
Policy Driven Node Selection in MapReduce

Anna C. Squicciarini1(B), Dan Lin2, Smitha Sundareswaran1, and Jingwei Li3

1 Pennsylvania State University, State College, USA
asquicciarini@ist.psu.edu, sus263@psu.edu

2 Missouri University of Science and Technology, Rolla, USA
lindan@mst.edu

3 Nankai University, Tianjin, People’s Republic of China
lijw1987@gmail.com

Abstract. The MapReduce framework has been widely adopted for
processing Big Data in the cloud. While efficient, MapReduce offers very
complicated (if any) means for users to request nodes that satisfy certain
security and privacy requirements to process their data.

In this paper, we propose a novel approach to seamlessly integrate
node selection control to the MapReduce framework for increasing data
security. We define a succinct yet expressive policy language for MapRe-
duce environments, according to which users can specify their security
and privacy concerns over their data. Then, we propose corresponding
data preprocessing techniques and node verification protocols to achieve
strong policy enforcement. Our experimental study demonstrates that,
compared to the traditional MapReduce framework, our policy control
mechanism allows to achieve data privacy without introducing significant
overhead.

Keywords: MapReduce · Node selection · Access control

1 Introduction

The MapReduce computing paradigm is an architectural and programming model
that utilizes a large number of worker nodes in parallel to efficiently process mas-
sive amount of raw unstructured data [1,3,9]. Initial constructions of MapReduce
only ran in a single trusted data center. With the proliferation of the cloud com-
puting, MapReduce has now become a popular means, and typically uses the
worker nodes residing in untrusted public cloud to process Big Data [13,22].
For instance, in the Cisco Nexus 1000V InterCloud, not only are the virtual
machines’ environment heterogeneous, but the actual physical hosts are also
geographically distributed, and offer different degrees of trust and security.

The fact that MapReduce may utilize un-trusted nodes for processing data
raises concerns to data owners who wish to use MapReduce tasks on sensitive
information. For example, with the explosion of patient data after the adoption
of electronic health record, health care organizations are currently outsourcing
data analytics tasks to the cloud, such as counting the occurrences of common
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 55–72, 2015.
DOI: 10.1007/978-3-319-23829-6 5

56 A.C. Squicciarini et al.

Fig. 1. Overview of the main ACEM framework

diseases at different age ranges using the MapReduce. Some health records that
belong to young adults may be privacy sensitive according to the HIPAA law,
and hence the health care organizations may require such sensitive records to be
processed only by the cloud servers (worker nodes) with cryptographic capabil-
ities and also located in USA. Unfortunately, this kind of requirements on the
worker nodes cannot be achieved in any existing MapReduce implementations,
without tedious manual configuration. It is also worth noting that although
methods such as homomorphic encryption [5,18] or outsourced private compu-
tation [4] can protect the data by processing in the encrypted domain, these
approaches are typically computationally expensive and are only feasible for
limited applications [7].

To overcome the above challenge, we propose a novel access control enforce-
ment mechanism, called ACEM (Access Control Enforcement in Mapreduce),
which automatically selects and verifies worker nodes in the MapReduce accord-
ing to data owners’ access control policies. In particular, we first propose a
MapReduce Policy Language (MPL), that is tailored according to the charac-
teristics of MapReduce environments (e.g., the properties of worker nodes in
the MapReduce), facilitating data owners to specify their privacy and security
concerns regarding worker nodes that handle their data. For example, using
MPL, a data owner can explicitly specify that his/her sensitive data can only
be processed by worker nodes located in USA. Since a data owner may have
different access control policies regarding different portions of his/her data, we
further propose a data-policy binding algorithm that automatically partitions
the user’s data based on access control policies and binds each data partition
with the respective policy. Then, we design an efficient collaborative verification
protocol to select qualifying worker nodes for each data partition. Our proposed
approach is elegantly interleaved with existing MapReduce scheduling process
without affecting the core MapReduce architecture. We have implemented a
prototype of our proposed ACEM mechanism as an extension to the Azure’s
iterative MapReduce-Daytona [3,15], and our experimental results demonstrate
both effectiveness and efficiency of our approach.

The rest of the paper is organized as follows. Section 2 gives an overview of
MapReduce and discusses security and privacy issues in MapReduce. Section 3

Policy Driven Node Selection in MapReduce 57

presents an overview of the proposed framework. Section 4 defines a policy lan-
guage for MapReduce. Section 5 introduces the data preprocessing algorithms.
Section 6 describes the policy-based node selection in MapReduce. Section 7
reports experimental results. Finally, Sect. 8 concludes the paper.

2 Related Works

In this section, we first give an overview of the MapReduce, and then discuss
security and privacy issues in MapReduce.

2.1 Background of MapReduce

MapReduce is a functional programming paradigm. It enables parallel program-
ming of large data efficiently using multiple nodes. Its programming model is
built upon a distributed file system (DFS) which provides distributed storage.
Programmers specify two functions: Map and Reduce. The Map function receives
a key/value pair as input and generates intermediate key/value pairs to be fur-
ther processed. The Reduce function merges all the intermediate key/value pairs
associated with the same (intermediate) key and then generates final output. In
a cloud computing setting, these functions are orchestrated by the Master, and
carried out by the mappers, and reducers. The Master acts as the coordinator
responsible for task scheduling, job management, etc. A Master’s module (typi-
cally the data partitioner) splits input data into a set of M blocks, which will be
read by M mappers through DFS I/O. The execution of map and reduce tasks
are automatically distributed across all the nodes in the cluster. The map func-
tion takes as input one of the M blocks, which is defined as a key-value pair, and
produces a set of intermediate key-value pairs. The intermediate result is sorted
by the keys so that all pairs with the same key will be grouped together (the
shuffle phase). If the memory size is limited, the locations of the intermediate
results are sent to the Master who notifies the reducers to prepare to receive the
intermediate results as their input. Reducers then use Remote Procedure Call
(RPC) to read data from mappers and execute user defined reduce functions, in
which the key pairs with the same key will be reduced in some way, depending
on the user defined reduce function. Finally, the output will be written to DFS.

2.2 Security and Privacy in MapReduce

There is growing interest in security of MapReduce [2,5,12,14,16,18,19,24,25].
The Sedic framework [25], is the closest effort to ours. Sedic aims to partition
the data according to the inputs sensitivity level. If a data piece is sensitive, it is
sent to a sensitive mapper. For reducer computations, Sedic modifies the reducer
routines by checking whether they contain certain loop dependent variables: if so,
the partition of sensitive and non-sensitive data is affected, otherwise data from
sensitive mappers would be pushed to non sensitive reducers. Sedic achieves this
goals by modifying how the data is read: normally, the entire data is read using a

58 A.C. Squicciarini et al.

single pointer, while with Sedic only a block of data is read using a given pointer.
As we discuss in Sect. 5.1, ACEM also includes algorithms for data partitioning,
in addition to checking that the workers satisfy user-specified conditions before
they are allowed to process the data.

Also closely related is the Airavat [19] project. Airavat is a secure and pri-
vate framework for MapReduce systems. Airavat aims to enforce differential
privacy, i.e., it aims to ensure that the output of aggregate computations does
not violate the privacy of individual inputs. It achieves this by modifying the
Java Virtual Machine and the MapReduce framework and adding SELinux-like
Mandatory Access Control to the DFS. It is worth noting that, not only does
the methodology of Airavat differ from that of ACEM, but the end goals of the
frameworks are also different: While Airavat tries to prevent the processing of
the data against untrusted code, ACEM tries to prevent the processing of the
data against untrusted nodes.

Another related work, which, similar to our work, relies on distributed verifi-
cation (see Sect. 6.1) is the SecureMR framework [24]. The framework is intended
to be a practical service integrity assurance framework for MapReduce. It allows
mappers to examine the integrity of data blocks from the DFS; verify the authen-
ticity and correctness of the mappers’ results; and allows users to check the
authenticity and correctness of the reducers’ final results.

Finally, this paper is loosely related to the body of work focusing on cloud
computing integrity of computation [4,16,23]. For example Moca’s [16] proposal
deals with distributed results checking for MapReduce. The work relies on the
distributed voting method to check the correctness of the results produced by
MapReduce. This work is complementary to ours in that while it relies on a
distributed approach, it verifies the correctness of the computation, rather than
whether a user’s requirements of the nodes are satisfied.

3 An Overview of ACEM Mechanism

We propose an ACEM (Access Control Enforcement in Mapreduce) framework
that considers security and privacy issues of worker nodes in MapReduce. The
ACEM framework enables data owners to impose security requirements on their
sensitive data and then selects worker nodes that satisfy the users’ security
requirements to perform the MapReduce functions on their data. Figure 1 illus-
trates the main components of the ACEM framework and their interactions.
There are three entities involved in ACEM.

– Clients equipped with the policy specification plug-in is able to submit com-
putation task as well as a set of policies. These policies express the constraints
against properties of the workers computing or managing clients’ data.

– Master node taking with a policy enforcement point (PEP) module is responsi-
ble for scheduling the MapReduce tasks and coordinate distributed evaluation
of users’ policies.

– Each worker node is installed a policy evaluation/verification module, such
that the properties of this worker node could be evaluated to assess their

Policy Driven Node Selection in MapReduce 59

eligibilities to access potion of user data, while the other nodes in synch with
the master node could act as verifiers to verify the correctness of the policy
evaluations.

We assume that at least the master node is always under the control of
the cloud service provider, and therefore can be fully trusted. We adopt the
semi-honest adversary model for worker nodes in that workers in the cloud are
expected to follow the ACEM protocols but may explore the information they
processed.

The execution of ACEM-MapReduce programs is similar to MapReduce pro-
grams, the difference being that nodes processing MapReduce tasks on a given
client input are selected according to clients’ policies, while preserving the origi-
nal execution flow. Recall the example of outsourcing patient records mentioned
in the introduction, wherein the health care organization would request that
sensitive patient records should be handled only by the worker nodes located
in the USA and with cryptographic capabilities. In this case, the master node,
upon receiving the policy, completes two preliminary steps: (1) it pre-processes
the input data to partition them according to the user’s policies, and (2) it
triggers the collaborative property verification protocols, to identify nodes capa-
ble to carry out the required MapReduce tasks that also meet the users’ policy
requirements (e.g. it verifies which nodes are in the USA and whether they have
cryptographic capabilities). Upon verification of the policy’s satisfiability, the
data distributed by the master becomes available to the eligible nodes, starting
the process at the mappers. As the mappers complete their tasks, the control is
back to the master. The master, upon shuffling the data in accordance with the
application’s logic and MapReduce routines, will assign the intermediate data
to worker nodes that satisfy policies for reduce tasks. To keep track of the input
data and its related policies, the data may be tainted after the processing as
they go through intermediate stages.

4 MapReduce Policy Language

The first challenge in achieving access control in MapReduce is to formally spec-
ify data owners’ various security and privacy requirements on their data items
such that only the policy-compliant worker nodes are allowed to access these
items. Although traditional policy language such as XACML is high expressive,
it would introduce high degree of complexity (for both configuration and enforce-
ment of policies), escaping from for our purposes. To tackle this challenge, we
propose a more succinct yet still expressive policy language, called MapReduce
Policy Language (MPL). Compared to traditional policy language, MPL enjoys
two unique features: (1) MPL policies can be quickly composed by removing
unnecessary components in traditional policy languages. (2) MPL policies can
be evaluated within a tractable time. In what follows, we firstly give the defini-
tion of MPL, and then describe how to evaluate MPL.

60 A.C. Squicciarini et al.

4.1 MPL Definition

Before introducing MapReduce Policy Language (MPL), we first provide the
definition of a condition language that is used in MPL.

Definition 1 (Condition Language). Suppose U = {u1, u2, . . . , un} is the
attribute universe, and domui

is the domain of each attribute ui ∈ U . Let θi ⊆
{<,≤,=, �=, >,≥,⊂,⊆,⊇,⊃} denote the operation set defined for attribute ui in
its domain domi. Then, we can recursively define the condition language LU on
U as follows:

– For any attribute ui, value v ∈ domui
and operation θ ∈ θi, the atomic con-

dition 〈uiθv〉 belongs to LU .
– For any condition ci, cj ∈ LU , the composite conditions ci∧cj and ci∨cj belong

to LU , where “∧” and “∨” respectively denotes “AND” and “OR” operation.

As an example, we consider a two attribute-universe {u1, u2}. Suppose u1

has domain domu1 = [1, 3] and the operation set {<,>,≤,≥,=, �=} defined on
domu1 ; u2 has domain domu2 = {1, 2, 3} and the operation set {⊂,⊆,⊇,⊃,=, �=}
defined on domu2 . Then, we can have atomic conditions: 〈u1 < 1〉, 〈u1 < 2〉, 〈u1 <
3〉, 〈u1 > 1〉, . . . for u1 and 〈u2 ⊂ {1}〉, 〈u2 ⊂ {1, 2}〉, . . . for u2, which belong to
L{u1,u2}. Moreover, any AND/OR-composition (e.g., 〈u1 < 3〉∧ 〈u2 ⊆ {1, 2, 3}〉)
of the conditions in Lc still belongs to Lc. It is worth noting that, Lc has infinite
number of conditions and most of them (e.g., 〈u1 < 3〉 ∧ 〈u2 ⊆ {1, 2, 3}〉 ∧ 〈u1 >
3〉) are permanently not satisfied. Of course, we only account for the significant
subset of Lc, in which the conditions could be satisfied.

Unlike arbitrary Boolean expressions, the Boolean expressions in Lc can be
solved in a polynomial time, which is important for ensuring the efficiency of
policy evaluation when integrating ACEM system into MapReduce. In terms
of expressiveness, Lc covers all cases except the condition that involves direct
comparison of multiple attributes (e.g., ui > uj). We argue that such comparison
of multiple attributes rarely occurs in the MapReduce data processing since
attributes associated with a data item (or a worker node) are different from one
another and usually not comparable, e.g., we do not compare attributes “age”
with “location” in a person’s medical record.

Next, we explain our proposed policy language MPL. In MPL, both users’
data items and worker nodes are represented as a set of attribute-value pairs.
Specifically, a user’s dataset is a collection of data items, i.e., D = {data1, data2

..., datan}, and each data item datai (1 ≤ i ≤ n) is in the form of datai={(u1, v1)

. . . (us, vs)}, where uj(j = 1, . . . , s) is an attribute name and vj (j = 1, . . . , s) is
the corresponding attribute value. Similarly, a worker node node is represented
by a set of property-value pairs, i.e., node={(w1, v1), ..., (wt, vt)}, where wi is
property name and vi is the corresponding value. For example, we consider a
health care organization (HCO) outsource computing task to cloud and have a
set of attributes for data items like data={(age, 26), (gender,male), (country,
USA), (diagnos,HIV), (date, 10/2013)}, which means a 26-year old male born

Policy Driven Node Selection in MapReduce 61

in USA was diagnosed HIV in Oct 2013. Correspondingly, a worker node’s prop-
erties may look like: node={(location, USA), (AES, enabled)} which means the
worker node is located in USA and has cryptographic capability.

Based on the attribute expression on both user’s data and worker node, we
can then define MPL. Informally, MPL is a set of policies, each of which specifies
the requirements that a worker node should satisfy to access a certain data item.
The formal definition of MPL is as follows.

Definition 2 (MapReduce Policy Language). Suppose U and W are respec-
tively the universe of data items’ attributes and worker nodes’ properties. A policy
Pi in MPL is a set of rules Pi = {R1, R2, . . . , Rk}, and each rule includes two
components.

– Target is a condition in the condition language LU on U , describing which
data item is to be accessed in this rule.

– Cond is a condition in the condition language LW on W, specifying the security
and privacy requirements that a worker node should satisfy to access the data
item.

To be more clear, let us re-consider the previous HCO example. Suppose
that the task outsourced to the cloud by HCO is to count the number of dis-
eases occurring at each age range. Since some of the patient records are privacy
sensitive, such as patient records belong to young adults (age≤ 14) or patients
who have severe diseases (e.g., HIV), HCO may require the sensitive records to
be handled by cloud servers (worker nodes) that are located in USA with cryp-
tographic capability, while other non-sensitive records just need to be processed
by the servers located in USA. Such requirements can be specified in a MPL
policy as follows:

PHCO = {
R1 : Target〈(age ≤ 14) ∨ (diagnose = HIV)〉,

Cond〈(location = USA) ∧ (AES = enabled)〉
R2 : Target〈(age > 14) ∧ (diagnose �= HIV)〉,

Cond〈(location = USA)]〉
}

4.2 MPL Evaluation

In this section, we discuss how an access request is evaluated against a policy.
First, we define an access request from a worker node as follows.

Definition 3. An access request Qnode is in the form Qnode = (data, node),
which means a worker node node requests to access a data item data.

Given an access request Qnode from a worker node, a rule in a policy will
output a decision value belonging to {Permit, Deny, NotApplicable} as defined
in Definition 4.

62 A.C. Squicciarini et al.

Definition 4 (Rule Evaluation). Given an access request Qnode = (data,
node) and a rule R = (Target, Cond), the effect E(R(Qnode)) of the rule R on
Qnode is defined as follows.

– E(R(Qnode)) = Permit, if R.Target is satisfied by the data item data and
R.Target is satisfied by node.

– E(R(Qnode)) = Deny, if R.Target is satisfied by data but R.Cond is not sat-
isfied by attrnode.

– E(R(Qnode)) = NotApplicable, if R.Target is not satisfied by data.

Since one policy may contain multiple rules and each rule may return dif-
ferent effects regarding the same request, we adopt the first-one-applicable rule
combining algorithm to resolve any possible policy conflict in a simple and effi-
cient manner. The first-one-applicable rule combining algorithm can speed up
the policy evaluation process since the evaluation stops once one applicable rule
is identified.

Definition 5 (First-One-Applicable). Suppose R1, R2, . . . , Rn is a set of rules
in a policy P and Q is an access request. The evaluation Eval(P(Q)) of the policy
P on Q is defined as follows.

– E(P(Q)) = Permit, if the first rule in P that is applicable to Q yields Permit.
– E(P(Q)) = Deny, if the first rule in P that is applicable to Q yields Deny.
– E(P(Q)) = NotApplicable, if none of the rules in P is applicable to Q.

5 Policy-Based Binding

A data owner may have fine-grained security and privacy requirements on various
portions of their data (e.g., sensitive data and non-sensitive data), leading to
multiple access control rules in the corresponding access control policy. In order
to ensure that each portion of data is protected by the respective policy before
being processed, we propose a simple approach to assign the data with the
access control rules that apply to it. Our approach involves two tasks: (i) data
partitioning; and (ii) data tainting.

5.1 Policy-Based Data Partitioning

The policy-based data partitioning aims to partition a data owner’s data items
into subsets according to the access policy imposed on them. After the partition-
ing process, we will obtain multiple equal-sized data buckets. Each data bucket
will contain one or more groups of data items, and each group of data items is
associated with the same access rule. These data buckets will then be treated as
input files to MapReduce for further data processing. In what follows, we present
the detailed algorithm for policy-based data partitioning.

Suppose that a user submits a set of data items D = {datai} along with a
policy P = {R1, ..., Rn} to be enforced. Algorithm 1 shows the data partitioning

Policy Driven Node Selection in MapReduce 63

algorithm on D in terms of P. Initially, the master node creates an empty bucket
with fixed capacity for each rule in P (lines 2 to 5 in Algorithm 1). The size of
the bucket is pre-defined according to a scheduling algorithm followed by the
master node.

The master node then starts scanning the data items. Each data item will
be evaluated against the rules in P. According to the “first-one-applicable” rule
combining algorithm, if Ri is the first rule that is applicable to data, i.e., data
satisfies the target component in Ri, the master node will insert data into the
bucket bucketi and stop checking the remaining rules. In the case that the
bucket of the first applicable rule Ri is full, the master node will add one more
bucket to the first identified applicable rule and assign data to it. If none of
the remaining rules applicable to di, di will be inserted to a separate bucket
marked as “FreeBucket”. Data items in this FreeBucket can be assigned to any
worker nodes. At the end, up to n + 1 data partitions will be generated, where
each partition may be associated with multiple buckets. An example of the data
partitioning is given below.

Reconsider the policy PHCO in Sect. 4.1 and the following data items:
data1={(age, 26), (gender,male), (country, USA), (diagnos,HIV), (date, 10/2013)}
data2={(age, 22), (gender, female), (country, USA), (diagnos, flu), (date, 11/2013)}
data3={(age, 56), (gender,male), (country,USA), (diagnos, diabeties), (date, 8/2013)}
data4={(age, 10), (gender,male), (country, USA), (diagnos, flu), (date, 10/2013)}

After data partitioning, two buckets will be generated with respect to the
two rules in PHCO. Since data1 and data4 satisfy PHCO.R1.Target while data2

and data3 satisfy PHCO.R2.Target, bucket1 = {data1, data4} and bucket2 =
{data2, data3}. FreeBucket is not needed in this case.

5.2 Data Tainting

In some MapReduce applications that involve multiple rounds of map and reduce
phases, the output data may no longer possess the same set of attributes as the
original input, which causes difficulty in determining the proper access policies
on the intermediate results. For example, suppose a user has a spatial policy
P = {(Target〈length > 10〉, Cond〈 (location = “US WEST”) ∧ (crypto =
“3DES”)〉} on the initial input file. After the first round of computation, we
could obtain an area of rooms as the output which typically does not have the
same type or unit compared to the input. In this case, we cannot easily determine
whether the policy target still applies to the data (now an area) for the next
round of processing.

To address this issue, we adopt data tainting techniques to the data being
protected. The underlying idea is to taint the data so that output data items are
protected in the same way as the input data, i.e., under the protection of the same
policy rule. In order to track the relationship between the input and output data,
we let the master node apply the taint [8,17] to the input data before assigning
the mapping tasks. Tainting results in a modification of the input data type
to add a new property to the data. In the above example, tainting consists of

64 A.C. Squicciarini et al.

Algorithm 1. Data Partitioning Algorithm
1: procedure DataPartition(D, P)
2: for i ← 1 to n do
3: create an empty bucket bucketi
4: end for
5: for each item data ∈ D do
6: for i ← 1 to n do
7: if data satisfies Ri.Target then
8: if bucketi is not full then
9: insert data into bucketi

10: break
11: else
12: add one more bucket appended with bucketi and put data in it
13: break
14: end if
15: end if
16: if i equals n then
17: if freebucket is not created then
18: create a new freebucket

19: end if
20: insert data into freebucket

21: end if
22: end for
23: end for
24: end procedure

modifying the input length (usually defined as int or float) to an object. The
object includes a data portion with the original integer or float, along with a
Boolean portion called tainted showing whether the object is tainted or not, and
a string portion called taint which is used to set a particular taint value. After
the map round, mappers may also apply or re-apply the taint in either of the
following two cases: (1) when the input to the mapper is tainted, or (2) when
the user inserts, deletes or revises existing policies. Implementation details about
data tainting will be provided in Sect. 7.

6 Policy Evaluation and Enforcement in MapReduce

In this section, we first present the overall algorithm for collaborative policy
evaluation in MapReduce, and then make specific to two important issues in the
collaborative verification protocol, i.e., (1) how to determine the number of nodes
needed for verification and (2) how to conduct a single property verification at
a verifying node.

6.1 Collaborative Policy Evaluation Protocol

In order to verify whether the properties of worker nodes in charge of computing
satisfy the conditions imposed in the respective policy, a straightforward method

Policy Driven Node Selection in MapReduce 65

is to let the trusted master node verify the worker’s properties and perform the
policy evaluation. However, this method suffers from several shortcomings: on
the one side, it introduces overhead computation at the master node, which
would become the bottleneck of the entire system and negatively impact the
distributed nature of MapReduce; on the other side, it is also hard for master
node to keep track of all the worker nodes’ properties up to date [3,9].

To overcome these issues, we propose a collaborative property verification
protocol to facilitate the policy evaluation at the master node. The underlying
intuition in the collaborative property verification is to maximize computing
resource utilization and use ordinary worker nodes, instead of the master node
in straightforward method, to carry out verification of other worker nodes’ prop-
erties. In our proposed protocol, at each round any worker node’s properties is
verified by multiple peers randomly selected; and any peer is able to verify a ran-
domly selected set of properties, not only speeding up the verification process
but also reducing the probability of worker nodes’ collusion. The number of
nodes to use as verifiers is chosen carefully according to the probabilistic scheme
discussed in the next section, to define a combination of verifier nodes which are
redundant enough to ensure low risk of collusion.

Our proposed collaborative verification protocol works as follows. Suppose
that a client submits a policy P = {R1, R2, . . . , Rn} along with the data D, and
the master node has partitioned the data into buckets: bucket1, . . . , bucketn
and freebucket, respectively associated with the rule R1, R2, . . . , Rn and non-
compliant policy, as described in Sect. 5.1.

Initially, the master node scans the condition components of all the rules
and extracts a set of worker node properties attrR that need to be verified. For
instance, consider the rules exemplified in Sect. 4.1, attrR1 = {location,AES}
with respect to R1 : Target〈(age ≤ 14) ∨ (diagnose = HIV)〉, Cond〈(location =
USA) ∧ (AES = enabled)〉, while attrR2 = {location} for the rule R2 : Target
〈(age > 14) ∧ (diagnose �= HIV)〉, Cond〈(location = USA)]〉.

Next, the master node invoke the collaborative verification protocol to verify
the extracted properties. Suppose that the condition component of R.cond is
written in the conjunctive form c1 ∧ . . . ∧ ck where ci (1 ≤ i ≤ k) is a disjunc-
tive form (i.e., ci = ci1 ∨ ci2 ...). To reduce the risk of possible corruption of the
verifier nodes, our proposed verification protocol aims to verify each disjunctive
sub-clause ciby at least t peer worker nodes. Accordingly, the master node com-
putes hash S = Hash(w1|| . . . ||w|attrR|) and conducts a two-layer secret sharing
on S according to R.Cond. Specifically, S is firstly broken into k first layer shares
(denoted as s1, s2, . . . , sk) through (k, k)-secret sharing, and then for the first
layer share si, the master node further breaks it into |ci|r sub-shares (denoted
as si,1, si,2, . . . , si,|ci|r) through (t, |ci|r)-secret sharing, where |ci| denotes the
number of properties in ci and r is a system parameter restricting the number
of verifying nodes. Then master node assigns the verification tasks (e.g. location
verification, security property verification) to selected verifying nodes (the total
number of verifying nodes is r

∑k
i=1 |ci|), and each verification task includes veri-

fying a particular property against the corresponding condition. The verification

66 A.C. Squicciarini et al.

task is distributed and assigned to each verifying node along with a sub-share
si,j for i = 1, 2, . . . , k and j = 1, 2, . . . , |ci|r.

Besides assigning verification tasks, the master node needs to inform the
selected worker nodes where to verify their properties. To this end, a verification
direction message of the form

({(vlisti, wi)}, rnd,EncS(data),Sig(Hash({(vlisti, wi)}||rnd||data))

is required to be delivered to each selected worker node, where (vlisti, wi) is the
pair of verifying node list and its assigned property to be verified, EncS(data) is
the encrypted data item using key S (or the address where the encrypted data
is located), rnd is a random sequential number for preventing replay attack and
Sig(Hash({(vnodei, wi)}||rnd||data) is a signed hash of all the message content
to ensure authentication and integrity of the entire message.

Upon receiving a verification direction message, the worker node (say wnodei)
sends t claims for each property wi to the corresponding verifiers in vlisti to
be verified. The message to be sent to verifying nodes includes the verifying
property wi, the corresponding claim ci, a random nonce non and a hash of
the content for guaranteeing message integrity. For example, if three verifiers
are in charge of property location verification and the threshold t is set 2, the
worker node randomly picks verifying nodes, and respectively sends a request
message (location, clocation, non, Hash(location||clocation||non)) to two of them.
Upon receiving the request message, verifying node vnodei and the worker node
wnodei engage in a property-specific verification protocol. As the protocol is
successfully completed, the share for vnodei is released to wnodei.

Upon completing t successful verifications for each property in sub-clause ci,
the worker node is able to obtain t|ci| shares to reconstruct the first layer share
si. Notice that since ci is a disjunctive sub-clause, the worker node only needs t
sub-shares for reconstruction (even some of them originate from the verification
of different properties). The rest of sub-shares could be used for verifying the
correctness of reconstruction, i.e., check whether all obtained the sub-shares
are from a single secret. In a similar way, the other first layer shares can be
obtained, and the master could further access the data item by reconstructing
S and decrypting DecS(data).

6.2 Number of Verifiers for Collusion Control

Let c1 ∧ . . . ∧ ck denote the condition component in a rule to be evaluated
against a worker node, where ci (1 ≤ i ≤ k) is a disjunctive form. Since some
peer worker nodes may be corrupted and may not send back the requested
secret share in time, we estimate the minimum number (denoted as n) of nodes
needed for a worker node to successfully compute the rule effect from received
verification results, at a probability larger than a given threshold ρ. Specifically,
n =

∑k
i=1 |ci|r, where |ci| denotes the number of worker properties in ci, and

r denotes the number of verifying nodes needed for each property to guarantee
the desired verification successful rate ρ.

Policy Driven Node Selection in MapReduce 67

Suppose that prob is the probability of a verifying node being corrupted. The
probability probS of receiving secret shares from non-corrupted nodes could be
computed as follows.

probS =
k∏

i=1

(
r|ci|

t

)

probr|ci|−t(1 − prob)t (1)

= (1 − prob)t
k∏

i=1

(
r|ci|

t

)

probr|ci|−t (2)

Equation (2) can be understood as follows. For each disjunctive sub-clause ci
in R.Cond, There are r|ci| verifying nodes having been assigned. Since each
disjunctive sub-clause ci needs to be verified at least t times, there are

(
r|ci|
t

)

different ways to choose t from r|ci| nodes. The number of combinations is then
multiplied with the probability for t nodes not being corrupted, i.e., probn−t(1−
prob)t to get the probability of successfully reconstructing the share si for ci.
Finally, the probabilities of k disjunctive sub-clauses are multiplied together to
compute the final probability probS .

The corruption probability prob could be obtained from statistic data while
t is a system parameter with respect to the user desired reliability level. Given
known values of t and prob, we can compute the minimum value of r and hence
the minimum value of n by resolving the following inequality probS ≥ ρ.

6.3 Property Specific Verification

Verifying the properties associated with any worker (see Sect. 6.1 of the verifi-
cation protocol), entails some property-specific verification protocols. We now
present two examples of two possible types of such protocols.

Location Verification. Location specific verification protocol includes two
main steps. First, the verifying node ascertains that the input and output loca-
tions specified by the worker node match its actual input and output locations,
and checks the locations of the virtual machine hosts to perform computations
satisfy the location requirement specified by the user. Second, the verifying node
continues to check whether the directories specified for the input and output as
well as the computation assemblies indeed exist. The latter location verification
protocol is treated by our system as a security verification task, and is similar
to file access security verification, i.e., the verifier tries to either store or access
a document from the specified directory

To estimate a node’s location with reasonable accuracy, the verifier can test
and analyze the round trip time (RTT) of a message sent from the worker node to
estimate its source, following an approach similar to the mulitlateration scheme
used for distance verification in mobile ad-hoc networks [6]. Specifically, in the
MapReduce environment, the verifying node could have multiple sub-nodes from
different locations working as sub-verifiers, and know the maximum, minimum

68 A.C. Squicciarini et al.

and average number of hops from its own location to the geographical locations
wherein the sub-verifiers are located. Each sub-verifier requests the worker node
to echo a message within a given number of hops or a specified time time interval.
With the knowledge of sub-verifiers’ locations, the verifying node can then use
the minimum and maximum time/number of hops collected by the sub-verifiers
to estimate the worker’s location. Notice that the number of hops and the time
constraint requested by each verifier should be varied, such that the worker node
could not know the location being requested beforehand.

Security Capabilities. The restrictions on security capabilities are expressed
to identify whether a node is capable of providing basic security functions. One
such example is the support of file level access control, or encryption/decryption.
Additional properties also include database access control, private calculations,
secure storage, etc. By specifying one or more of these security properties in a
policy, clients could gain security guarantees on the MapReduce computation.
Intuitively, these security properties specified by client in policy could be numer-
ous, and the corresponding verification protocol may change accordingly. In what
follows, we briefly discuss the verification of encryption/decryption support for
instance.

The encryption/decryption support could be verified using the cryptographic
algorithm verification program provided by NIST (National Institute of Stan-
dards and Technology) [21]. Specifically, the verification program maintains a list
of implementations of various algorithms such as the AES, DED, Triple-DES.
For each of the algorithms, the program also has a set of tests built to verify
different modes of operation of these algorithms, with different key sizes. When
the start of verification, the program requests configuration information, and
then provides the worker node with some test data (i.e. the key, some plaintext,
and an initialization vector if applicable) to be processed. The results are finally
sent back to the verifying node and validated to identify whether the worker
node’s implementation of the algorithm is indeed standard-compliant.

7 Deployment and Evaluation

In this section we discuss our proof-of-concept implementation, followed by a
discussion of the results of our experimental analysis on the proposed protocols.

7.1 Deployment Overview

We implemented the proposed framework on top of Microsoft Azure frame-
work. For our deployment, we used the Daytona as our MapReduce runtime,
and selected the West US affinity group to create and co-host the host service.
In our testbed, we allocated a varying number of VMs per core, starting from 1
and scaling up to 20. We deployed 5 of these projects, to utilize a total of about
5 cores. The sample application of k-means is updated with our modules using
Visual Studio 2012.

Policy Driven Node Selection in MapReduce 69

We extended Daytona’s modules to integrate the functionalities offered by the
proposed ACEM framework. The core modules of ACEM are Policy Enforcement
Point (PEP) and Policy Decision Points (PDP), which are respectively in charge
of the enforcement and evaluation of policies.

– PEP includes data pre-processing, tainting and evaluation, and is typically
deployed at the master node. (1) Pre-processing is a method integrated into
the IDataPartitioner class, such that the data loaded from the input file
could be treated in a single batch into string arrays for pre-processing. (2) Taint
is allowed to be part of the Controller and IMapper respectively deployed
at both worker nodes and master node, and to carefully taint the data in
different ways based on the proprietary nature of the applications, to avoid
bleaching. (3) Evaluation of worker nodes’ properties.

– PDP implements the collaborative verification modules including data parti-
tioning, verifiers’ selection and secret key generation, all of which reside with
the classes Controller and IDataPartitioner at the master node. In our
current prototype, the Controller calculates the minimum number of verifiers
required [11] according to Eq. (6.2), with an assumption that the probability
that any given verifier is corrupted is 0.1, and uses a random 256-bit length
nonce to generate the requisite number of key share. The communication pro-
tocols between the worker nodes and the verifying nodes reside at both the
IMapper and IReducer classes. Every node hosts the methods required to
carry out property verification.

7.2 Experimental Evaluation

Since the data partitioning only needs to be done once off-line for all kinds
of analysis tasks, in the following, we report the runtime overhead caused by
tainting and collaborative policy evaluation.

The first set of experiments aims to measure the overhead introduced by
tainting. Tainting is executed by the master node before mapping phase, and
the mappers have to apply the taint again once the mapping is completed. Since
the master and worker nodes have the similar configurations, the measurement
for both tasks can be done at any node. We simply chose a worker node at
random for these measurements. The results of this evaluation are reported in
Fig. 2(a). As shown in the figure, it is not surprising to see that the time taken
for tainting increases with the number of the data partitions. This is because
the more data partitions, the more data items need to be tainted.

Next, we evaluate the efficiency of the collaborative policy evaluation protocol
introduced in Sect. 6. Figure 2(b) shows the time from the property extraction to
the key generation by executing the two-layer secret sharing; and then Fig. 2(c)
shows the total time for executing a k-means clustering task that involves the
actual verification of a worker node’s properties including nodes’ capabilities,
location, files access, support for cryptographic protocols (i.e. AES, DES, 3DES).
The detailed explanation of the results are the following.

As shown in Fig. 2(b), the time taken for the keys to be obtained by the
verifying worker nodes increases linearly with the total number of worker nodes.

70 A.C. Squicciarini et al.

Distributed Single
Centralized Single

Distributed Iterative

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50

T
im

e
C

os
t (

se
co

nd
)

Number of Partitions

Tainting Time

(a) Tainting Time

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

T
im

e
C

os
t (

se
co

nd
)

Number of Worker Nodes

Verification Time

(b) Distributed Verification Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 2 3 4 5 6 7 8 9 10

T
ot

al
 T

im
e

(s
ec

on
d)

Number of Rules

Centralized Iterative

(c) Total Execution Time

Fig. 2. Processing Time

Specifically, in the experiments, up to 36 nodes act as verifiers for 99 workers.
When a fewer number of worker nodes are used for a job, the number of veri-
fiers is accordingly reduced to maintain a ratio of worker nodes to verifiers as
about 2.75 : 1, to ensure that the probability of receiving a key share from an
uncorrupted verifier is higher than 0.5. Therefore, the more worker nodes to be
verified, the more key shares need to be generated and hence the time increases.

Figure 2(c) shows the comparison of our proposed collaborative policy eval-
uation approach (dented as “distributed”) against a centralized policy evalu-
ation approach (denoted as “centralized” in the figure). Both one-round K-
means clustering and iterative (10-round) K-means clustering are considered.
It is clearly shown that our distributed approach is several orders of magnitude
faster than the centralized approach. This is because the centralized approach
requires the master node to conduct all the property verifications and the master
node becomes the performance bottleneck. In addition, we would like to mention
that our approach incurs very little overhead to the original K-means algorithm.
For instance, the runtime for the original k-means algorithm on 1000 data points
averages at around 40 seconds for one iteration. After introducing our approach
for privacy protection, the runtime is only 45 seconds (about 10 % overhead).

Policy Driven Node Selection in MapReduce 71

8 Conclusion

In this paper, we proposed a novel access control mechanism for node selection
and data processing in MapReduce, i.e., the ACEM (Access Control Enforce-
ment in Mapreduce). ACEM provides data owners with strong controls on the
worker nodes managing their potentially sensitive data. Bay restricting access to
nodes with desirable properties, simultaneously not burdening users with com-
plex configuration tasks, data owners can gain confidence on the trustworthiness
of the computation.

Needless to say, our solution tackles only a small problem in the complex
space of secure and customized computation in the cloud settings, and has some
limitations itself. For instance, even if successfully verified, there is no guarantee
that if some functional properties are tested (like cryptographic support) the
worker will actually behave as expected. Further, since properties are verified by
at least t nodes, the nodes can cheat the verification process if enough of them
collude with each other. In future, we will strengthen our current approach by
ensuring the verifiers selected do not consist of any loops [10]. Alternatively, we
may employ incentivized supervision schemes (e.g. [20]).

Acknowledgement. Portion of the work from Dr. Squicciarini was funded under the
auspices of National Science Foundation, Grant #1250319. Portion of the work from
Dan Lin was funded by the National Science Foundation (NSF-CNS-1250327 and NSF-
DGE-1433659).

References

1. Amazon: Amazon EMR with the mapr distribution for Hadoop (2009). http://
aws.amazon.com/elasticmapreduce/mapr/

2. Ananthanarayanan, G., Kandula, S., Greenberg, A.G., Stoica, I., Lu, Y., Saha, B.,
Harris, E.: Reining in the outliers in map-reduce clusters using mantri. In: OSDI
2010 Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, vol. 10, p. 24 (2010)

3. Barga, R.: Project Daytona: Iterative mapreduce on Windows Azure (2011)
4. Blanton, M., Atallah, M.J., Frikken, K.B., Malluhi, Q.: Secure and efficient out-

sourcing of sequence comparisons. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 505–522. Springer, Heidelberg (2012)

5. Brenner, M., Wiebelitz, J., von Voigt, G., Smith, M.: Secret program execution in
the cloud applying homomorphic encryption. In: Proceedings of the 5th IEEE Inter-
national Conference on Digital Ecosystems and Technologies Conference (DEST),
pp. 114–119 (31 May–3 June 2011)

6. Capkun, S., Hamdi, M., Hubaux, J.P.: Gps-free positioning in mobile ad-hoc net-
works. In: Proceedings of the 34th Annual Hawaii International Conference on
System Sciences, p. 10. IEEE (2001)

7. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012)

http://aws.amazon.com/elasticmapreduce/mapr/
http://aws.amazon.com/elasticmapreduce/mapr/

72 A.C. Squicciarini et al.

8. Dalton, M., Kannan, H., Kozyrakis, C.: Raksha: a flexible information flow archi-
tecture for software security. In: ACM SIGARCH Computer Architecture News,
vol. 35, pp. 482–493. ACM (2007)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large
clusters. Commun. ACM 51(1), 107–113 (2008). http://doi.acm.org/10.1145/
1327452.1327492

10. Dutta, D., Goel, A., Govindan, R., Zhang, H.: The design of a distributed rat-
ing scheme for peer-to-peer systems. In: Workshop on Economics of Peer-to-Peer
Systems, vol. 264, pp. 214–223 (2003)

11. Hazewinkel, M.: Lagrange Interpolation Formula. Encyclopedia of Mathematics.
Springer, Berlin (2001)

12. Kagal, L., Finin, T., Joshi, A.: Moving from security to distributed trust in ubiq-
uitous computing environments. IEEE Comput. 34(12), 154–157 (2001)

13. Lordan, F., et al.: Servicess: an interoperable programming framework for the
cloud. J. Grid Comput. 12(1), 1–25 (2013)

14. McSherry, F.D.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 19–30. ACM (2009)

15. Microsoft: Windows azure (2010). http://www.windowsazure.com/en-us/
16. Moca, M., Silaghi, G., Fedak, G.: Distributed results checking for mapreduce in

volunteer computing. In: 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum (IPDPSW), pp. 1847–1854 (2011)

17. Myers, A.C.: Jflow: practical mostly-static information flow control. In: Proceed-
ings of the 26th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 228–241. ACM (1999)

18. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Secu-
rity Workshop, pp. 113–124. ACM (2011). http://doi.acm.org/10.1145/2046660.
2046682

19. Roy, I., Setty, S.T.V., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: security and
privacy for mapreduce. In: Proceedings of the 7th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI 2010, p. 20. USENIX Associ-
ation, Berkeley (2010). http://dl.acm.org/citation.cfm?id=1855711.1855731

20. Saroiu, S., Gummadi, K.P., Gribble, S.D.: Measurement study of peer-to-peer file
sharing systems. In: Electronic Imaging 2002, pp. 156–170 (2001)

21. National Institute of Standards and Technology: Cryptographic module validation
program management (2013). http://csrc.nist.gov/groups/STM/cmvp/index.html

22. Vizard, M.: Hybrid cloud computing faces multiple challenges (2013). http://www.
cioinsight.com/it-strategy/cloud-virtualization/hybrid-cloud-comp

23. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive
verifiable computation. In: Proceedings of the IEEE Symposium on Security and
Privacy (2013)

24. Wei, W., Du, J., Yu, T., Gu, X.: Securemr: a service integrity assurance framework
for mapreduce. In: Proceedings of the Computer Security Applications Conference,
ACSAC, pp. 73–82 (2009)

25. Zhang, K., Zhou, X., Chen, Y., Wang, X., Ruan, Y.: Sedic: privacy-aware data
intensive computing on hybrid clouds. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, CCS 2011, pp. 515–526. ACM (2011)

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://www.windowsazure.com/en-us/
http://doi.acm.org/10.1145/2046660.2046682
http://doi.acm.org/10.1145/2046660.2046682
http://dl.acm.org/citation.cfm?id=1855711.1855731
http://csrc.nist.gov/groups/STM/cmvp/index.html
http://www.cioinsight.com/it-strategy/cloud-virtualization/hybrid-cloud-comp
http://www.cioinsight.com/it-strategy/cloud-virtualization/hybrid-cloud-comp

	Policy Driven Node Selection in MapReduce
	1 Introduction
	2 Related Works
	2.1 Background of MapReduce
	2.2 Security and Privacy in MapReduce

	3 An Overview of ACEM Mechanism
	4 MapReduce Policy Language
	4.1 MPL Definition
	4.2 MPL Evaluation

	5 Policy-Based Binding
	5.1 Policy-Based Data Partitioning
	5.2 Data Tainting

	6 Policy Evaluation and Enforcement in MapReduce
	6.1 Collaborative Policy Evaluation Protocol
	6.2 Number of Verifiers for Collusion Control
	6.3 Property Specific Verification

	7 Deployment and Evaluation
	7.1 Deployment Overview
	7.2 Experimental Evaluation

	8 Conclusion
	References

