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Abstract. In this paper, we study the problem of cyclostationary spec-
trum sensing in cognitive radio networks based on cyclic properties of lin-
ear modulations. For this purpose, we use fractional order of observations
in cyclic autocorrelation function (CAF). We derive the generalized likeli-
hood ratio (GLR) for designing the detector. Therefore, the performance
of this detector has been improved compared to previous detectors. We
also find optimum value of the fractional order of observations in additive
Gaussian noise. The exact performance of the GLR detector is derived
analytically as well. The simulation results are presented to evaluate the
performance of the proposed detector and compare its performance with
their counterpart, so to illustrate the impact of the optimum value of
fractional order over performance improvement of these detectors.

Keywords: Cognitive radio · Spectrum sensing · Cyclostationary
signal · Fractional low order

1 Introduction

Increasing need for bandwidth in telecommunication and limited environmental
resources lead us to take advantage of other system’s spectrum. In spectrum
sensing, cognitive radio networks monitor the status of the frequency spectrum
by observing their surroundings to exploit the unused frequency bands. There
are several methods of spectrum sensing which need different and extra informa-
tion about the primary user (PU) signal, such as accuracy and implementation
complexity [1]. The most important methods are matched filter, energy detec-
tion, eigenvalues-based detection, detection based on the covariance matrix and
cyclostationary based detection.

Among those, cyclostationary-based detector is one of the best way of spec-
trum sensing in terms of performance and robustness against environmental
parameters like ambient noise. In the context of cyclostationary-based spectrum

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
M. Weichold et al. (Eds.): CROWNCOM 2015, LNICST 156, pp. 3–16, 2015.
DOI: 10.1007/978-3-319-24540-9 1



4 H. Hashemi et al.

sensing, in [2,3], this detector has been investigated for one specific cyclic fre-
quency. The authors in [2] have reviewed collaborative case and have demon-
strated channel fading effects in its performance. The authors in [4–6] have used
multiple cyclic frequencies for detection of PU signal and improvement the detec-
tion performance has been shown. Furthermore, several research such as [2,7,8]
have been conducted where the benefit of using cyclostationary-based detectors
in the collaborative systems are investigated. It is known that cyclostationary-
based detectors have poor performance for situations where the environment is
impulsive noisy and to compensate, the CAF with fractional order of observa-
tions are used [9–11]. In these works, the problem of fractional order of observa-
tions, is investigated in Alpha stable noisy environment.

In this paper, we provide a spectrum sensing method which benefits of PU sig-
nal’s cyclostationary property and improve performance of cyclostationary-based
detector in different practical cases and noise models. We suggest using fractional
order of observed signals. We assume an additive Gaussian noise, thought the
results could be extended for the other model of ambient noises. For this pur-
pose, we formulate the spectrum sensing as a binary hypothesis testing problem
and then derive the corresponding GLR detectors for the different practical sce-
narios. Then we investigate the optimum value of fractional order which results
in best performance in related cases.

The remaining of the paper is organized as follows. In Section 2, we introduce
the system model and the assumptions. In Section 3, we derive cyclostationary-
based detectors in different scenarios for signal and noise prameters. In Section
4, we study the performance of the proposed detectors. The optimization of
the performance of the proposed detectors is presented in Section 6. The sim-
ulation results are provided in Section 7 and finally Section 8 summarizes the
conclusions.

Notation: Lightface letters denote scalars. Boldface lower-and upper-case letters
denote column vectors and matrices, respectively. x(.) is the entries and xi is
sub-vector of vector x. The inverse of matrix A is A−1. The M × M identity
matrix is IM . Superscripts ∗, T and H are the complex conjugate, transpose and
Hermitian (conjugate transpose), respectively. E[.] is the statistical expectation.
N (m,P) denotes Gaussian distribution with mean m and covariance matrix P.
Q(x) is Q-function Q(x) = 1√

2π

∫ ∞
x

exp
(

−u2

2

)
du.

2 System Model

Suppose a cognitive radio network in which PU and secondary user (SU)
equipped with a single antenna. For presentation, it’s assumed that the PU
signal is transmitted with linear modulation such that

s(t) =
∞∑

i=−∞
dip(t − iTP), (1)
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where di is the PU data and p(t) is shaping pulse in the PU transmitter. We
suppose PU data, di, is a random variable with zero-mean Gaussian distribu-
tion, N (0, σ2

s). For the shaping pulse, a rectangular pulse with unit amplitude
and time spread TP is assumed. Received signal in SU has been sampled with
sampling rate of fs = 1

Ts
. The wireless channel between PU transmitter and

SU is assumed to be a flat fading channel with additive Gaussian noise and the
channel gain. The random variable w(n) ∼ N (0, σ2

w) denotes noise samples and
we assume noise and PU signal samples are mutually independent. Therefore
observed signal samples in SU under two hypotheses can be shown as follows,

{
H0 : x(n) = w(n),
H1 : x(n) = hs(n) + w(n),

(2)

where h is channel gain between the PU and SU antennas. It is assumed that the
channel gain is constant during the sensing time. CAF for the SU observed signal
samples is defined based on the correlation between samples and their complex
conjugate with lag time τi < TP. The CAF for fractional order is defined as,

Rα
xx∗(τi) =

1
N

N−1∑

n=0

xp(n)x∗p(n + τi)e−j2παn, (3)

where p is fractional order 0 < p < 1, α ∈ { k
TP

, k = 1, 2, ...} is cyclic frequency
for linear modulation which is assumed to be known to SU and τi, i = 1, . . . , Ms
is M lag times where the CAF is calculated.

We introduce vector rα
xx∗ consisting of CAF real parts for M different lag

times as,

rα
xx∗ = [Re(Rα

xx∗(τ1)), ..., Re(Rα
xx∗(τM ))]T . (4)

By considering central limit theorem (CLT), since the CAF is summation of
N random variables, according to [12], for sufficiently large number of observa-
tion samples, each member of vector rα

xx∗ has Gaussian distribution . Thus, we
have,

rα
xx∗ ∼

{
N (µ0,Σ0) for H0,

N (µ1,Σ1) for H1.
(5)

where µ0 and µ1 can be calculated for any given p. In Section 5 for the
known noise and signal variance these values are computed.

3 Cyclostationary-Based Detectors

SUs use different detection methods in spectrum sensing to make decision about
PU’s presence. In this section, we assume SU determines PUs situation based
on cyclostationary properties of PU signal in which the SU has knowledge about
cyclic frequency of observation signal by consideration of different scenarios.
These scenarios are investigated in following subsections.
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3.1 Known Signal and Noise Variance

Since in (5) covariance matrices under two hypotheses are unknown, we have
to use their estimations to construct the likelihood ratio (LR) function which
results in a GLR detector. Covariance matrices estimation have been calculated
under two hypotheses in Appendix. It has been shown that both of the covariance
matrices have same estimation. Thus, Σ̂0 = Σ̂1 = Σ. Now for the LR function,
we have,

LR(rα
xx∗) = exp{µT

0 Σ−1µ0 − µT
1 Σ−1µ1 + 2rαT

xx∗Σ−1(µ1 − µ0)}
H1

≷
H0

η. (6)

By incorporating the constant terms into threshold and taking logarithm in (6),
we obtain,

Tsub1 = rαT

xx∗Σ−1(µ1 − µ0)
H1

≷
H0

η1, (7)

where µ0 and µ1 can be calculated. It can be seen that detector is the weighted
summation of CAF real part for different lag times τi, i = 1, 2, ...,M .

3.2 Known Noise Variance, Unknown Signal Variance

The mean of (4), when SU has just knowledge about noise variance, can be derived
under null hypothesis according to section 5.1. But as mentioned, signal variance
is unknown and thus, mean of the CAF real parts under alternative hypothesis
cannot be calculated. In this situation, we can use Hotelling-test [13,17], because
we definitely know that the mean under two hypotheses are different. Sup-
pose, L > M + 1 given vector rα

xx∗ in a vector are considered together,
r = [rα

xx∗(1), rα
xx∗(2), ..., rα

xx∗(L)]. Statistical distribution of this vector under
hypothesis Hj , j = 0, 1 can be written in the form below,

f(r|Hj) =
exp {− 1

2 tr([ 1LΨ + (r − µj)(r − µj)T ]Σ−1
j )}

(2π)
LM
2 |Σj |L

2
, (8)

where r = 1
L

∑L
i=1 rα

xx∗(i) and Ψ =
∑L

i=1(r
α
xx∗(i) − r)(rα

xx∗(i) − r)T , under
alternative hypothesis, r is estimate of µ1 and the statement inside the bracket
of function tr(.) is the estimation covariance matrix under two hypotheses. Thus
after eliminating the constants we have,

Λ =
| 1L (Ψ + L(r − µ0)(r − µ0)T )|L

2

| 1LΨ|L
2

= |I + LΨ−1(r − µ0)(r − µ0)
T |L

2 . (9)

By using the matrix determinant lemma that computes the determinant of the
sum of an invertible matrix I and the dyadic product, Ψ−1(r − µ0)(r − µ0)T ,

Λ =
(
1 + L(r − µ0)

T Ψ−1(r − µ0)
)L

2 = (1 + Tsub2)
L
2 . (10)
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Since Λ is the strictly ascending function of Tsub2, therefore, Tsub2 can be
considered as a statistic.

Tsub2 = L(r − µ0)
T Ψ−1(r − µ0) (11)

3.3 Unknown Signal and Noise Variance

In this situation, by considering covariance matrices estimation as (A-4), we
have two Gaussian distribution by same covariance matrices and different mean
under two hypotheses. If estimation is used for means of CAF real parts under
both hypotheses, due to equality of estimation under two hypotheses the result
of GLR test does not give any information to make decision. Thus, mean of
CAFs for various lag time is considered as statistic and compared with a proper
threshold.

Tsub3 =
1
M

M∑

m=1

Re(Rα
xx∗(τm))

H1

≷
H0

η3. (12)

4 Analytical Performance

In this section, we evaluate the performance of our proposed cyclostationary-
based detectors in terms of detection and false alarm probabilities, Pd and Pfa,
respectively.

4.1 Analytical Performance of Tsub1

We should derive statistical distribution of (7) under two hypotheses. We can
rewrite (7) as follows,

Tsub1 = (rαT

xx∗Σ− 1
2 )(Σ− 1

2 (µ1 − µ0)) = r̃αT

xx∗w
H1

≷
H0

η1, (13)

where w = Σ− 1
2 (µ1−µ0) and r̃α

xx∗ = Σ− 1
2 rα

xx∗ which is distributed as Gaussian
under two hypotheses, i.e.,

r̃α
xx∗ |Hν ∼ N (mν , IM ), ν = 0, 1, (14)

where mν = Σ− 1
2µν . As we can see in (13), our detector is a linear combination

of independent Gaussian random variables mentioned in (14). Therefore, mean
of statistic is,

μTsub1|Hν
=

M∑

i=1

mν(i)w(i), ν = 0, 1. (15)
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And similarly variance has been derived,

σ2
Tsub1|Hν

=
M∑

i=1

w2(i), ν = 0, 1. (16)

Then, the false alarm and detection probabilities can be calculated.

Pfa = P [Tsub1 > η1|H0] = Q

(
η1 − μTsub1|H0

σTsub1|H0

)

(17)

If β is maximum acceptable probability false alarm, then threshold of detector
can be set, η1 = F−1

Tsub1|H0
(β) = Q−1(β) × σTsub1|H0 + μTsub1|H0 . Similarly for

probability of detection, we have,

Pd = P [Tsub1 > η1|H1] = Q

(
η1 − μTsub1|H1

σTsub1|H1

)

. (18)

4.2 Analytical Performance of Tsub2

We should derive statistical distribution of (11) under two hypotheses. According
to [13], the asymptotic distribution of (11) under null hypothesis is central chi-
squared with M degrees of freedom. Thus, probability of false alarm is as follows,

Pfa = P [Tsub2 > η2|H0] = 1 − γ
(

M
2 , η2

2

)

Γ
(

M
2

) , (19)

where Γ (.) and γ(., .) are Gamma and lower incomplete Gamma function, respec-
tively. The asymptotic distribution of (11) under alternative hypothesis is non-
central chi-squared with noncentrality parameter, λ. Probability of detection is
as follows,

Pd = P [Tsub2 > η2|H1] = QM
2

(
√

λ,
√

η2), (20)

where Q(., .) is Marcum Q-function and non-centrality parameter is, λ = L
2 (µ1−

µ0)T Σ−1
1 (µ1 − µ0).

4.3 Analytical Performance of Tsub3

Because (12) is a linear combination of Gaussian random variables, therefore,
Tsub3 distribution is Gaussian under two hypotheses. According to Appendix 8,
mean and variance of (12) can be calculated. Thus, probability of false alarm
and detection are as follow,

Pfa = Q

(
η3 − μTsub3|H0

σTsub3|H0

)

, (21)

Pd = Q

(
η3 − μTsub3|H1

σTsub3|H1

)

. (22)
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5 Calculation of rα
xx∗ Means

In this section, we have provided computations for expectation of rα
xx∗ under

two hypotheses when all variables are known.

5.1 Null Hypothesis

In this subsection, we investigate mean of rα
xx∗ under null hypothesis. By consid-

eration of noise samples independency, expectation of (3) can be easily derived
for ith lag time as follows,

E[Rα
xx∗(τi)|H0] =

1
N

N−1∑

n=0

E[wp(n)]E[w∗p(n + τi)]e−j2παn. (23)

pth moment of Gaussian random variable has been calculated in Appendix, since
w(n) is zero mean Gaussian random variable, therefore,

E[Rα
xx∗(τ)|H0] =

e−jπα(N−1)

N

sin(παN)
sin(πα)

(−2)pπσ2p
n

Γ 2
(
1−p
2

) . (24)

Mean of (4) for i = 1, ..,M ,

μ0(i) =
sin(παN)
Nsin(πα)

π(2σ2
n)p

Γ 2
(
1−p
2

)cos(π(α(1 − N) + p)). (25)

5.2 Alternative Hypothesis

As mentioned earlier, each of the observation samples at SU is distributed as,

X = x(n) ∼ N (0, h2p2σ2
s + σ2

n) � N (0, σ2
1). (26)

Now, we assume random variable Y to be the ith lag time of observation samples
which is distributed same as X, i.e., Y = x(n+τi). It can be easily demonstrated
that correlation coefficient between X and Y is,

r =
E(XY ) − E(X)E(Y )

σ1 × σ1
=

h2

σ2
1

E[s(t)s(t + τi)] =
h2p2σ2

s

σ2
1

, (27)

which reveals that X and Y are correlated. Thus, X and Y have joint Gaussian
distribution, N (0, 0, σ2

1 , σ
2
1 , r). To determine the mean of CAF under alternative

hypothesis, we need to calculate E[XpY p] = E[Zp] = E[T ]. First we must derive
probability density function (PDF) of Z which is product X and Y . i.e.,

fZ(z) =
∫ ∞

0

1
x

fXY (x,
z

x
)dx −

∫ 0

−∞

1
x

fXY (x,
z

x
)dx. (28)
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(xσ1

√
2(1 − r2))p

jp
√

2σ2
1

e

(
− x2

2σ2
1(1−r2)

) ∞∑

k=0

[
(−p

2

)k

Γ
(
1−p
2

) (
1
2

)k
k!

−
√

2jrx
(
1−p
2

)k

Γ
(− p

2

)
σ1

√
1 − r2

(
3
2

)k
k!

]×

(− r2x2

2σ2
1(1 − r2)

)k
=

∞∑

k=0

[
A(r, σ1, k, p)x2k+p − B(r, σ1, k, p)x2k+p+1]e

(
− x2

2σ2
1(1−r2)

)

(33)

In second step, we can declare distribution of T as function of Z PDF, as follows,

fT (t) =
1
p
t
1
p −1fZ(t

1
p ). (29)

And thus, for computation of T mean, we have,

E[T ] =
∫ ∞

0

∫ ∞

−∞

t
1
p

px
fXY (x,

t
1
p

x
)dtdx −

∫ 0

−∞

∫ ∞

−∞

t
1
p

px
fXY (x,

t
1
p

x
)dtdx. (30)

Common part of above equation is derived in following expression,

∫ ∞

−∞

t
1
p

px
fXY (x,

t
1
p

x
)dt =

exp
(
− x2

2σ2
1

)

px2πσ2
1

√
1 − r2

∫ ∞

−∞
t
1
p exp

{

−
(
t
1
p − rx2

)2

2x2σ2
1(1 − r2)

}

dt.

(31)

Integral expression in equation (31) is in the form of p-th moment of Gaussian
random variable with respectively mean and variance rx2 and x2σ2

1(1− r2) that
is calculated in Appendix. Therefore,
∫ ∞

−∞

t
1
p

px
fXY (x,

t
1
p

x
)dt =

(xσ1

√
(1 − r2))p

jp
√

2πσ2
1

exp

(
− (2 − r2)x2

4σ2
1(1 − r2)

)
Dp

(
jrx

σ1

√
1 − r2

)
.

(32)

Result of replacement Apendix equations in (32) also some calculations and
simplifications, has led to (33), which is at the top of next page. In (33),

A(r, σ1, k, p) =

(−p
2

)k
(σ1

√
2(1 − r2))pr2k

Γ
(
1−p
2

) (
1
2

)k
k!

√
2σ2

1j
p(2σ2

1(r2 − 1))k
, (34)

B(r, σ1, k, p) =

√
2p+1

(
1−p
2

)k
(σ1

√
(1 − r2))p−2k−1r2k+1

Γ
(−p

2

) (
3
2

)k
k!jp−1(−2)k

. (35)

Finally, from (36) and according to [14], mean of T is derived in the next page.
Therefore, ith member of µ1 for i = 1, ...,M is,

μ1(i) =
sin(παN)
Nsin(πα)

cos(πα(N − 1))E[T ] (37)
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E[T ] =
∞∑

k=0

(1 + (−1)p)

[
A(r, σ1, k, p)22k+p+1(2σ2

1(1 − r2))
2k+p+1

2
Γ (2k + p + 1)

√
π

Γ ( 2k+p+2
2

)

− B(r, σ1, k, p)22k+p+2(2σ2
1(1 − r2))

2k+p+2
2

Γ (2k + p + 2)
√

π

Γ ( 2k+p+3
2

)

]
(36)
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Fig. 1. Normalized difference of means for ith lag time

6 Performance Optimization

To optimize the performance of proposed detector and obtain an appropriate
threshold by using the Neyman-Pearson criterion, we have to maximize the prob-
ability of detection respect to fractional order of observations, p. The difference
between the null and alternative is just in the mean value while their covariance
matrix is estimated to be similar. Therefore, since rα

xx∗ has Gaussian distribu-
tion, for maximizing the probability of detection, statistical means difference
between two hypotheses should be maximized.

p = arg max
0<p<1

{μ1(i) − μ0(i)} , (38)

where i denotes ith lag time.
Therefore, for a specific value of p, if the difference between the means of null

and alternative hypotheses is maximized, it can be concluded that the perfor-
mance has improved. Due to complex relations obtained for the means in (25)
and (37), differentiation and solve the result of its equation for this purpose
is not possible, however, with the help of numerical results, we can obtain the
optimal amount of fractional order, p.

In Fig. 1, difference of means under two hypotheses for a certain lag time is
plotted versus changes of p for various value of noise variance, σ2

w. In this figure,
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Fig. 2. The complementary ROC of proposed detector for average SNR = −3dB.

the values are normalized with respect to means difference value in p = 1 which
is used in cyclostationary detectors. As can be seen in Fig. 1, for example, the
difference of means increases about 0.75 percent in p = 0.75 for σ2

w = 1 and
also for other value of noise variance, we can found specific p that improves the
detector performance.

7 Simulation Results

In this section, we provide simulation results of cyclostationary-based detectors
performance in fractional order of observations Monte Carlo simulation and we
compared it with other detectors. For this purpose, we assume a linear modula-
tion for PU signals which its pulse width for outgoing data is 1ms. This signal
has Gaussian distribution with unit variance which has been sampled in receiver.
To detect these signals that affected by environmental additive Gaussian noise,
we have used cyclostationary detector in fractional order of observations. Also,
we assume the number of lag times is 16.

In Fig. 4, performance of this detector has been investigated in orders of
p = 0.65, 0.75, 0.85, 0.9 and 1, with the probability of detection Pd versus SNR
with assumption σ2

w = 1 and fixed probability of false alarm 0.01. As can be seen,
by changing the fractional orders, the detector performance will changes and
when the value get close to 0.75, detector performance improves approximately
3dB compared to p = 1 has been used used in previous detectors. This change
and improvement is due to an increase in mean difference of observations under
the two hypotheses.
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Fig. 3. The probability of detection of different detectors versus SNR for Pfa = 0.01.
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Fig. 4. The probability of detection of Tsub1 versus SNR for Pfa = 0.01 and various
fractional moment with assumption σ2

w = 1.

Fig. 2 depicts the receiver operating characteristics (ROC) curve of proposed
cyclostationary detector for different fractional order of observations. This figure
reveals of the detector behavior for different values of the false alarm probability
Pfa.

In Fig. 3, performance of detectors has been investigated by the probability of
detection Pd versus SNR with assumption σ2

w = 1 and fixed probability of false
alarm 0.01. This figure compares performance of obtained GLR-based detectors
with detectors that are mentioned in [15,16]. In [15], the ratio of CAF absolute
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value in cyclic frequency and another amount has been proposed as detector,

Tratio =
∣
∣
∣
∣

Rα
xx∗ (τ)

Rα+δ
xx∗ (τi)

∣
∣
∣
∣, where δ is a frequency shift. In [16], authors by using canon-

ical correlation analysis to detect presence of PU signal for M antennas SU. If
λm is mth eigenvalue of canonical correlation analysis result, statistic is defined
as, TCCA =

∑M
m=1 ln(1 − λ2

m). As we expected, when noise and signal variance
are known, the best performance of the detector can be achieved.

8 Conclusion

In this paper, we investigated the problem of cyclostationary spectrum sensing
in cognitive radio networks based on cyclic properties of linear modulated sig-
nal. First, we derived GLR detector for the situation in which SU has knowledge
of cyclic frequency of signal. Then, we found the optimum value for fractional
moment of observations in additive Gaussian noise and the exact performance of
the GLR detector is evaluated analytically. Finally, we simulated and derived the
GLR detector performance for various values of fractional moment of observa-
tions. We revealed that GLR detector performance improves for Gaussian noise
if we use fractional moment of observation for any value of noise variance. We
found the optimum value for the fractional moment, p. Our results have been
confirmed by simulation.
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Appendix

Covariance Matrices Estimation

According to [14], in order to calculate of correlation between two lag times mth
and nth of CAF, we need,

Sxτmxτn
(2α, α) =

1
T

T −1
2∑

s=− T −1
2

W (s)Fτn
(α − 2πs

N
)Fτm

(α +
2πs

N
), (A-1)

S∗
xτm xτn

(0,−α) =
1
T

T −1
2∑

s=− T −1
2

W (s)F ∗
τn

(α +
2πs

N
)Fτm

(α +
2πs

N
). (A-2)

Where Sxτmxτn
(2α, α) and S∗

xτmxτn
(0,−α), respectively are unconjugated and

conjugated cyclic-spectrum of observations and

Fτ (ω) =
1√
N

N−1∑

n=0

xp(n)x∗p(n + τ)e−jωn. (A-3)
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Thus, covariance matrix estimation of vector rα
xx∗ can be calculated as,

[Σ]i,j = Re{
Sxτi

xτj
(2α, α) + S∗

xτi
xτj

(0,−α)

2
}, i, j = 1, 2, ...,M. (A-4)

pth Moment of Gaussian Random Variable

Suppose N is a Gaussian random variable with mean μ and variance σ2
n. Thus,

E[Np] =
2

p
2 σp

ne
− μ2

2σ2
n√

πjp

∫
(jt)pe

(
−t2−j

√
2μj

σn
t
)
dt. (B-1)

By assumption of β2 = 1 and q =
√
2μj
σn

in section 3.462 of [16], (B-1) has been
calculated for p > −1 as follows,

E[Np] =
2

p
2 σp

ne
− μ2

2σ2
n√

πjp

[

2− p
2
√

πe
μ2

4σ2
n Dp

(
jμ

σn

)]

=
σp

ne
− μ2

4σ2
n

jp
Dp

(
jμ

σn

)

, (B-2)

where Dp(.) is parabolic cylinder function,

Dp(z) =2
p
2 e

−z2
4

[ √
π

Γ
(
1−p
2

)Φ

(

−p

2
,
1
2
;
z2

2

)

−
√

2πz

Γ
(−p

2

)Φ

(
1 − p

2
,
3
2
;
z2

2

) ]

, (B-3)

and also Φ(., .; .) is Kummer confluent hypergeometric function, Φ(a, b; c) =
∑∞

k=0
ak

bk

ck

k! .Where, ak is rising factorial function, ak = Γ (a+k)
Γ (a) .

Mean and Variance of (12)

Mean of (12) under two hypotheses is,

μTsub3|Hν
=

1
M

M∑

m=1

μν(m), ν = 0, 1, (C-1)

and variance of (12) can be calculated as follows,

σ2
Tsub3|Hν

=
1

M2

M∑

m1=1

M∑

m2=1

E[rα
xx∗(m1)rα

xx∗(m2)|Hν ] − μν(m1)μν(m2). (C-2)

Therefore, variance of (12) is sum of (A-4) entries.
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