
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
M. Weichold et al. (Eds.): CROWNCOM 2015, LNICST 156, pp. 164–175, 2015.
DOI: 10.1007/978-3-319-24540-9_13

Implementing a MATLAB-Based Self-configurable
Software Defined Radio Transceiver

Benjamin Drozdenko(), Ramanathan Subramanian,
Kaushik Chowdhury, and Miriam Leeser

Department of Electrical and Computer Engineering, Northeastern University,
360 Huntington Ave, Boston, MA 02115, USA

{bdrozdenko,rsubramanian,mel}@coe.neu.edu, krc@ece.neu.edu

Abstract. Software defined radio (SDR) transitions the communication signal
processing chain from a rigid hardware platform to a user-controlled paradigm,
allowing unprecedented levels of flexibility in parameter settings. However,
programming and operating such SDRs have typically required deep knowledge
of the operating environment and intricate tuning of existing code, which adds
delay and overhead to the network design. In this work, we describe a bi-
directional transceiver implemented in MATLAB that runs on the USRP plat-
form and allows automated, optimal selection of the parameters of the various
processing blocks associated with a DBPSK physical layer. Further, we provide
detailed information on how to create a real-time multi-threaded design wherein
the same SDR switches between transmitter and receiver functions, using stan-
dard tools like the MATLAB Coder and MEX to speed up the processing steps.
Our results reveal that link latency and packet reception accuracy are greatly
improved through our approach, making it a viable first step towards protocol
design within an easily accessible MATLAB environment.

Keywords: Software defined radio · DBPSK · MATLAB · MATLAB coder ·
MEX · Reconfigurable computing

1 Introduction

Software Defined Radio (SDR) is a means of making radio programmable and multi-
modal. It’s a fundamental building block of dynamic spectrum access, in which the
radio can sense unused spectrum and dynamically alter its transmission parameters to
leverage this spectrum [1]. Apart from tunability in frequency, an SDR may also alter
its transmission power, modulation, specific algorithms for channel estimation and
packet decoding, among others, to best adapt to the changing environment, thereby
giving it a “cognitive” ability [6].

In addition, timing is an important concern that needs to be addressed. To properly
facilitate communications among nodes, a wireless system must be able to perform
operations in a specific amount of time, a multiple of some small time unit. For this
reason, we rely upon a construct that can send and receive a packet in a fixed slot time.

 Implementing

In this paper, we propos
ing problems associated wit

• Complete knowledge of
knowledge in all aspects
gain control) and comm
detection), we allow the
based on need and com
ecuted in the initializatio
optimal settings for the r

• SDR processing latency:
typically slow, as comp
must a pair of data exch
recover from them), but
This constraint introduce
sceiver needs to be optim
design incorporates time
generation, which consid

• Bi-directional communi
which is our goal, requi
such that the transmitter
diately on completing it
complete data frames, ou
smaller chunks at a time
set to allow for the additi

g a MATLAB-Based Self-configurable SDR Transceiver

e a design approach that allows a user to solve the follo
th SDRs.

the processing chain: Instead of demanding a deep u
s of signal processing (frequency compensation, autom

munication (modulation/demodulation, bit scrambling, er
e user to only insert a subset of parameters in MATL

mfort level. We set up an optimization program that is
on state, allowing an exhaustive search and detection of
remaining parameters.
: A general problem in SDRs is that software processin
pared to hardware-executed instructions. Thus, not o
hanging SDRs exhibit minimal packet errors (or be able

also be able to complete the processing steps in real ti
es complex design tradeoffs where each block of the tr
mized for minimum computational time at both ends. O

e optimizations enabled by MATLAB Coder and MEX
derably lowers processing time.
ication challenges: Bi-directional data communicati
ires precise time synchronization in a SDR environm
r is ready to receive incoming acknowledgements imm
s one-way data transfer. While the link layer accounts
ur design prefers a smaller USRP frame length to proc

e. Thus, the link layer countdown timers must be carefu
ional lag in lower layer processing of the SDR.

Fig. 1. System Architecture

165

ow-

ser-
matic

rror
LAB

ex-
f the

ng is
only
e to
me.
ran-
Our
file

ion,
ment,

me-
for

cess
ully

166 B. Drozdenko et al.

1.1 Design Overview

Our system architecture and operational steps are shown in Fig. 1. In the initialization
step, the system allows the user to set a set number of parameters for the entire tran-
sceiver chain. We next begin a parameter exploration stage in a simulation-only envi-
ronment. The transmitter and receiver codes are executed with the user-supplied pa-
rameters as constants, and all other possible variations (both in terms of the settings of
processing blocks as well as entire algorithms themselves) are considered. From this a
feasible set of parameter options are presented that give 99% accuracy in the packet
reception rate at the receiver. Note that this is a ‘best case’ scenario, as the actual
wireless channel will introduce further channel outages. Once the user selects one of
the possible feasible configurations returned by the search, the code is transferred to
the actual USRP radios for over-the-air experiments.

Our approach involves first designing a number of (i) state diagrams to reflect the
logical and time-dependent operational steps of our system and (ii) block diagrams to
reflect the sequential order of operations. Furthermore, we structure the MATLAB
code in a way that enables slot time-synchronized operations. For the eventual im-
plementation, we use MATLAB Coder to generate C code. Finally, we compiled the
C code into MEX executables that could be called directly from MATLAB on an
Ubuntu 64-bit platform that serves as the host computer for the USRPs.

2 Background and Related Work

2.1 Prior and Existing SDR Programming Tools

An SDR-based test-bed that implements a full-duplex OFDM physical layer and a
CSMA link layer along with some strategies for establishing bidirectional communi-
cations is described [5]. It involves MATLAB R2013a, MATLAB Coder on USRP-
N210 and USRP2 hardware. The PHY layer, based on 802.11a, incorporates timing
recovery, frequency recovery, frequency equalization, and error checking. The CSMA
link layer involves carrier sensing based on energy detection and stop-and-wait ARQ.
However, this approach requires additional development efforts for improving speed
and enabling full-duplex.

2.2 IEEE 802.11 and 802.11b

We adopt the IEEE 802.11b physical and medium access control (MAC) layer frame
structure specifications in our implementation [9], with some modifications. In MAC
header information, we incorporate the Frame Control, Duration/ID, Address 1 and 2
(at 16 bits instead of 32), and Sequence Control. This approach maintains all the
MAC header information within 64 bits, which for us is one USRP frame.

 Implementing a MATLAB-Based Self-configurable SDR Transceiver 167

2.3 Differential Binary Phase Shift Keying (DBPSK):

We use DBPSK as the differential component enables us to recover a binary sequence
from the phase angles of the received signal at any phase offset, without compensat-
ing for phase. In addition, DBPSK requires only coarse frequency offset compensa-
tion, without any close-loop techniques. If residual frequency offset is less than
DBPSK symbol rate, then the bit error rate (BER) approaches theoretical values.

3 Detailed System Design

To clearly identify the transmitting and receiving node for a given SDR pair, we use
the terms designated transmitter (DTx) and designated receiver (DRx). This avoids
ambiguity in describing a bi-directional communication link, where the transmitter
must complete its packet transfer and then switch to a receiver role to get the ac-
knowledgement (ACK). Thus, in the subsequent discussion, the DTx transitions be-
tween transmitter and receiver functions alternatively, and vice versa happens for the
DRx.

3.1 State Diagrams

In implementing the CSMA/CA-based protocol at the intersection of the link and
physical layers, we identify 4 main states (Fig. 2) at the DTx.

1. Energy Detection State: At START, a new packet arrives, and gets stored in a
transmit buffer. The DTx begins sensing energy in the channel. The DTx decides
to move either to a backoff state or to a transmit state depending on whether the
channel is busy or not. A random amount of time is chosen uniformly from a pro-
gressively increasing time interval. DTx continually senses the channel and only
when the channel is free, it decrements the backoff time, or freezes it otherwise.
When the backoff time counts down to zero, the DTx attempts to transmit.

2. Transmit (Tx) state: In the transmit state, two possibilities exist. The transmission
is successful (with the reception of an ACK), or transmission is not successful due
to collision with transmissions (with no reception of ACK).

3. Receive (Rx) state: As soon as the transmission is completed, the DTx moves to Rx
state, searching and decoding the PLCP header in the received ACK. The DTx then
progresses to transmit a new frame and this continues till the last frame is success-
fully transmitted. On the other hand, if no ACK is received, the DTx enters the
backoff state with an increased backoff time and re-attempts transmission.

4. End of transmission state: When transmission is successful, the DTx reaches the
end of transmission (EOT) state. Now, the DTx might remain idle or progress to
transmit another packet. In the latter case, the DTx re-sets its backoff time and
moves into the backoff state for that duration.

168 B. Drozdenko et al.

Fig. 2. Stat

Likewise, for the DRx we i
perform energy detection.

Fig. 3. St

1. Receive (Rx) state: Whe
the PHY and MAC head
tracting the last set of pa

2. Tx ACK: The DRx send
been successfully receive

3. DIFS: The DRx waits fo
a new frame.

te Chart for the Designated Transmitter (DTx)

identified 3 main states.Unlike the DTx, the DRx does

ate Chart for the Designated Receiver (DRx)

en the DRx succeeds in detecting the preamble, it deco
der and then progresses to extract the payload. When
yload bits, FCS is obtained and checked.

ds out an ACK to the DRx when all the payload bits h
ed.

or a fixed interval of time before moving to the reception

not

odes
ex-

have

n of

 Implementing a MATLAB-Based Self-configurable SDR Transceiver 169

3.2 System Blocks

Within each of the substates in the state diagrams (Figs. 2 and 3), there are sequential
operations that need to be performed. In order to simplify the logic of which opera-
tions must be performed in each state, we define a number of “blocks” to comprise
the most common operations:

Table 1. Common Combinations of Operations for a Substate

RFFE Radio Frequency Front End: Automatic Gain
Control (AGC), frequency offset estimation
and compensation, and raised cosine receive
filter (RCRF)

PD Preamble Detection: Find SYNC in received
USRP frames

DDD Despreading, Demodulation, and Descrambling
SMSRC Scrambling, Modulation, Spreading, and

Raised Cosine Transmit Filter (RCTF)

In each substate of DTx state 2 (Tx) and DRx state 2 (Tx ACK), SMSRC is per-

formed prior to each transceiver (send and receive operation). In DTx substate 3.1
and DRx substate 1.1, RFFE and PD are performed after each transceive. In DTx
substate 3.2 and DRx substates 1.2 to 1.5, RFFE and DDD are performed after each
transceive.

4 Algorithms for System Blocks

4.1 RFFE System Block Algorithms

The components of this block recover a signal prior to preamble detection. These
include the automatic gain control (AGC), frequency offset estimation and compensa-
tion, and raised cosine filtering. The ordering of these components is an important
consideration, and through exhaustive simulations, we found the preceding order to be
ideal. The AGC algorithm counters attenuation by raising the envelope of the received
signal to the desired level. We chose to use a logarithmic loop method, as described
in equations 1, 2, and 3: [4]

y(n) = eg(n)x(n) . (1)

e(n) = ln(A) – ln(z(m)) . (2)

g(n + 1) = g(n) + K e(n) . (3)

where x is the input, y is the AGC output, z is the detector output, and K is the AGC
step size. We use a rectifier detector method, as described in equation 4: [4]

170 B. Drozdenko et al.

z(m) = (1/N) ∑n=mN |y(n)| (4)

where N is the AGC update rate.
To accurately estimate the frequency offset between the receiver and the transmit-

ter, we chose to use an FFT-based method that finds the frequency that maximizes the
FFT of the squared signal:

foffset = argmaxf ℱ{x2} (5)

where ℱ denotes the Fast Fourier Transform (FFT).

Fig. 4. The Three Stages of Preamble Detection: Coarse, Demodulated & SFD

4.2 PD System Block Algorithms

Preamble detection (PD) is performed in three stages, and we introduce a novel me-
thod that results in high accuracy. In the first stage, we perform a cross-correlation of
the received complex data after raised cosine filtering to get an estimate of where the
preamble starts, to give the so called synchronization delay. In the second stage, we
compare the expected scrambled preamble to the demodulated bit stream. If they are
not equal, we correlate a window of demodulated bit stream samples to the left and
right of the maximum correlation index to fine-tune the synchronization delay. Final-
ly, in stage three, we look for the Start Frame Delimiter (SFD) immediately after the
preamble in the descrambled bit stream. If it is not in the expected place, we correlate
a window of descrambled frame samples to the left and right to further fine-tune the
synchronization delay (Fig. 4). Having multiple correlation stages ensures that we are
able to find the preamble, and hence the start of the PLCP header information, as

St
ag

e
1

St
ag

e
2

St
ag

e
3

 Implementing a MATLAB-Based Self-configurable SDR Transceiver 171

accurately as possible. However, this accuracy involves a tradeoff in the computation-
al time.

4.3 Parameter Choices

There are a number of design parameters that must be carefully chosen (see Table 2),
which are obtained through the initialization step described in section 1.

Table 2. Parameter Choices

Param Block Description
Value/
Range

Fixed/
Tunable

Ri, Rd USRP
USRP Interpolation /
Decimation Factor

500 Fixed

Lf USRP USRP Frame Length 64 bits Fixed

Lp Frame
#Octets per 802.11b
Frame Payload

2012
octets

Fixed

K RFFE AGC Step Size 0.1 – 10 Tunable

N RFFE AGC Update Period
128 –
1408

Tunable

Δf RFFE
Frequency Resolu-
tion

1 – 16
Hz

Tunable

4.3.1 Constant Parameters for USRP & 802.11b Frame
We recognize several parameters as being fixed because they cannot change during
the course of a transception. The USRP N210 analog-to-digital converter (ADC)
operates at a fixed rate of 100 MHz. The USRP interpolation-decimation rates con-
trol the factor by which we would like to slow down the rate of transmitting and rece-
iveing frames. For example, setting Ri and Rd to 500 ensures that a sample is
processed every 500/100x106=5 μs. The USRP frame length should be minimized to
make quick decisions with a small number of samples or bits. The number of octets
per 802.11b frame payload should be maximized to decrease the header overhead.

4.3.2 Tunable Parameters for RFFE Block
Tunable parameters can be changed during the course of a transception. One example
is the AGC step size, given by K in equation (3), which should be set to higher values
for higher levels of attenuation or set low for lower attenuations. Another example is
the AGC update period, which controls how quickly a received signal’s envelope is
able to converge to the desired level. Finally, the frequency offset estimation compo-
nent’s Frequency Resolution setting is an important design consideration. Since it is
inversely proportional to the FFT length, a lower frequency resolution gives more
accurate offset estimates, but also takes longer to compute.

172 B. Drozdenko et al.

4.4 Code Structure

Any 802.11-style wireless
perform operations based o
slot-synchronized operation
must be able to wait for a b
ability to perform time-sen
ing. For this reason, we rel
tion performs two actions:
fers at fixed time intervals
fined in Section 4.2, we can
gram while loop so that it c
functions to prepare data to
as shown in the following p

while ~endOfTransmi
 if (state==Tx)
 data2Tx = proce
 end
 dataRxd = transce
 if (state==Rx)
 processRxdData
 end
end

A slot time is defined as
make a decision. Our syst
functions we define for pro
frame to transmit must com

5 Experiments

We use the USRP N210 p
Section 4.2, connect to a PC
[2]. We use the Ubuntu O
queues. This action ensures
work Rx/Tx buffers. We als
give high thread scheduling

F

transceiver implementation must have the availability
n some slot-based timing. We define this capability as t
ns. For example, before sending a data frame, a stat

backoff (BO) period. Interpreted MATLAB alone lacks
nsitive operations in this manner, even with actively w
ly solely on the USRP for our timing. Our transceive fu
it gets a frame from, and puts a frame into the USRP b

s. Using the value for USRP interpolation/decimation
n calculate the slot time. Then, we can write our main p
calls the transceive function once per loop, running hel
 transmit or process received data based on the active st

program code:

ission

essData2Tx();

eive(data2Tx);

(dataRxd);

s the smallest possible unit of time in which our SDR
tem sends or receives a data frame every slot time. T
ocessing the received data frame or preparing a new d

mplete in less than a slot time to ensure timing accuracy.

platform as it allows us to define the parameters listed
C host using a gigabit Ethernet cable, and to use MATL
OS set with maximum send and receive buffer sizes
s that there is enough kernel memory set aside for the n
so set the maximum real-time priority for the usrp group

g priority. The overall setup is given in Fig. 5.

Fig. 5. Transceiver Hardware Setup

y to
time
tion
the

wait-
unc-
buf-
de-

pro-
lper
tate,

can
The
data

d in
LAB

for
net-
p to

 Implementing a MATLAB-Based Self-configurable SDR Transceiver 173

5.1 Communications System Toolbox USRP Support Package

We chose to use Communications System Toolbox System objects for the large part
of our design [4]. The comm.AGC System object provides two Detector methods and
two Loop methods whose functionality can be contrasted for received signals with
varying attenuations. In addition, the PSK coarse frequency offset estimator allows us
to shift between FFT-based options. These System objects facilitate easy generation of
C code using MATLAB Coder. Here, the comm.SDRuTransmitter System object puts
a frame on the USRP transmit buffer, and comm.SDRuReceiver gets a frame from the
USRP receive buffer. However, this approach has some disadvantages; e.g., the
frame length must now become fixed. Another issue is that running the step methods
for these System objects is that they’re single-threaded, whereas the USRP N210 is
multi-threaded. On a single clock cycle, this allows to get a frame from the receive
buffer or put a frame on the transmit buffer, but not both. Therefore, attempting to
write MATLAB code that runs a put and get sequentially will result in an exponen-
tially increasing delay, and eventually result in an overflow of the USRP buffer. To
avoid this delay, we plan to explore parallelism and make the transceive function
described in section 4.3 operate in a multi-threaded manner. We first generate C code
from the MATLAB function using MATLAB Coder.

5.2 MATLAB Coder

MATLAB Coder is used for generating C code. In order to make the MATLAB code
acceptable for C code generation, a number of actions must be taken beforehand. All
variables are given a static size and type (including real or complex) that does not
change in the course of the program. Since System objects cannot be passed into MEX
functions, all System objects are declared as persistent variables. The first call to each
function, tests whether the persistent variable is empty, and initializes each System
object if true. The function code for the transceive, RFFE, DDD, and SMSRC blocks
are all prepared in this same manner. We then compile the C code for each major
block into a MATLAB executable (MEX) file, which can be called directly from
MATLAB.

6 Results

The transceive function is at the core of our system design, since its ability to simul-
taneously receive and transmit a USRP frame at a near-constant time interval is key to
our goal of slot time-synchronized operations. To compare its accuracy, we ran 2,000
time trials to see how long the transceive function takes from start to finish, and how
this time difference changes over the course of a longer data bitstream. The timing
using a transceive function in interpreted MATLAB and using C code compiled into a
MEX are compared in Fig. 6. The timing exhibits some deviation: The function in-
itially overshoots the expected time per USRP frame; on every subsequent iteration it
then undershoots to make up for the time difference. Note that less undershooting is
needed to compensate for initial overshoots, because the overshoot amounts have

174 B. Drozdenko et al.

reduced significantly. The
control over its timing.

Fig. 6. Transceive

The timing of the RFFE
meter in interpreted MATL
We see that there is a gene
block with increase in frequ
average execution time u
because it needs to use ve
deviation is always significa
enforcing consistent RFFE e
operations.

Fig. 7. RFFE b

reason for this is that the MATLAB executable has m

e function timing for interpreted MATLAB vs. MEX

 block for various values of the frequency resolution pa
LAB and C code compiled into a MEX is shown in Fig
eral decrease in the average execution time for the RF
uency resolution. For low frequency resolution values,

using MEX is longer than using interpreted MATL
ry large FFT lengths. However, in all cases, the stand
antly less. Thus, MEX is a better option for the purpose
execution times, which is required for slot time-synchroni

lock timing using interpreted MATLAB and MEX

more

ara-
g. 7.
FFE

the
LAB
dard
e of
ized

 Implementing a MATLAB-Based Self-configurable SDR Transceiver 175

Whereas the change to the frequency resolution parameter affects timing directly,
the AGC parameters control how well a signal can be recovered under various attenu-
ation levels. By performing a parameter sweep with different values for these parame-
ters, we determined that a step size of 1 and an update period of 1408 minimizes
frame misdetection.

7 Conclusion

We conclude that building our design around the concept of slot time-synchronized
operations results in a system that adheres to our desired frame time and is able to
reconfigure parameter values as needed. Using MEX is essential for realizing timing
with little deviation from this frame time. In addition, using MEX is beneficial for
improving the speed consistency of our system blocks, most notably RFFE, which can
vary its frequency resolution parameter. As part of future work, we will continue
towards the complete design of the MAC functions as well as implement our tran-
sceiver system design on the Xilinx Zynq-7000 All-Programmable System-on-Chip
(APSoC).

Acknowledgments. This work is supported by MathWorks under the Development-
Collaboration Research Grant A#: 1-945815398. We would like to thank Mike McLernon and
Ethem Sozer for their continued support on this project.

References

1. Akyildiz, I.F., Mohanty, S., Vuran, M.C., Won-Yeol, V.: NeXt generation/dynamic spec-
trum access/cognitive radio wireless networks: A survey. Computer Networks 500(13), Sep-
tember 2006

2. Ettus Research, Inc.: USRP N200/N210 Networked Series
3. IEEE Std 802.11-2009: Part 11: Wireless LAN Medium Access Control (MAC) and Physi-

cal Layer (PHY) Specifications
4. MathWorks Documentation: Communications System Toolbox Documentation. USRP

Support Package from Communications System Toolbox
5. Collins, T.: Multi-Node Software Defined Radio TestBed, NEWSDR 2014
6. Mitola III, J., Maguire Jr., G.Q.: Cognitive radio: making software radios more personal.

IEEE Personal Communications Magazine 6(4), 13–18 (1999)
7. Luise, M., Reggiannini, R.: Carrier frequency recovery in all-digital modems for

burst-mode transmissions. IEEE Trans. Commun. 43(3), 1169–1178 (1995)

	Implementing a MATLAB-Based Self-configurable Software Defined Radio Transceiver
	1 Introduction
	1.1 Design Overview

	2 Background and Related Work
	2.1 Prior and Existing SDR Programming Tools
	2.2 IEEE 802.11 and 802.11b
	2.3 Differential Binary Phase Shift Keying (DBPSK):

	3 Detailed System Design
	3.1 State Diagrams
	3.2 System Blocks

	4 Algorithms for System Blocks
	4.1 RFFE System Block Algorithms
	4.2 PD System Block Algorithms
	4.3 Parameter Choices
	4.3.1 Constant Parameters for USRP & 802.11b Frame
	4.3.2 Tunable Parameters for RFFE Block
	4.4 Code Structure

	5 Experiments
	5.1 Communications System Toolbox USRP Support Package
	5.2 MATLAB Coder

	6 Results
	7 Conclusion
	References

