and 3), there are sequential 
operations that need to be performed.  In order to simplify the logic of which opera-
tions must be performed in each state, we define a number of “blocks” to comprise 
the most common operations:  

Table 1. Common Combinations of Operations for a Substate 

RFFE Radio Frequency Front End: Automatic Gain 
Control (AGC), frequency offset estimation 
and compensation, and raised cosine receive 
filter (RCRF) 

PD Preamble Detection: Find SYNC in received 
USRP frames 

DDD Despreading, Demodulation, and Descrambling 
SMSRC Scrambling, Modulation, Spreading, and 

Raised Cosine Transmit Filter (RCTF) 
 
In each substate of DTx state 2 (Tx) and DRx state 2 (Tx ACK), SMSRC is per-

formed prior to each transceiver (send and receive operation).  In DTx substate 3.1 
and DRx substate 1.1, RFFE and PD are performed after each transceive.  In DTx 
substate 3.2 and DRx substates 1.2 to 1.5, RFFE and DDD are performed after each 
transceive.  

4 Algorithms for System Blocks 

4.1 RFFE System Block Algorithms 

The components of this block recover a signal prior to preamble detection. These 
include the automatic gain control (AGC), frequency offset estimation and compensa-
tion, and raised cosine filtering. The ordering of these components is an important 
consideration, and through exhaustive simulations, we found the preceding order to be 
ideal. The AGC algorithm counters attenuation by raising the envelope of the received 
signal to the desired level.  We chose to use a logarithmic loop method, as described 
in equations 1, 2, and 3: [4]  

y(n) = eg(n)x(n) . (1) 

e(n) = ln(A) – ln(z(m)) . (2) 

g(n + 1) = g(n) + K e(n) . (3) 

where x is the input, y is the AGC output, z is the detector output, and K is the AGC 
step size. We use a rectifier detector method, as described in equation 4: [4]  
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z(m) = (1/N) ∑n=mN |y(n)| (4) 

where N is the AGC update rate.  
To accurately estimate the frequency offset between the receiver and the transmit-

ter, we chose to use an FFT-based method that finds the frequency that maximizes the 
FFT of the squared signal:  

foffset = argmaxf ℱ{x2} (5) 

where ℱ denotes the Fast Fourier Transform (FFT).  

 

 

Fig. 4. The Three Stages of Preamble Detection: Coarse, Demodulated & SFD 
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Preamble detection (PD) is performed in three stages, and we introduce a novel me-
thod that results in high accuracy.  In the first stage, we perform a cross-correlation of 
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accurately as possible. However, this accuracy involves a tradeoff in the computation-
al time.  

4.3 Parameter Choices 

There are a number of design parameters that must be carefully chosen (see Table 2), 
which are obtained through the initialization step described in section 1.   

Table 2. Parameter Choices 

Param Block Description 
Value/ 
Range 

Fixed/ 
Tunable 

Ri, Rd USRP 
USRP Interpolation / 
Decimation Factor 

500 Fixed 

Lf USRP USRP Frame Length 64 bits Fixed 

Lp Frame 
#Octets per 802.11b 
Frame Payload 

2012 
octets 

Fixed 

K RFFE AGC Step Size 0.1 – 10 Tunable 

N RFFE AGC Update Period 
128 –
1408 

Tunable 

Δf RFFE 
Frequency Resolu-
tion 

1 – 16 
Hz 

Tunable 

4.3.1   Constant Parameters for USRP & 802.11b Frame 
We recognize several parameters as being fixed because they cannot change during 
the course of a transception.  The USRP N210 analog-to-digital converter (ADC) 
operates at a fixed rate of 100 MHz.  The USRP interpolation-decimation rates con-
trol the factor by which we would like to slow down the rate of transmitting and rece-
iveing frames.  For example, setting Ri and Rd to 500 ensures that a sample is 
processed every 500/100x106=5 μs. The USRP frame length should be minimized to 
make quick decisions with a small number of samples or bits. The number of octets 
per 802.11b frame payload should be maximized to decrease the header overhead.  

4.3.2   Tunable Parameters for RFFE Block 
Tunable parameters can be changed during the course of a transception.  One example 
is the AGC step size, given by K in equation (3), which should be set to higher values 
for higher levels of attenuation or set low for lower attenuations.  Another example is 
the AGC update period, which controls how quickly a received signal’s envelope is 
able to converge to the desired level. Finally, the frequency offset estimation compo-
nent’s Frequency Resolution setting is an important design consideration. Since it is 
inversely proportional to the FFT length, a lower frequency resolution gives more 
accurate offset estimates, but also takes longer to compute.  
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5.1 Communications System Toolbox USRP Support Package 

We chose to use Communications System Toolbox System objects for the large part 
of our design [4]. The comm.AGC System object provides two Detector methods and 
two Loop methods whose functionality can be contrasted for received signals with 
varying attenuations. In addition, the PSK coarse frequency offset estimator allows us 
to shift between FFT-based options. These System objects facilitate easy generation of 
C code using MATLAB Coder. Here, the comm.SDRuTransmitter System object puts 
a frame on the USRP transmit buffer, and comm.SDRuReceiver gets a frame from the 
USRP receive buffer.  However, this approach has some disadvantages; e.g., the 
frame length must now become fixed. Another issue is that running the step methods 
for these System objects is that they’re single-threaded, whereas the USRP N210 is 
multi-threaded. On a single clock cycle, this allows to get a frame from the receive 
buffer or put a frame on the transmit buffer, but not both. Therefore, attempting to 
write MATLAB code that runs a put and get sequentially will result in an exponen-
tially increasing delay, and eventually result in an overflow of the USRP buffer. To 
avoid this delay, we plan to explore parallelism and make the transceive function 
described in section 4.3 operate in a multi-threaded manner.  We first generate C code 
from the MATLAB function using MATLAB Coder.  

5.2 MATLAB Coder 

MATLAB Coder is used for generating C code. In order to make the MATLAB code 
acceptable for C code generation, a number of actions must be taken beforehand.  All 
variables are given a static size and type (including real or complex) that does not 
change in the course of the program. Since System objects cannot be passed into MEX 
functions, all System objects are declared as persistent variables.  The first call to each 
function, tests whether the persistent variable is empty, and initializes each System 
object if true.  The function code for the transceive, RFFE, DDD, and SMSRC blocks 
are all prepared in this same manner. We then compile the C code for each major 
block into a MATLAB executable (MEX) file, which can be called directly from 
MATLAB.   

6 Results 

The transceive function is at the core of our system design, since its ability to simul-
taneously receive and transmit a USRP frame at a near-constant time interval is key to 
our goal of slot time-synchronized operations. To compare its accuracy, we ran 2,000 
time trials to see how long the transceive function takes from start to finish, and how 
this time difference changes over the course of a longer data bitstream.  The timing 
using a transceive function in interpreted MATLAB and using C code compiled into a 
MEX are compared in Fig. 6. The timing exhibits some deviation: The function in-
itially overshoots the expected time per USRP frame; on every subsequent iteration it 
then undershoots to make up for the time difference. Note that less undershooting is 
needed to compensate for initial overshoots, because the overshoot amounts have 
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Whereas the change to the frequency resolution parameter affects timing directly, 
the AGC parameters control how well a signal can be recovered under various attenu-
ation levels. By performing a parameter sweep with different values for these parame-
ters, we determined that a step size of 1 and an update period of 1408 minimizes 
frame misdetection.  

7 Conclusion 

We conclude that building our design around the concept of slot time-synchronized 
operations results in a system that adheres to our desired frame time and is able to 
reconfigure parameter values as needed. Using MEX is essential for realizing timing 
with little deviation from this frame time.  In addition, using MEX is beneficial for 
improving the speed consistency of our system blocks, most notably RFFE, which can 
vary its frequency resolution parameter.  As part of future work, we will continue 
towards the complete design of the MAC functions as well as implement our tran-
sceiver system design on the Xilinx Zynq-7000 All-Programmable System-on-Chip 
(APSoC).  
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