
TPM-Based Authentication Mechanism
for Apache Hadoop

Issa Khalil1, Zuochao Dou2, and Abdallah Khreishah2(B)

1 Qatar Computing Research Institute, Qatar Foundation, Doha, Qatar
ikhalil@qf.org.qa

2 Electrical and Computer Engineering Department,
New Jersey Institute of Technology, Newark, USA

{zd36,abdallah}@njit.edu

Abstract. Hadoop is an open source distributed system for data storage
and parallel computations that is widely used. It is essential to ensure
the security, authenticity, and integrity of all Hadoop’s entities. The cur-
rent secure implementations of Hadoop rely on Kerberos, which suffers
from many security and performance issues including single point of
failure, online availability requirement, and concentration of authentica-
tion credentials. Most importantly, these solutions do not guard against
malicious and privileged insiders. In this paper, we design and imple-
ment an authentication framework for Hadoop systems based on Trusted
Platform Module (TPM) technologies. The proposed protocol not only
overcomes the shortcomings of the state-of-the-art protocols, but also
provides additional significant security guarantees that guard against
insider threats. We analyze and compare the security features and over-
head of our protocol with the state-of-the-art protocols, and show that
our protocol provides better security guarantees with lower optimized
overhead.

Keywords: Hadoop · Kerberos · Trusted Platform Module (TPM) ·
Authentication · Platform attestation · Insider threats

1 Introduction and Related Work

Apache Hadoop provides a distributed file system and a framework for the analy-
sis and transformation of very large data sets using the MapReduce paradigm
[1,2]. The basic architecture of Hadoop is shown in Fig. 1. The core components
are Hadoop Distributed File System (HDFS) and Hadoop MapReduce. HDFS
provides distributed file system in a Master/Slave manner. The master is the
NameNode, which maintains the namespace tree and the mapping of data blocks
to DataNodes. The slaves are the DataNodes which store the actual data blocks.
A client splits his data into standardized data blocks and stores them in different
DataNodes with a default replication factor of 3. The MapReduce is a software
framework for processing large data sets in a parallel and distributed fashion
among many DataNodes. MapReduce contains two sub-components: JobTracker
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 105–122, 2015.
DOI: 10.1007/978-3-319-23829-6 8

106 I. Khalil et al.

and TaskTracker. The JobTracker, together with the NameNode, receives the
MapReduce jobs submitted by the clients and splits them into smaller tasks to
be sent later to TaskTrackers for processing. Each DataNode has a corresponding
TaskTracker, which handles the MapReduce tasks.

Fig. 1. Basic architecture of Hadoop.

There are 5 types of communication
protocols in HDFS: DataNodeProtocol
(between a DataNode and the NameN-
ode); InterDataNodeProtocol (among
different DataNodes); ClientDataN-
odeProtocol (between client and Data
Nodes); ClientProtocol (between a
client and the NameNode); NameN-
odeProtocol (between the NameNode
and the Secondary NameNode). On
the other hand, there are 3 types of
communication protocols in MapRe-
duce: InterTrackerProtocol (between
the JobTracker and a TaskTracker); JobSubmissionProtocol (between a client
and the JobTracker); and TaskUmbilicalProtocol (between task child process
and the Tasktracker). In addtion, there is a DataTransferProtocol for data flow
of Hadoop.

Hadoop clients access services via Hadoop’s remote procedure call (RPC)
library. All RPC connections between Hadoop entities that require authentica-
tion use the Simple Authentication and Security Layer (SASL) protocol. On the
top of SASL, Hadoop supports different types of sub-protocols for authentica-
tion, such as generic security service application program interface (GSSAPI,
e.g., Kerberos [3,4]) or digest access authentication (i.e., DIGEST-MD5) [5]. In
practice, Hadoop uses Kerberos as the primary/initial authentication method
and uses security tokens (DIGEST-MD5 as protocol) to supplement the pri-
mary Kerberos authentication process within the various components of Hadoop
(NameNode, DataNodes, JobTracker, TaskTracker, etc.). This Kerberos based
authentication mechanism is first implemented in 2009 by a team at Yahoo [5].

However, there are many limitations and security issues in using Kerberos for
Hadoop authentication. The first weakness of Kerberos lies in its dependency on
passwords. The session key for data encryption during the initial communication
phase to key distribution center (KDC) is derived from the user’s password. It has
been shown in many situations that passwords are relatively easy to break (e.g.,
password guessing, hardware key-loggers, shoulder surfing etc.) mainly due to bad
or lazy selections of passwords. For example, in 2013, almost 150 million people
have been affected by a breach into Adobe’s database [6]. The breach is due to mis-
takes made by Adobe in handling clients’ passwords. All passwords in the affected
database were encrypted with the same key. Additionally, the encryption algo-
rithm used did not handle identical plaintexts, which results in similar passwords
being encrypted into similar ciphers. Disclosure of KDC passwords allows attack-
ers to capture users’ credentials, which turns all Hadoop’s security to be useless
(at least for the owners of the disclosed passwords). The second issue of Kerberos

TPM-Based Authentication Mechanism for Apache Hadoop 107

lies in having a single point of failure. Kerberos requires continuous availability
of the KDC. When the KDC is down, the system will suffer from the single point
of failure problem. Although Hadoop security design deploys delegation tokens
to overcome this bottleneck of Kerberos, it introduces a more complex authenti-
cation mechanism. The introduced tokens add extra data flows to enable access
to Hadoop services. Moreover, many token types have been introduced including
delegation tokens, block tokens, and job tokens for different subsequent authenti-
cations, which complicate the configuration and management of these tokens [7].
The third issue in Kerberos lies in its dependence on a third-party online database
of keys. If anyone other than the proper user has access to the key distribution cen-
ter (KDC), the entire Kerberos authentication infrastructure is compromised and
the attacker will be capable of impersonating any user [8]. This issue highlights
the insider threat problems in Kerberos. Kerberos cannot provide any protection
against an administrator who has the privilege to install hardware/software key
loggers or any other malware to steal users’ credentials and other sensitive data
(passwords, tokens, session keys, and data).

In early 2013, Intel launched an open source effort called Project Rhino to
improve the security capabilities of Hadoop. They propose Task HADOOP-
9392 (Token-Based Authentication and Single Sign-On) which is planned to
support tokens for many authentication mechanisms such as Lightweight Direc-
tory Access Protocol (LDAP), Kerberos, X.509 Certificate authentication, SQL
authentication, and Security Assertion Markup Language (SAML) [9]. They
mainly focus on how to extend the current authentication framework to a stan-
dard interface for supporting different types of authentication protocols. Nev-
ertheless, all these authentication protocols, including Kerberos, are software-
based methods that are vulnerable to privileged user manipulations. A privileged
insider may be able indirectly collect users’ credentials through, for example, the
installation of malware/spyware tools on the machines they have access to in a
way that is transparent to the victims. Furthermore, Rhino trades off flexibility
with complexity. It enhances the flexibility of the authentication mechanisms at
the cost of increasing the complexity of the overall system. Project Rinho did
not provide overhead analysis or performance evaluation which makes it hard to
compare with other protocols and raises questions about its practicality.

In this work, we propose an TPM-based authentication protocol for Hadoop
that overcomes the shortcomings of the current state-of-the-art authentication
protocols. To date, more than 500 million PCs have been shipped with TPMs,
an embedded crypto capability that supports user, application, and machine
authentication with a single solution [10]. TPM offers facilities for the secure
generation of cryptographic keys, and limitation of their use, in addition to
a random number generator. TPM supports three main services, namely: (1)
Remote Attestation which creates a nearly un-forgeable hash-key summary of the
hardware and software configuration. The program encrypting the data deter-
mines the extent of the summary of the software. This allows a third party to
verify that the software has not been changed or tampered with. (2) Binding
which encrypts data using the TPM endorsement key, a unique RSA key burned

108 I. Khalil et al.

into the chip during its production, or another trusted key descended from it.
(3) Sealing which encrypts data in similar manner to binding, but in addition
specifies a state in which the TPM must be in order for the data to be decrypted
(unsealed). Since each TPM chip has a unique secret RSA key burned in as it is
produced, it is capable of performing platform authentication [11].

In addition to providing the regular authentication services supported by
Hadoop, our protocol ensures additional security services that cannot be achieved
by the current state-of-the-art Hadoop authentication protocols. In addition
to eliminating the aforementioned security weakness of Kerberos, our proto-
col guards against any tamper in the target machines (the machine in the cloud
that is supposed to store users’ encrypted data and process it) hardware or soft-
ware. In public cloud environments, the user does not need to trust the system
administrators on the cloud. Malicious cloud system administrators pose great
threats to users’ data (even though it may be encrypted) and computations.
Those administrators, even though, may not have direct access to the user’s
data, they may be able to install malicious software (malware, spyware, etc.)
and hardware (key loggers, side channels, etc.) tools that can ex-filtrate users
data and sensitive credentials.

In [12], the author proposes a TPM-based Kerberos protocol. By integrating
Private Certification Authority (PCA) functionality into the Kerberos authen-
tication server (AS) and remote attestation is done by the (Ticket-Granting
Server) TGS, the proposed protocol is able to issue tickets bound to the client
platform. However, the present mechanism does not provide any attestation for
Hadoop internal components. Nothing can prevent malicious Hadoop insiders
from tampering with internal Hadoop components. In this paper, we use TPM
functionalities to perform authentication directly inside Hadoop to completely
get rid of the trusted-third-party.

In [13], the authors propose a Trusted MapReduce (TMR) framework to inte-
grate MapReduce systems with the Trusted Computing Infrastructure (TCG).
They present an attestation protocol between the JobTracker and the Task-
Tracker to ensure the integrity of each party in the MapReduce framework. How-
ever, they mainly focus on the integrity verification of the Hadoop MapReduce
framework, and did not address the authentication issues of Hadoop’s HDFS
and Clients. The work does not provide a general authentication framework for
the whole Hadoop system.

In [14], the authors present a design of a trusted cloud computing platform
(TCCP)based on TPM techniques, which guarantees confidential execution of
guest VMs, and allows users to attest to the IaaS provider to determine if the
service is secure before they launch their VMs. Nevertheless, they do not provide
much details about how this work will be implemented and no performance
evaluation is provided. Also, this work does not focus on a general authentication
framework specific for the Hadoop system.

In this paper, we design and implement a TPM-based authentication protocol
for Hadoop that provides strong mutual authentication between any internally
interacting Hadoop entities, in addition to mutually authenticate with exter-
nal clients. Each entity in Hadoop is equipped with a TPM (or vTPM) that

TPM-Based Authentication Mechanism for Apache Hadoop 109

locks-in the root keys to be used for authenticating that entity to the outside
world. In addition to locally hiding the authentication keys and the authentica-
tion operations, the TPM captures the current software and hardware configu-
rations of the machine hosting it in an internal set of registers (PCRs). Using
the authentication keys and the PCRs, the TPM-enabled communicating enti-
ties establish session keys that can be sealed (decrypted only inside the TPM)
and bound to specific trusted PCRs value. The bind and seal operations protect
against malicious insiders since insiders will not be able to change the state of
the machine without affecting the PCR values. Additionally, our protocol pro-
vides remote platform attestation services to clients of third party, possibly not
trusted, Hadoop providers. Moreover, the seal of the session key protects against
the ability to disclose the encrypted data in any platform other than the one
that matches the trusted configurations specified by the communicating enti-
ties. Finally, our protocol eliminates the trusted third party requirement (such
as Kerberos KDC) with all its associated issues including single point of failure,
online availability, and concentration of trust and credentials. Figure 2 shows the
high level overview of our protocol.

Fig. 2. High level overview of the authen-
tication framework.

We summarize our contributions
in this work as follows: (1) Propose
a TPM-based authentication protocol
for Hadoop that overcomes the short-
comings of Kerberos. Our protocol
utilizes the binding and sealing func-
tions of TPM to secure the authenti-
cation credentials (e.g., Session keys)
in Hadoop communications. (2) Pro-
pose and implement a periodic plat-
form remote attestation mechanism to
guard against insider malicious tam-
pering with Hadoop entities. (3) Perform performance and security evaluation of
our protocol and show the significant security benefits together with the accept-
able overhead of our new authentication protocol over the current state-of-the-
art protocols (Kerberos). (4) Implement our protocol within Hadoop to make it
practically available for vetting by Hadoop community.

The rest of this paper is organized as follows. In Sect. 2, in addition to provid-
ing a background on the state-of-the-art Hadoop security design and the TPMs,
we lay out our attack model. In Sect. 3, we describe our proposed TPM-based
authentication protocol in details. In Sect. 4, we present the system design and
implementation method. In Sect. 5, we conduct the performance evaluation of
our proposed authentication protocol.

110 I. Khalil et al.

2 Background

2.1 Hadoop Security Design

Apache Hadoop uses Kerberos to support the primary authentication in Hadoop
communications. It introduces three types of security tokens as Supplementary
Mechanisms. The first token is the Delegation Token (DT). After the initial
authentication to the NameNode using Kerberos credentials, a user obtains a
delegation token, which will be used to support subsequent authentications of
user’s jobs. The second token is Block Access Token (BAT). The BAT is gen-
erated by the NameNode and is delivered to the client to access the required
DataNodes. The third token is the Job Token (JT). When a job is submitted,
the JobTracker creates a secret key that is only used by the tasks of the job to
request new tasks or report status [5].

Fig. 3. Authentication process of
Hadoop security design developed
by Yahoo.

The complete authentication process in
Hadoop using Kerberos is shown in Fig. 3. The
client obtains a delegation token through ini-
tial Kerberos authentication (step 1). When
the client uses the delegation token to authen-
ticate, she first sends the ID of the DT to the
NameNode (step 2). The NameNode checks if
the DT is valid. If the DT is valid, the client
and NameNode try to mutually authenticate
using their own Token Authenticators (which
is contained in the delegation token) as the secret key and DIGEST-MD5 as the
protocol (step 3, 4, 5 and 6) [15]. This represents the main authentication process
in secure Hadoop system, although there are other slightly different authentica-
tion procedures such as the Shuffle in the MapReduce process.

2.2 Trusted Platform Module

The Trusted Platform Module (TPM) is a secure crypto-processor, which is
designed to secure hardware platforms by integrating cryptographic keys into
devices [11]. It is specifically designed to enhance platform security which is
beyond the capabilities of today’s software-based protections [16]. Figure 4 shows
the components of a Trusted Platform Module.

The TPM has a random number generator, a RSA key generator, an SHA-1
hash generator and an encryption-decryption-signature-engine. In the persistent
memory, there is an Endorsement Key (EK). It is an encryption key that is per-
manently embedded in the Trusted Platform Module (TPM) security hardware
at the time of manufacture. The private portion of the EK is never released
outside of the TPM. The public portion of the EK helps to recognize a genuine
TPM. The storage root key (SRK) is also embedded in persistent memory and
is used to protect TPM keys created by applications. Specifically, SRK is used
to encrypt other keys stored outside the TPM to prevent these keys from being
usable in any platform other than the trusted one [17].

TPM-Based Authentication Mechanism for Apache Hadoop 111

Fig. 4. Components of a Trusted
Platform Module [18].

In the versatile memory, the Platform
Configuration Register (PCR) is a 160 bit
storage location for integrity measurements
(24 PCRs in total). The integrity measure-
ments includes: (1) BIOS, ROM, Memory
Block Register [PCR index 0-4]; (2) OS
loaders [PCR index 5-7]; (3) Operating Sys-
tem (OS) [PCR index 8-15]; (4) Debug
[PCR index 16]; (5) Localities, Trusted OS
[PCR index 17-22]; and (6) Applications
specific measurements [PCR index 23] [19].

The TPM is able to create an unlimited
number of Attestation Identity Keys (AIK). The AIK is an asymmetric key pair
used for signing, and is never used for encryption and it is only used to sign
information generated internally by the TPM, e.g., PCR values [20]. For signing
the external data, storage keys are required. A storage key is derived from the
Storage Root Key (SRK) which is embedded in the persistent memory of the
TPM during manufacture. Using the generated storage key along with PCR
values, one could perform sealing operation to bind data into a certain platform
state. The encrypted data could only be unsealed/decrypted under the same
PCR values (i.e., the same platform state).

2.3 Attack Model

In addition to the traditional external threats, we believe that clouds are more
susceptible to internal security threats especially from untrusted privileged users
such as system administrators.

Many enterprises are likely to deploy their data and computations among
different cloud providers for many reasons including load balancing, high avail-
ability, fault tolerance, and security, in addition to avoiding single-point of failure
and provider locking [21–23]. For example, an enterprise may choose to deploy
the NameNode in their home machine to provide high security by only allow-
ing local access to local managers, and deploy the DataNodes among different
cloud platforms to distribute the storage and computational load. Obviously,
this increases the probability of compromise of the DataNodes. If one of the
DataNodes is injected with some malwares, Hadoop becomes vulnerable.

In the public cloud deployments of Hadoop, a privileged user could mali-
ciously operate on behalf of the user by installing or executing malicious software
to steal sensitive data or authentication credentials. For example, a malicious sys-
tem administrator in one of the DataNodes on the public cloud may be able to
steal users’ private data (e.g., insurance information etc.) that is stored in the
compromised DataNode. With the appropriate privileges, the administrator can
install a malware/spyware that ex-filtrates the stored sensitive data. Kerberos
based Hadoop authentication cannot protect against such insider attackers and
thus systems running Kerberos are vulnerable to this attack. In Kerberos-based
secure Hadoop, the DataNode authenticates with other parties using delegation

112 I. Khalil et al.

tokens, and the action of installing malware on the DataNode machine will not
be detected. On the other hand, the Trusted Platform Module (TPM) is capable
of detecting the changes of hardware and software configurations, which will help
in mitigating such attacks.

We assume attackers are capable of performing replay attacks. The attacker
could record the message during the communication and try to use it to forge a
future communication message. Such replay attacks may cause serious problems,
such as denial of service (keep sending the message to overload the server), or
repeated valid transaction threats (e.g., the attacker capture the message of a
final confirmation for a transaction, then he can repeatedly send it message to the
server and result in repeated valid transactions if there is no proper protection).

3 TPM-Based Hadoop Authentication Protocol

In this section, we present the details of our proposed Hadoop authentication
protocol. The key idea of the protocol lies in the utilization of TPM binding
keys to securely exchange and manage the session keys between any two parties
of Hadoop (NameNode/JobTracker, DataNodes/TaskTracker and Client).

Fig. 5. The high level processes of our
TPM-based Hadoop authentication proto-
col (Client to NameNode in this example).

To achieve this, we assume every
party in Hadoop, namely, the DataN-
ode, the NameNode, and the client,
has a TPM. Figure 5 depicts the high
level processes of the protocol which
are explained in detail in the following
sub sections. The protocol consists of
two processes, the certification process
and the authentication process.

3.1 The Certification Process

Fig. 6. Certification process of the
TPM binding key.

The certification process (which is similar
to that presented in [12]) is triggered by
the client and is depicted in Fig. 6. The
client’s TPM creates a RSA key using the
SRK as a parent. This key will be used
as the client’s Attestation Identity Keys
(AIK[client]). The AIK [client] is then cer-
tified by a PCA. This process only takes
place once during the initialization of the
TPM (a one-time pre-configuration oper-
ation). The client’s TPM then creates a
binding key that is bound to a certain platform (i.e., the private portion of the
binding key is inside the TPM and could only be used in this platform), then we
seal the private part of the binding key to a certain PCR configuration. Finally,
the client uses the AIK[client] which is certified by the PCA to certify the public

TPM-Based Authentication Mechanism for Apache Hadoop 113

part of the binding key. The AIK[client] is not used directly for authentication in
order to maintain higher security guarantees by minimizing the chances of suc-
cessful cipher analysis attacks to disclose the key. The AIK[client] is only used
to sign PCRs value and other TPM keys. We can certify the binding key directly
through the PCA instead of using the certified AIK[client]. However, using the
certified AIK[client] is simpler, faster and provides the same security guarantees.
Once we certify the AIK[client], we can use it to sign all kinds of keys generated
by the clients’ TPM without referring back to the PCA, which greatly reduces
the communication overhead at the cost of local processing overhead.

3.2 The Authentication Process

In the authentication process (Fig. 7), the client tries to authenticate itself to
the NameNode and the NameNode authenticates itself to the client. The Client
sends a random number K1 along with the corresponding IDs (e.g., fully quali-
fied domain name) to the NameNode. This message is encrypted by the public
binding key of the NameNode. The NameNode sends a random number K2

along with corresponding ID to the client. This message is encrypted by the
public binding key of the client. Using K1 and K2, both the client and the
NameNode generate the session key Key session = K1 ⊕ K2. Note that only
the correct NameNode can obtain K1 by decrypting the message sent by the
client using the NameNode’s SK bind, which is bind to the target NameNode’s
TPM with a certain software and hardware configuration (sealed binding key).
Similarly, only the correct client can obtain K2 by decrypting the message sent
by the NameNode using the client’s SK bind, which is bind to the client’s TPM
with the appropriate software and hardware configurations. This ensures mutual
authentication between the client and the NameNode.

Fig. 7. The authentication process
of the TPM-based authentication
protocol.

The session key exchanged is then locked
into a certain PCRs value in an opera-
tion known as seal operation using the
TPM command Seal that takes the two
inputs: the PCRs value and the session key
(Seal(PCRsindexes,Key session)). This
ensures that Key session can only be
decrypted using the hardware secured keys
of the TPM in that particular platform
state. By sealing the session key to specific
acceptable hardware and software configu-

rations (specific PCRs value), we protect against any tamper of the firmware,
hardware, or software on the target machine through for example, malware
installations or added hardware/software key loggers. Moreover, the session
key (Key session) is made to be valid only for a predefined period of time,
after which the session key expires and the authentication process has to be
restarted to establish a new session key if needed. The validity period of the
session key is an important security parameter in our protocol. Short validity
periods provide better security in the case of session key disclosure since fewer

114 I. Khalil et al.

communications are exposed by disclosing the key. However, shorter periods
incur extra overhead in establishing more session keys. Additionally, a nonce
is added to every message (for example, Nonce = K2 + +) to prevent replay
attacks. Finally, message authentication codes (MAC) are included with each
message to ensure data integrity. The communication message format is as fol-
lows: (Message,MAC,Nonce = K2 + +, IDs)key session.

3.3 Periodic “Fingerprint” Checking (Cross Platform
Authentication)

In a non-virtualized environment, the Trusted Platform Module (TPM) speci-
fication assumes a one to one relationship between the operating system (OS)
and the TPM. On the other hand, virtualized scenarios assume one to one rela-
tionship between a virtual platform (virtual machine) and a virtual TPM [24].
However, Hadoop systems are master/slaves architectures. The NameNode is
the master that manages many DataNodes as slaves. If the number of DataN-
odes grows, the number of session establishment processes that the NameNode
is involved in also grows relatively. Each session involves many TPM operations
(e.g., Seal and unseal). For large systems, the TPM may become a bottleneck due
to the limitation of one TPM/vTPM per each NameNode according to current
implementations of TPM/vTPM.

Fig. 8. Random attestation and
periodic “Fingerprint” attestation
illustration.

To address this issue and alleviate the
potential performance penalty of TPM inter-
actions, we introduce the concept of periodic
“Fingerprint” platform checking mechanism
based on the Heartbeat protocol in Hadoop
(Fig. 8). The idea is to offload most of the
work from the TPM of the NameNode to
the NameNode itself. However, this requires
us to loosen our security guarantees and
change the attack model by assuming that
the NameNode is “partially” trusted. Par-
tially here, means that an untrusted (compro-
mised) NameNode will only have transient
damage on the security of Hadoop system. A nameNode that gets compro-
mised will only stay unnoticed for a short time since other interacting parties
(such as DataNodes) may randomly request attestation of the authenticity of the
NameNode. In this on-demand attestation request, an interacting entity with the
NameNode (e.g., DataNode, client, etc.) asks the name node to send a TPM-
sealed value of its current software and hardware configuration. If the requesting
entity receives the right values for the PCRs of the NameNode within a prede-
fined time, then the NameNode is trusted, otherwise a suspicious alert is raised
about the healthiness of the NameNode. The response time to receive the sealed
PCRs value from the NameNode is set to account for the communication time,
the load on the NameNodes (size of Hadoop System), and the seal operations
assuming that the perpetrator controlling the untrusted NameNode will not be

TPM-Based Authentication Mechanism for Apache Hadoop 115

able to roll back the configurations of the NameNode to the trusted one within
this time.

As mentioned earlier, the PCR values inside the TPM captures the software
and hardware configurations of the system hosting the TPM. Therefore, a par-
ticular PCR value can be considered as a “Fingerprint” of the corresponding
platform. We collect the “Fingerprint” of each entity that needs to interact with
the NameNode (e.g., DataNode) a priori and store it on the NameNode (This
can be achieved during the registration process of the entity to the NameNode).
The Heartbeat protocol in Hadoop periodically sends alive information from one
entity to another (e.g., from DataNode to NameNode). Therefore, we configure
each entity interacting with the NameNode (e.g., DataNode) to periodically (or
can be configured to be on-demand) send the new PCR values (achieve by PCR
extension operation) to the NameNode to check the consistency of the stored
PCRs and the new PCRs. The TPM in the interacting entity signs its current
PCR values using its AIK key and sends the message to the NameNode. When
the NameNode receives the signed PCR values, it verifies the signature, and if
valid, it compares the received values with the trusted pre-stored values. If a
match is found, the authentication will succeed and the session will continue.
Otherwise, the authentication will fail and penalty will apply (e.g., clear up
the session key, shut down the corresponding DataNode, etc.). By doing so, the
number of NameNode side TPM operations decrease significantly as we replace
the TPM seal and unseal operations with the “Fingerprint” verification that are
carried out outside the TPM. See Fig. 8.

3.4 Security Features

In this section, we elaborate on the security services provided by our protocol.
The security services can be broadly classified into the Common security services
and the New security services. The common security services are supported by
both our protocol and other Hadoop authentication protocols, while the new
security services are novel and supported only by our protocol. The common
security services include: (1) Replay attack prevention. A nonce = K2 + + is
included with each communicated message to prevent replay attacks. (2) Data
Integrity. A MAC is included in the message to ensure data integrity. The MAC
is computed as Hash(SessionKey||Message). Digital signature is another way
to achieve data integrity as well as authenticity. However, digital signatures
are more computationally involved, as they rely on asymmetric keys, compared
to hash functions that use symmetric keys. The New security services include:
(1) Session key binding. The session key is generated by XORing a local and
an external random numbers (K1 and K2). The local one is generated locally
and the external is received from the other party. The local random number is
encrypted using the public portion of the binding key of the other party before
sending it to that party. This ensures that only the party that has the appropriate
private portion of the binding key will be able to decrypt the message and get
the external random number. Furthermore, the decryption keys exist only inside
the TPM chip and are sealed under a certain hardware/software configuration.

116 I. Khalil et al.

This protects against even malicious insiders as they will not be able to know
anything about the session key. (2) Session key sealing. The session key is sealed
with TPM functions. The sealed session key can be decrypted only under the
same platform conditions (as specified by the PCRs value) using the associated
EK that resides inside the TPM. If the attacker installs malware/spyware to steal
the session key, he will not be able to successfully decrypt and obtain the key as
the decryption will fail due to the change in the system configuration which will
be reflected in the PCRs. (3) Periodic “Fingerprint” attestation mechanism. This
enables one way attestation of DataNode while reducing the load on a partially
trusted NameNode. This disables any privileged malicious user controlling a
DataNode from being able to install or inject malware/spyware without affecting
the internal view of the TPM about the system. (4) Disk Encryption. In addition
to the traditional disk encryption, we could choose using TPM keys to protect
the HDFS data from directly steal on the disk.

4 System Design and Implementation

Fig. 9. The three Hadoop archi-
tectures implemented: (a) Hadoop
without Security; (b) Hadoop with
Kerberos Security; (c) Hadoop with
TPM-based Security.

To evaluate the security guarantees and
the performance overhead of our authenti-
cation protocol, we compared three different
Hadoop implementations, namely, Hadoop
without Security (Baseline), Hadoop with
Kerberos (Kerberos) and Hadoop with our
protocol (TPM). We use Hadoop version
0.20.2-cdh3u6 [25] since it is the most stable
version of the classic first generation of HDFS
and MapReduce. We modify the source code
of Hadoop using ant on Eclipse [26]. For Ker-
beros, we use krb5.x86 64 [27]. For TPM, we
use TPM Emulator since it is the best choice

for debugging and testing purposes. To incorporate TPM with Hadoop project,
we use IAIK jTSS (TCG Software Stack for the Java (tm) Platform [28]) as the
Java interface between Hadoop and TPM. The three Hadoop architectures are
shown in Fig. 9.

4.1 Implementation Details

A. Hadoop Deployment. We configure Hadoop-0.20.2-cdh3 in a distributed
manner. The implementation involves two virtual machines with CentOS 6.5
operating system, 1 GB memory, 20 GB hard disk, Java version = jdk-7u51-linux-
x64. One of the machines is installed with one NameNode, one JobTracker, one
DataNode and one TaskTracker, the other one installed with one DataNode and
one TaskTracker.

B. Hadoop Deployment with Kerberos. For Hadoop security design with
Kerberos, we had to configure Hadoop and Kerberos separately. Table 1 shows
the summary of the corresponding configurations.

TPM-Based Authentication Mechanism for Apache Hadoop 117

Table 1. Summary of Kerberos secured Hadoop configuration.

Hadoop Install hadoop-0.20-native; hadoop-0.20-sbin. Configure
core-site.xml; hdfs-site.xml; mapred-site-xml. Add
taskcontroller.cfg

Kerberos Install krb5-server.x86 64; krb5-workstation.x86 64;
krb5-devel.x86 64. Configure krb5.conf; kdc.conf; kadm5.acl.
Create “EXAMPLE.COM” database. Add
hdfs/fully.qualified.domain.name@EXAMPLE.COM;
mapred/fully.qualified.domain.name@EXAMPLE.COM;
host/fully.qualified.domain.name@EXAMPLE.COM. Generate
hdfs.keytab; mapred.keytab

C. Hadoop Deployment with TPM. Hadoop deployment here involves two
parts: (1) TPM emulator configuration and jTSS java interface configuration;
(2) Hadoop source codes modification environment setup. We use software based
TPM emulator [29], which provides researchers and engineers of trusted systems
with a powerful testing and debugging tool.

We use IAIK jTSS 0.7.1 (TCG Software Stack for the Java (tm) Platform,
Copyright (c) IAIK, Graz University of Technology) as the java interface between
TPM and Hadoop project. There are two ways to configure the IAIK jTSS: (1)
local bindings, which is well suited for development, experimenting and debug-
ging. (2) SOAP bindings, which allows any unprivileged application access [28].
We choose SOAP bindings since we want Hadoop to utilize TPM. For integrating
TPM functionalities into Hadoop project, we setup a modification environment.
Since the Hadoop-0.20.2-chd3u6 is used, we choose Eclipse IDE for Java EE
Developers as platform and Apache Ant 1.9.3 as build tool.

5 Performance Evaluation

5.1 Security Analysis and Evaluation

We discuss here the security features of our protocol and compare it with Ker-
beros based Hadoop. Table 2 summarizes the results of the comparison.

As we can see from Table 2, Kerberos-based Hadoop depends on passwords.
Loss of passwords means loss of authentication capability and deny of access
to any of the resources. Similarly, in TPM-based Hadoop, the ownership of a
TPM depends on the password. Loss of password will result in authentication
incapability and encrypted data inaccessible.

However, TPM-based Hadoop provides hardware security in addition to
the software security provided in Kerberos-based Hadoop. The TPM ensures
the security bond to the hardware and software configurations, which pro-
tects against tamper in the software or the hardware (including install mal-
ware/spyware). On the other hand, Kerberos-based Hadoop solely rely on the
security of soft tokens/tickets. Also, the Kerberos based Hadoop requires an
on-line KDC, which presents a single point of failure.

118 I. Khalil et al.

Table 2. Comparison of TPM-based Hadoop and Kerberos-based Hadoop.

Kerberos-based Hadoop TPM-based Hadoop

Password/ticket/token are required to
authenticate users. Weakness on
password dependency and
ticket/tokens lost

TPM key is used to authenticate
users. The key is stored on TPM,
and secured by PCRs (a certain
platform state). Hardware security

An online Key Distribution Center
(KDC) is required. Kerberos has a
single point failure problem (KDC)

Not apply

Lost password: loss of passwords
prevents the ability to
authentication with KDC

Lost Password: Loss of passwords
associated with the TPM will result
in encrypted data inaccessible

Not apply Only support one to one mode
between one VM and one
TPM/VTPM, resource insufficient
for unsealing operation

In our protocol, the authentication credentials exchanged are not only
encrypted with the public keys of the parties but also bound to specific hard-
ware and software configurations in each party. This setup ensures that not only
the right party can access the credentials, but also that the credentials can only
be accessed under specific hardware and software configurations. This guards
against both user and machine masquerading. For example, in the session estab-
lishment between the NameNode and a DataNode, the random number K1 is
encrypted with the public key of the NameNode. K1 can be decrypted only by
the NameNode with certain hardware and software configurations, because the
decryption key is bonded to the corresponding PCR values.

We setup an experiment to evaluate this security feature in our protocol,
using the “Fingerprint” as a sample scenario. We develop pseudo codes to sim-
ulate the changes of PCR value (i.e., manually change the PCR values after
5 heartbeats of the DataNodes). In our modified heartbeat protocol, we set
the heartbeat interval to 3 s (i.e., The DataNode sends the PCRs value to the
NameNode every 3 s). We set a counter to an initial value of zero and adds one
every single heartbeat. When the counter reaches 5, we manually set the PCR
to a wrong value. The results show that the authentication fails and the session
with this DataNode is shut down by the NameNode. Table 3 summarizes the
parameters and the results of the experiment.

5.2 Overhead Analysis and Evaluation

In our work, we realize that it is not enough to develop a secure authentication
protocol, but most importantly, we have to ensure that the algorithm is practi-
cal. Therefore, we have to keep the performance penalty and cost of the added
security guarantees within acceptable bounds. In this section, we thoroughly ana-
lyze the performance overhead of our protocol and compare it with the baseline

TPM-Based Authentication Mechanism for Apache Hadoop 119

Table 3. Evaluation of the periodic “Fingerprint” checking mechanism (Heartbeat
Interval= 3 s).

NameNode
“Finger-
print”

DataNode PCR values Expected result Result

PCR= “0” PCR= “0” (count= 1:4).
PCR= “1” (count = 5).
Count: # of heartbeats

DataNode
shutdown when
count= 5

DataNode
shutdown when
count= 5

and the Kerberos-based authentication protocols. The necessary additions to the
exchanged messages that to prevent replay attacks, ensure data integrity, ensure
data confidentiality (encryption and decryption operations of the exchanged data
messages) are the same for both our protocol and Kerberos-based protocol. How-
ever, both our protocol and Kerberos-based protocol have extra overhead that
does not exist in the other. In our protocol, we have a onetime TPM setup over-
head which is introduced when the TPM in each Hadoop component generates
the binding keys, AIK, in addition to obtaining certificates for these keys. This is
a lightweight overhead and will not impact the day-to-day operation of Hadoop
system as it is a pre-configuration one time overhead. Furthermore, at the begin-
ning of each RPC session, our protocol introduces an extra overhead to transfer
two random numbers and to generate the session key by Xoring the two random
numbers. Additionally, during each RPC session, our protocol involves a recurring
overhead to seal and unseal the session keys and the “Fingerprint” heartbeat ver-
ifications. The seal operation only reoccurs when a legitimate change in the PCRs
value of the other party is acknowledged and approved. In this case, the first party
needs to reseal the session key to work with the new PCRs value in the second
party. The unseal operation reoccurs with every RPC request for data exchange
since we need to retrieve the session key through TPM unseal operation. Finally,
the “Fingerprint” heartbeat checking is an overhead that depends on the security
parameters configured, i.e., how frequently the first party needs to check the sta-
tus of the second and whether it is done periodically or on-demand. We evaluated
the one time overhead (binding key generation and certification) using jTSS under
SAOP binding, which is used for third party application such as Hadoop. Table 4
shows the average overhead for each step.

We next compare the overhead of the baseline Hadoop (no security),
Kerberos-based Hadoop, and TPM-based Hadoop (our protocol). We use a clas-
sic MapReduce job: Pi example. Pi example is to calculate the value of π in
a distributed way. We set the number of map tasks to 5 and set the number

Table 4. One time overhead of the proposed system design.

Binding key
creation

Binding key
loading

AIK cre-
ation

AIK
loading

Binding key
certification

Sum

∼355.8 ms ∼27.1 ms ∼08.4 ms ∼24.1 ms ∼17.0 ms ∼532.4 ms

120 I. Khalil et al.

Table 5. Overhead comparison of the three Hadoop implementations (No security,
Kerberos, and TPM).

No security Kerberos TPM-based Hadoop w/unseal
operation

TPM-based Hadoop
w/fingerprint check

∼38.90 s ∼46.24 s 3 RPC sessions × 40.8 ms +99
unseal operations × 45.1 ms
+441.9 ms = 5.03 s

3 RPC sessions × 40.8 ms
+14 heartbeats
×(41.1 + 15.7 + 0.3) ms
+441.9 ms=1.36 s

of samples per task to 1000 (#map task = 5, #samples per task = 10000). This
means, we divide the job into five smaller tasks, each task will be handling 1000
samples using quasi-Monte Carlo method.

Since we have not finished the entire authentication framework implemen-
tation of the TPM-based Hadoop, we use for this work the number of RPC
sessions (i.e., the # of session key generations) and the number of RPC connec-
tion requests (correspond to the # of “unseal” operation) during the Pi example
excution. There are 3 RPC sessions created during this Pi example. The average
overhead to transfer two random numbers (1024 bits each) via RPC connection
(i.e., simulation in Java program) and to generate the session key is around
40.8 ms, which indicates there is an total overhead around 122.4 ms for the Pi
example. Furthermore, the average overhead of “unseal” operation of the unseal
overhead is the # of RPC requests times the average “unsealing” time. In the
Pi example, 99 RPC connection requests initiated that result in 99 “unseal”
operations to decrypt session keys. The average “unseal” operation overhead
was 45.1 ms, which makes the accumulated overhead around 4.46 s for the Pi
example. Next. We compute the overhead for encryption and decryption. For
the Pi example, according to the task report, there are 1205 bytes data read
from the HDFS, 215 bytes data written to the HDFS and 140 bytes data for
the reduce shuffle phase. By simulation using triple data encryption algorithm
(3DES, i.e., the default encryption algorithm for Kerberos based Hadoop), the
additionally cryptographic overhead is around 441.9 ms (i.e., 269 ms for encryp-
tion and 172.9 ms for decryption).

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Heartbeat Interval (second)

E
st

im
at

ed
 O

ve
rh

ea
d

(s
ec

on
d)

Fig. 10. Estimated overhead
of Heartbeat “Fingerprint”
checking of different heartbeat
interval (1 KB measurements).

On the other hand, for the repeated over-
head of the periodic “Fingerprint” attestation, it
depends on the length of the heartbeat interval
(i.e., integer of seconds) and the PCR extension,
AIK signing and signature verification process
for each heartbeat. The PCR extension operation
takes the old PCR’s value and the platform new
measurements as input, therefore its overhead
depends on the size of the new measurements.
The new measurements are conducted by a third
party called Integrity Measurement Architecture
(IMA) [30]. As a result, the Estimated Overhead
for Heartbeat “Fingerprint” checking = # of Heartbeats × (PCR extension(size

TPM-Based Authentication Mechanism for Apache Hadoop 121

of new measurements)+AIK signing+Signture verification)). With the jTSS
soap binding, for 1 KB measurements, the average overhead for each PCR exten-
sion is 41.1 ms, for each AIK signing is 15.7 ms, and for each signature verification
is 0.3 ms. With heartbeat interval equals to 3 s, in the Pi example, there will be
about 14 times heartbeats such that we have about 799.4 ms overhead for our
system. Table 5 shows the results.

As mentioned on Sect. 3.3, the number of NameNode side TPM operations
decreases significantly as we replace the TPM seal and unseal operations with
the finger print verification that is carried out outside the TPM. Furthermore,
in Fig. 10, we show that the Heartbeat “Fingerprint” checking interval could be
adjusted according to the security requirements for different applications (e.g.,
longer interval means lower security).

6 Conclusion and Future Work

In this paper, we design and implement a TPM-based authentication protocol
for Hadoop that provides strong mutual authentication between any internally
interacting Hadoop entities, in addition to mutually authenticate with external
clients. The bind and seal operations supported by the TPM protect against
malicious insiders since insiders cannot change the machine state without affect-
ing the PCR values. Additionally, our protocol provides remote platform attes-
tation services to clients of third party, possibly not trusted, Hadoop providers.
Moreover, the seal of the session key protects against the ability to disclose the
encrypted data in any platform other than the one that matches the trusted
configurations specified by the communicating entities. Finally, our protocol
eliminates the trusted third party requirement (such as Kerberos KDC) with
all its associated issues such as single point of failure, online availability, and
concentration of trust and credentials.

We analyze the security features of our protocol and evaluate its perfor-
mance overhead. Moreover, we study and resolve the practical limitations that
are imposed by the current Hadoop design (one NameNode) and by the current
TPM implementations (one TPM/vTPM per machine). Finally, we compare the
security features and overhead of our protocol with the state-of-the-art protocols
and show that our protocol provides better security guarantees with acceptable
overhead.

In the future work, we will tighten the security requirements of the NameNode
by removing the assumption of partial trust. Specifically, we plan to explore the
use of server-aided cryptography techniques to shift most of the work of sealing
and unsealing from inside the TPM chip to off the chip (in the NameNode itself).

References

1. Apache Hadoop. http://hadoop.apache.org
2. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file

system. In: IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10 (2010)

http://hadoop.apache.org

122 I. Khalil et al.

3. Bagchi, S., Shroff, N., Khalil, I., Panta, R., Krasniewski, M., Krogmeier, J.: Pro-
tocol for secure and energy-efficient reprogramming of wireless multi-hop sensor
networks. US Patent 8,107,397 (2012)

4. Khalil, I., Bagchi, S.: Secos: key management for scalable and energy efficient crypto
on sensors. In: Proceedings of IEEE Dependable Systems and Networks (DSN)
(2003)

5. O’Malley, O., Zhang, K., Radia, S., Marti, R., Harrell, C.: Hadoop security design.
Yahoo Inc.,Technical report (2009)

6. Hern, A.: Did your Adobe password leak? http://www.theguardian.com/
technology/2013/nov/07/adobe-password-leak-can-check

7. Smith, K.: Big Data Security: The Evolution of Hadoop’s Security Model. http://
www.infoq.com/articles/HadoopSecurityModel

8. Kerberos. http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment Guide-
en-US/ch-kerberos.html

9. Project Rhino. https://issues.apache.org/jira/browse/HADOOP-9392
10. Trusted Platform Module (TPM): Built-in Authentication. http://www.trusted

computinggroup.org/solutions/authentication
11. Trusted Platform Module. http://en.wikipedia.org/wiki/Trusted Platform Module
12. Leicher, A., Kuntze, N., Schmidt, A.U.: Implementation of a trusted ticket system.

In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT, vol. 297, pp. 152–163.
Springer, Heidelberg (2009)

13. Ruan, A., Martin, A.: TMR: Towards a trusted mapreduce infrastructure. In: IEEE
Eighth World Congress on Services (SERVICES), pp. 141–148 (2012)

14. Santos, N., Gummadi, K., Rodrigues, R.: Towards trusted cloud computing. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing (2009)

15. Hadoop Security Analysis. http://www.tuicool.com/articles/NFf6be
16. Trusted platform module (TPM) quick reference guide. Intel Corporation (2007)
17. TPM Management. http://technet.microsoft.com/en-us/library/cc755108.aspx
18. TPM architecture. http://en.wikipedia.org/wiki/File:TPM.svg
19. Ng, R.: Trusted platform module TPM fundamental. Infineon Technologies Asia

Pacific Pte Ltd. (2008)
20. Trusted Computing: TCG proposals. https://www.cs.bham.ac.uk/∼mdr/teaching/

modules/security/lectures/TrustedComputingTCG.html
21. Panta, R., Bagchi, S., Khalil, I.: Efficient wireless reprogramming through reduced

bandwidth usage and opportunistic sleeping. Ad Hoc Netw. 7(1), 42–62 (2009)
22. Bouktif, S., Ahmed, F., Khalil, I., Antoniol, G.: A novel composite model approach

to improve software quality prediction. Inf. Softw. Tech. 52(12), 1298–1311 (2010)
23. Shi, J., Taifi, M., Khreishah, A., Wu, J.: Sustainable gpu computing at scale. In:

2011 IEEE 14th International Conference on Computational Science and Engineer-
ing (CSE), pp. 263–272. IEEE (2011)

24. The Trusted Computing Group (TCG). Virtualized trusted platform architecture
specification, version 1.0, revision 0.26 (2011)

25. CDH3u6 Doc. http://www.cloudera.com/content/support/en/documentation/
cdh3-documentation/cdh3-documentation-v3-latest.html

26. Eclipse. https://www.eclipse.org/
27. The KDC and related programs for Kerberos 5. http://linuxsoft.cern.ch/cern/

slc5X/x86 64/yum/updates/repoview/krb5-server.html
28. Trusted Computing for the Java(tm) Platform. http://trustedjava.sourceforge.net/

index.php?item=jtss/about
29. TPM emulator. http://tpm-emulator.berlios.de/designdoc.html
30. Integrity Measurement Architecture (IMA). http://sourceforge.net/p/linux-ima/

wiki/Home/

http://www.theguardian.com/technology/2013/nov/07/adobe-password-leak-can-check
http://www.theguardian.com/technology/2013/nov/07/adobe-password-leak-can-check
http://www.infoq.com/articles/HadoopSecurityModel
http://www.infoq.com/articles/HadoopSecurityModel
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-kerberos.html
http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment_Guide-en-US/ch-kerberos.html
https://issues.apache.org/jira/browse/HADOOP-9392
http://www.trustedcomputinggroup.org/solutions/authentication
http://www.trustedcomputinggroup.org/solutions/authentication
http://en.wikipedia.org/wiki/Trusted_Platform_Module
http://www.tuicool.com/articles/NFf6be
http://technet.microsoft.com/en-us/library/cc755108.aspx
http://en.wikipedia.org/wiki/File:TPM.svg
https://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/TrustedComputingTCG.html
https://www.cs.bham.ac.uk/~mdr/teaching/modules/security/lectures/TrustedComputingTCG.html
http://www.cloudera.com/content/support/en/documentation/cdh3-documentation/cdh3-documentation-v3-latest.html
http://www.cloudera.com/content/support/en/documentation/cdh3-documentation/cdh3-documentation-v3-latest.html
https://www.eclipse.org/
http://linuxsoft.cern.ch/cern/slc5X/x86_64/yum/updates/repoview/krb5-server.html
http://linuxsoft.cern.ch/cern/slc5X/x86_64/yum/updates/repoview/krb5-server.html
http://trustedjava.sourceforge.net/index.php?item=jtss/about
http://trustedjava.sourceforge.net/index.php?item=jtss/about
http://tpm-emulator.berlios.de/designdoc.html
http://sourceforge.net/p/linux-ima/wiki/Home/
http://sourceforge.net/p/linux-ima/wiki/Home/

	TPM-Based Authentication Mechanism for Apache Hadoop
	1 Introduction and Related Work
	2 Background
	2.1 Hadoop Security Design
	2.2 Trusted Platform Module
	2.3 Attack Model

	3 TPM-Based Hadoop Authentication Protocol
	3.1 The Certification Process
	3.2 The Authentication Process
	3.3 Periodic ``Fingerprint'' Checking (Cross Platform Authentication)
	3.4 Security Features

	4 System Design and Implementation
	4.1 Implementation Details

	5 Performance Evaluation
	5.1 Security Analysis and Evaluation
	5.2 Overhead Analysis and Evaluation

	6 Conclusion and Future Work
	References

