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Abstract. Almost any malware attack involves data communication between the
infected host and the attacker host/server allowing the latter to remotely control
the infected host. The remote control is achieved through opening different types
of sessions such as remote desktop, webcam video streaming, file transfer, etc. In
this paper, we present a traffic analysis based malware detection technique using
Hidden Markov Model (HMM). The main contribution is that the proposed sys-
tem does not only detect malware infections but also identifies with precision the
type of malicious session opened by the attacker. The empirical analysis shows
that the proposed detection system has a stable identification precision of 90 %
and that it allows to identify between 40 % and 75 % of all malicious sessions in
typical network traffic.

Keywords: Malware detection - Hidden Markov Model (HMM) - Malicious ses-
sions * Traffic analysis

1 Introduction

Malware! is a significant threat and root cause for many security problems on the Inter-
net, such as spam, distributed denial of service, data theft, or click fraud [1]. Malware
attacks are getting more and more sophisticated. The recent campaign of malware-based
attacks targeting the Middle East is a manifestation of this trend. Several organizations
in the Middle East, in particular in the energy industry, reported infections with sophis-
ticated malware in the few last years [2-5].

Most malware consist of (at least) two fundamental components: a client agent, who
runs on infected hosts, and a control server application, widely known as Command
and Control (C&C) server. Almost any malware-based attack involves a data commu-
nication between the infected host and the attacker. This includes sending control com-
mands, stealing confidential files, opening remote control sessions (simple shell, remote
desktop connection, keylogger session, webcam video communication session, etc.).

! Malware and Bot will be used interchangeably.
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The proposed work falls into the network-based malware detection techniques. It
deviates from most of existing work in the literature by not relying on the payload/body
of traffic packets. The approach is based on general characteristics of packets such as
size, direction, and delays between successive packets. The approach is inspired by a
large body of work called traffic fingerprinting [6—11] used to attack anonymity pro-
tocols, in particular Tor [12]. A common type of traffic fingerprinting called website
fingerprinting whose aim is to detect websites visited by a victim, showed recently very
promising results (precision of 90 % [11]).

While existing work in the literature focuses only on identifying malware infections,
the main contribution of this paper is to push the network-based malware detection tech-
nique further to recognize with precision the type of communication being carried out
between the infected host and the C&C server (Remote desktop connection, camera
session, keylogging session, etc.). Identifying the type of malicious session with preci-
sion has several applications, in particular in forensics investigations. To the best of our
knowledge, this is the first work in the literature to tackle this problem.

2 Malicious Sessions

Attackers use different types of malware to infect home and business users having
access to internet. The most common types of malware include trojans, spyware, and
worms. Infected machines are typically part of a large network of owned machines
called botnets. The attacker typically uses a Command and Control server (C&C) to
remotely control the zombie machines. The remote control is typically done through
a feature called Remote Administration Tool (RAT). A RAT provides the possibility
to open several types of malicious sessions with an infected machine: initial connec-
tion, remote shell session, remote desktop session, keylogging session,webcam video
streaming session, audio streaming session, chat session, upload/Download file session,
and screenshot session.

3 Overview of the Detection System

The proposed malware detection system is based on network-level signatures. Figure 1
shows an overview of the detection system. The procedure starts by collecting a set of
packet traces corresponding to each malware/malicious session. This can be achieved
by using a host machine as a honeypot”. This machine is configured to attract malware
attacks by automatically opening suspicious files, using unpatched versions of software,
in particular, web browsers, visiting malicious websites, etc. Once an infection occurs,
the next step is to keep observing/logging the network traffic so that to collect several
instances of typical malware sessions (e.g. Download/Upload of files, screen snapshot
transfer, remote shell, etc.). The set of packet trace instances/samples are then used to
learn a network signature model for each type of session. In order to make the approach
applicable even if the malware uses a form of network encryption, network signatures
are only represented in terms of general characteristics of the packets, in particular, the

2 For large scale systems, the honeypot machine can be replaced by a full honeyNet network.
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Fig. 1. Overview of the malware detection system using one honeypot and HMM models

direction of the packet (C&C to infected host or infected host to C&C), the size of the
packet, and time delay between every successive packets, namely, the Inter Packet Time
(IPT). For instance, Fig. 2 shows the packet trace corresponding to the initial handshake
between a freshly infected host and the C&C of a famous Remote Administration Tool
(RAT) malware called proRat [13]. The trace is composed of 8 packets all of which
are simple TCP segments. Given several samples of such session, the next step is to
generate a signature model that captures the pattern of the sequence of sizes and IPTs.
The model used in this work is a Hidden Markov Model (HMM). The outcome of
the learning phase is a database of HMM models, each model capturing the pattern of
an observed malicious session. The database of HMMs can then be used to analyze
the network traffic in order to detect new infections with the same malware and iden-
tify exactly the type of malicious sessions being opened. The detection system can be
deployed according to different scenarios and at different locations in the network (e.g.
Gateway, Router, Intrusion Detection System, Proxy, etc.).

4 HMM Based Signatures

Packet traces corresponding to malicious malware sessions can very well be represented
using Hidden Markov Models (HMMs). HMM is a statistical Markov model especially
known for its application in temporal pattern recognition. HMM has been mainly used
for speech recognition [14] and bioinformatics [15].

Definition 1. A HMM is a tuple (S, T, O,Q, ) where

— Sisasetof N states {s,52,...,5v}.

— T:S —TI(S) is a state transition function which maps each state S to a probability
distribution over S. Txﬁsj denotes the probability of transition from s; to s;.

— Os aset of M observations {01,02,...,0m}.

- Q:85 —TI(O) is an observation function. Q¢ denotes the probability of observing
o while in state s.
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Fig. 2. Packets Trace of the initial handshake of proRAT malware attack

— T is the initial state distribution, where 7t(s) denotes the probability of s being the
initial state.

The sequence of exchanged packets between the infected host and the C&C server
in every malicious session can be very well represented using an HMM. For example,
the packet trace in Fig. 2 representing the initial handshake between the infected host
and the C&C can be captured using an HMM with 8 states each corresponding to a
packet in the trace. The observation in every state can be the IPT value. Since the space
of possible IPT values (observations) is continuous, we represent malicious sessions
with a Continuous HMM (CHMM) where every state defines a continuous probability
distribution, in particular a Gaussian (Normal) distribution, over the space of observa-
tions. The HMM corresponding to the trace in Fig. 2 can be defined as follows:

Definition 2. The HMM corresponding to the packet trace in Fig.2 is a tuple
(S,T,0,Q,n) such that:

01000000
00100000
- 5={1,2,3,4,5,6,7,8} 00010000
- Q:5— N(u,0%) 00000100
- n=1,0,0,0,0,0,0,0] 000000T1 0
00000001
00000000O

Figure 3 shows the graphical representation of the HMM of Definition 2.

One can note that the states of the HMM as defined in Definition 2 are not hidden
since state 1 is always the first to be visited and the transition function is deterministic.
Hence, one can argue that we could use a simpler Markov model where states are not
hidden. The reasons to choose the HMM model are two fold. First, we need a model
where different observations can be emitted from a single state. Second, HMMs come
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Fig. 3. Graphical representation of HMM of Definition 2

with a well established theory for learning the parameters and computing the probability
of acceptance of a given observations sequence.

All the parameters of the HMM are known (Definition 2) except the parameters
of the Gaussian distributions in every state, namely, the values of the mean (u) and
variance (62). Typically, the observation functions of a HMM are learned based on a
training set of observation sequences. Since the aim of the proposed HMM s is to model
network signatures of malicious sessions, the training sequences should correspond to
valid previously observed malicious sessions.

4.1 Learning the HMM Parameters

Learning HMM parameters based on a set of sequences is one of the basic problems with HMMs.
In his seminal work [14], Rabiner shows how an HMM is trained given a single or multiple obser-
vation sequences. The main idea consists in starting from any HMM model then keep adjusting
the parameters to maximize the probability to accept the observation sequences. Computing the
probability of accepting an observation sequence by an HMM is another basic problem with
HMMs.

Hence, what is required to learn the HMM parameters is a set of packet traces (samples)
corresponding to each type of malicious malware sessions. These packet traces are given as
input to the HMM learning algorithm which returns as output the HMM model. It is impor-
tant to mention that very often, the HMM learning algorithm does not consider all samples in
the training. An initial filtering step is carried out to rule out “noisy” samples. A noisy sam-
ple is a packet trace where the packet sizes do not match the packet sizes of the “majority” of
the other samples. For instance, if most of the samples have the following sequence as packet
sizes: [14,—6,11,13,—13,35,—13,14] (the same as Fig. 2), and one sample of the same set has
a sequence [14,11,11,—6,13,—13,—13]. The latter is considered noisy and is not used for the
training of the HMM model. Notice that negative values are used to distinguish between packets
in different directions: positive value designates a packet going from the infected host to the C&C
while a negative value designates a packet going in the opposite direction (C&C to infected host).

5 Implementation and Experimental Settings

Given a set of packet traces for each type of session, the HMM learning algorithm generates a
set of HMMs. These HMM models are stored in a database. The detection of malware infections
and the exact type of malicious sessions is achieved by scanning network traffic of all hosts in
the private network and trying to identify packet traces accepted by some HMM models. This
process is done in two steps: packet sizes matching and HMM acceptance. The detection system
analyzes the traffic by maintaining a sliding window on the previously observed packets. The
length of the window is equal to A,y representing the number of states of the longest HMM in
the database. The aim of the HMM acceptance step is to make sure that the IPT values of the
current packets in the sliding window exhibit a pattern very similar to the pattern modeled by any
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HMM model in the HMM database. This is achieved looping over all HMMs in the database and
computing the acceptance probability of the sequence of IPTs. A probability larger than a fixed
threshold A means that the last observed packets correspond to the malicious session associated
with the current HMM.

6 Empirical Analysis

In order to assess the accuracy of our HMM based approach to identify malicious sessions, we
used a set of commonly used malware RATs (Remote Administration Tools). Each RAT supports
a set of sessions. Table 1 shows the list of RATs with the sessions considered in the analysis.
An empty cell in the table indicates that the corresponding RAT-session combination was not
considered in the analysis. The reason is that some combinations did not work when the infected
host is running on a virtual machine?.

Table 1. List of Remote Administration Tools (RATs) with the type of sessions considered in the
empirical analysis.

RAT Name Initial |Remote |Chat Keylogger|Upload|Camera |Audio Screenshot
Infection | Desktop File |Streaming Streaming

Beast 2.07 v v v o v

Bifrost 1.2.1 v v v v v

Blacknix 1.1 v v v v v v v

jRAT 3.2.4 v v v v v v

njRAT 0.7 v v v v v v v

Turkojan 4.0 |V v v v v v

Dark Comet 5.3 |V v v v v v

For each combination malware/session corresponding to a checked cell in Table 1, 10 samples
are collected. Each sample is a sequence of packets captured using Tshark sniffing tool.

The approach used to assess the precision of the proposed detection system is cross-
validation [16]. Our experiment consists in applying a 5-fold cross-validation on the collected
data.

Three well established measures in classification are used, namely, precision, recall and
F-measure. Precision measures the fraction of packet traces identified correctly by the proposed
system as malicious sessions of a certain type. Recall measures the fraction of the total set of
malicious sessions in the traffic that are identified correctly by system.

F'1 is a measure that combines both precision and recall.

The first experiment performed consists in applying 5-fold cross-validation on 10 samples
of each malware/session combination. Only HMM models trained using 4 samples or more are
considered. The log likelihood threshold for the HMM acceptance algorithm is fixed to -100.
Figure 4 shows the results of the 5-fold cross-validation. Each of the first 5 histograms shows the
three measure values for each fold. The last histogram is the average of the 5 folds. The average

3 All the experiments were carried out using virtual machines both for the infected host and the
attacker/C&C server.
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Fig. 4. Results of 5-fold cross-validation HMM based detection with 10 samples, a minimum
number of training sequences of 4, and a log likelihood of -100.

precision is more than 85 %. This means that when the detection system identifies a particular
session, there is 85 % chance the identification is correct. The average recall is around 60 %.
This means that 60 % of all sessions in the testing phase have been correctly identified. The F1
measure is around 70 %.

The two remaining experiments performed aim to assess the efficiency of the system to detect
particular malware sessions. Figure 5 shows the precision measures when 5-fold cross-validation
is applied separately on each malware RAT. From the experiment’ result, the detection system
is very efficient in detecting Beast sessions (average recall more than 70 %) while it has hard
time with Blacknix sessions (average recall value less than 30 %). Figure 6 shows the precision
measures when cross-validation is applied separately on each session type. One can notice that
the proposed system is relatively efficient to detect file transfer sessions (average recall of more

than 60 %) but showing lower results for webcam video streaming sessions (average recall of
40 %).
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Fig. 5. Detection efficiency of each malware RAT.
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7 Conclusion

This paper presents a network-based malware detection system. Unlike typical network-based
approaches found in the literature, the proposed system does not only detect malware infections
but also identifies with precision the type of malicious session between the infected host and
the attacker/C&C server. Signatures for malicious sessions are represented using HMMs. The
empirical analysis shows that the proposed system has a high average precision (more than 85 %
in almost all the experiment performed) and a good average recall (around 60 %). While the
precision of the approach is stable (more than 85 %), the recall depends significantly on the
quality of the HMM models which in turn depends on the number of packet trace samples used
effectively in the training. For instance, training the HMM models using 7 packet trace samples
yields a recall of 75 %.

Our plan for future work is to improve the filtering step in the HMM training to consider
slightly noisy packet trace samples in the effective HMM training. This will further improve the
efficiency of the detection system. At the implementation side, gathering the training samples
needs to be further automated.
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