
Characterizing Google Hacking: A First
Large-Scale Quantitative Study

Jialong Zhang(B), Jayant Notani, and Guofei Gu

SUCCESS Lab, Texas A&M University, College Station, USA
{jialong,guofei}@cse.tamu.edu, jayant.notani.93@gmail.com

Abstract. Google Hacking continues to be abused by attackers to find
vulnerable websites on current Internet. Through searching specific terms
of vulnerabilities in search engines, attackers can easily and automati-
cally find a lot of vulnerable websites in a large scale. However, less work
has been done to study the characteristics of vulnerabilities targeted by
Google Hacking (e.g., what kind of vulnerabilities are typically targeted
by Google Hacking? What kind of vulnerabilities usually have a large
victim population? What is the impact of Google Hacking and how easy
to defend against Google Hacking?).

In this paper, we conduct the first quantitative characterization study
of Google Hacking. Starting from 997 Google Dorks used in Google
Hacking, we collect a total of 305,485 potentially vulnerable websites,
and 6,301 verified vulnerable websites. From these vulnerabilities and
potentially vulnerable websites, we study the characteristics of vulnera-
bilities targeted by Google Hacking from different perspectives. We find
that web-related CVE vulnerabilities may not fully reflect the tastes of
Google Hacking. Our results show that only a few specially chosen vul-
nerabilities are exploited in Google Hacking. Specifically, attackers only
target on certain categories of vulnerabilities and prefer vulnerabilities
with high severity score but low attack complexity. Old vulnerabilities
are also preferred in Google Hacking. To defend against the Google Hack-
ing, simply modifying few keywords in web pages can defeat 65.5 % of
Google Hacking attacks.

Keywords: Vulnerability · Google Hacking · Google Dork

1 Introduction

Web and web applications have become a necessary part of our daily lives. Every
day, we interact with a large number of web applications for communication, edu-
cation, and entertainment. Unfortunately, the diversity and complexity of web
implementations make it hard for web developers to build bug-free web appli-
cations. Thus, these bugs/vulnerabilities give attackers a chance to compromise
these benign websites. In [19,22,30], a large number of websites with high repu-
tation were reported to have been exploited by attackers to redirect visitors to
spam websites.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 602–622, 2015.
DOI: 10.1007/978-3-319-23829-6 46



Characterizing Google Hacking: A First Large-Scale Quantitative Study 603

To effectively find those vulnerable websites, attackers began to explore
search engines as their tools. Google Hacking refers to the practice of searching
elaborate terms in search engines to find vulnerable websites. Based on a study
from [18], 33 % of collected bot queries are searching for vulnerable websites.
Another recent study [20] also showed that most of attackers submitted queries
to search engines to look for vulnerable websites with known vulnerabilities.

There are several benefits for launching Google Hacking attacks: (1) Google
Hacking can help attackers easily and efficiently find a large number of vulner-
able websites with almost zero cost. (2) There exist many exploit toolkits in
underground markets, which can automatically test and exploit those vulnera-
ble websites. Thus, attackers can easily find and compromise those vulnerable
websites in a large scale.

During the past 10 years, a large number of web vulnerabilities have been
discovered, disclosed by researchers and software vendors, and are published
on Common Vulnerabilities and Exposures database (CVE) [1]. This gives a
chance for attackers to easily launch Google Hacking attacks. Attackers can eas-
ily choose their target vulnerabilities and generate corresponding search terms.
Existing work has already conducted comprehensive studies either on a set of
vulnerability databases in terms of the evolution of vulnerabilities, the life cycle
of vulnerabilities, and the risk analysis of vulnerabilities [15,28], or on the char-
acteristics of specific type of vulnerable websites such as search poisoning attacks
[30], HTTP parameter pollution [23]. However, not all of those vulnerabilities
can be exploited in Google Hacking, thus the characteristics of vulnerabilities
targeted in Google Hacking attacks are unfortunately still not clear to us.

In this paper, we conduct a first quantitative study on the Google Hack-
ing attacks. Starting from a set of representative Google Dorks (search terms
that can be used to easily find out websites with corresponding vulnerabilities)
used in Google Hacking, we study the characteristics of Google Hacking targeted
vulnerabilities through analyzing relationship among vulnerabilities targeted by
Google Hacking, known web related vulnerabilities, potentially vulnerable web-
sites (websites that have installed with vulnerable web applications), and victims
(vulnerable websites that have been reported to be compromised).

We collect a large number of representative Google Dorks used in Google
Hacking from a largest online public google hacking database [6], and a large
number of known vulnerabilities from a public vulnerability database CVE [1].
We collect a total of 2,101 Google Dorks used for Google Hacking, 997 of them
can be automatically matched with vulnerabilities in the CVE database. We
further search those Google Dorks in Google and collect 305,485 potentially vul-
nerable websites. To evaluate the quality of these potentially vulnerable websites,
we also collect 21,386 websites that have been successfully compromised through
cross-site scripting attacks in the past from an online public XSS attack data-
base [13]. We then cross check these XSS victim websites that also appear in our
collected potentially vulnerable websites, which we term as victim-vulnerable
websites. We find 6,301 websites belong to victim-vulnerable websites.



604 J. Zhang et al.

Then we study the characteristics of Google Hacking from four perspec-
tives: targeted vulnerability, vulnerability-victim relationship, attack impact,
and attack robustness.

– For the targeted vulnerability study, we study the difference between vul-
nerabilities in Google Hacking and all known web related vulnerabilities in
the CVE database, we find that the distribution of vulnerability categories
are quite different between the web related CVE vulnerabilities and targeted
vulnerabilities in Google Hacking. Further study shows that vulnerabilities
targeting on SQL injection attacks and the vulnerabilities with high sever-
ity and low attack complexity are frequently exploited in Google Hacking.
Interestingly we also find that most of relatively old vulnerabilities are also
frequently exploited in Google Hacking. In addition, although Google Hack-
ing does target on some certain popular web applications, it also exploits the
vulnerability from a variety of web applications, even for the applications that
only have one vulnerability in CVE database.

– For the vulnerability-victim relationship study, we investigate the key fac-
tor to the different populations of vulnerable websites. We find vulnerable
application itself could be a key factor to different population of vulnerable
websites.

– For attack impact study, we investigate the impact of Google Hacking by eval-
uating the quality and popularity of victims of Google Hacking attacks. Our
results show that both high-reputation and low-reputation websites could be
victims of Google Hacking. For example, 87.6 % of them have page rank higher
than 31. 14 of them are in top 1,000 Alexa ranks. This again indicates that
Google Hacking can be a good way to find high quality vulnerable websites.

– For the attack robustness study, we check the robustness of Google Hacking
attacks. We design a new metric to evaluate the robustness of Google Hacking.
Our results show that 65.5 % of Google Hacking can be easily defeated by
simply modifying few keywords of web pages.

2 Background

2.1 Google Dork

As we know, search engines are designed for efficiently finding information on
Internet. Usually, users simply input search terms (keywords) and search engines
will return relevant websites that contain corresponding information. However,
search engines also support some special operators for relatively complex search-
ing, such as inurl, intitle, and intext. Search queries with these special operators
are called Google Dorks. With the help of Google Dorks, users can easily and
quickly find more accurate search results.

In recent years, Google Dorks have also been abused by attackers to launch
Google Hacking [20]. For example, inurl:“search results.php?browse=1” is a

1 3 is the average PageRank score based on [12].



Characterizing Google Hacking: A First Large-Scale Quantitative Study 605

Google Dork that can reveal websites with the SoftBiz Dating Script SQL Injec-
tion vulnerability, a vulnerability that allows remote attackers to execute SQL
commands. Figure 1 shows some Google search results of such Google Dork. In
this paper, we also use such Google Dorks as input to find vulnerable websites
targeted by Google Hacking.

Fig. 1. Google Dork search results

2.2 Web Vulnerability

As more and more applications now can be interacted through web interface,
such as online banking, online shopping, and online social networking, remote
attacks on web applications are on the rise due to the large profits and scalabil-
ity. Thus, web related vulnerabilities attract much more attention from attackers
than traditional local exploit software vulnerabilities do. To find all known web
vulnerabilities in the CVE database, we first extract vulnerabilities with “net-
work” as access vector, which are considered to support remote exploit. Among
all remote exploit vulnerabilities, we further extract web related vulnerabilities
by checking keywords in their descriptions. Google Hacking usually targets on the
following certain types of web vulnerabilities. All these four categories represent
more than 90 % of targeted vulnerabilities of Google Hacking in our database.

– SQL Injection [10] is done by injecting strings into database queries to
change the database content or dump the database information such as pass-
words.

– Cross-site scripting(XSS) [4] is done by injecting JavaScript into web
applications to bypass access controls such as the same origin policy.

– Remote Execution [9] allows attackers to run arbitrary code in target
servers to execute their own commands.

– Path Traversal [5] allows attackers to access files that are not intended to
be accessible.



606 J. Zhang et al.

Fig. 2. Google Hacking

2.3 Google Hacking

Vulnerability databases and existing studies have already published the details of
known vulnerabilities and corresponding exploit methods. However, one impor-
tant question for attackers is how to automatically find vulnerable websites with
those vulnerabilities in a large scale. Google Hacking is one way to exploit search
engines to find vulnerable websites. Figure 2 is a general Google Hacking pro-
cedure. In this attack, attackers first need to choose their target vulnerabilities
and generate corresponding Google Dorks as shown in 1©. Then they can col-
lect potentially vulnerable websites by directly searching Google Dorks in search
engines 2©. In this case, since not all of search results are actual vulnerable
websites, attackers need to further scan and exploit those potentially vulnerable
websites 3©. They can use the exploit methods provided from the vulnerabilities
databases or exploit tools from underground markets to automatically exploit
those vulnerable websites. Since not all of vulnerable websites can be successfully
exploited due to patching or personalized configuration, only the websites that
can be successfully exploited become victims, which can be further abused by
attackers to host spam or steal sensitive information.

In this paper, we conduct a comprehensive study of characteristics of Google
Hacking from the following 4 perspectives. (i) Targeted vulnerability (labeled
1©), e.g., what kind of vulnerabilities are typically targeted by Google Hacking?
(ii) Vulnerability-victim relationship (labelled 2©), e.g., what kind of vulnera-
bilities usually have a large population? (iii) Attack impact (labeled 3©), e.g.,
what is the impact of Google Hacking? (iv) Attack robustness, e.g., how easily to
protect vulnerable websites from being searched out through Google Hacking?

3 Data Collection

In this section, we describe the data sources that we used for our research.

3.1 Vulnerabilities

Common Vulnerability and Exposures Database (CVE) is an online
public vulnerability database, which represents currently publicly known infor-
mation of security vulnerabilities. To gain the knowledge of currently known web
vulnerabilities, we first crawled all CVE vulnerabilities from National Vulnerabil-
ity Database [8], which contains 53,611 CVE vulnerability entries reported from
1999 to 2012. For these CVE vulnerabilities, we crawled their CVE entry IDs



Characterizing Google Hacking: A First Large-Scale Quantitative Study 607

and associated information such as CVSS scores, vulnerability summaries, and
vendors. We further extracted web related vulnerabilities based on the method
mentioned in Sect. 2. In this way, we collect a total of 26,453 such vulnerabilities.
We denote this dataset as Web CVE in this paper.

3.2 Google Dorks

Google Hacking Database [6] is the largest and most representative online
public exploit database as we know, which contains Google Dorks relating to
known vulnerabilities and threats. These Google Dorks can be used for Google
Hacking to search out vulnerable websites that have corresponding vulnerabil-
ities. Since we try to study Google Dorks that can be used to find vulnerable
websites rather than collect some sensitive information such as password files,
we only crawl the Google Dorks in “Vulnerable Files(60 Google Dorks)”, “Vul-
nerable Servers(71 Google Dorks)”, and “Advisories and Vulnerabilities(1,970
Google Dorks)” directories, which are usually related to certain vulnerabilities.
In this way, we collect a total of 2,101 Google Dorks with associated information
such as the hit number, submit time, and description.

To further understand how these Google Dorks are used to exploit vulnera-
bilities, we automatically match Google Hacking database with CVE database
based on their descriptions. Among these 2,101 Google Dorks, 997 of them have
CVE entries in their descriptions, thus we can automatically match them to
CVE database, and term this dataset as Dork CVE.

3.3 Potentially Vulnerable Websites

To collect vulnerable websites, we searched all the Google Dorks in Google and
recorded all the search results as “potentially vulnerable websites”. These poten-
tially vulnerable websites can be more exactly described as the ones that match
the conditions of specified vulnerabilities (e.g., specific version of specific installed
web applications/scripts). However, at the time of our searching, some of these
websites may have already been patched, cleaned, or security enhanced, thus
no longer exploitable. Thus, it is true that not all of the potentially vulnerable
websites we found are actual vulnerable.

3.4 Victim Websites

XSSed Database [13] is an online public XSS attack database, which contains
websites that have been actually exploited through cross-site scripting attacks
in the past. In this database, attackers have injected malicious JavaScript on
at least one page of each domain. We collect a total of 21,368 unique victim
domains and used these victim domains to evaluate the quality of Google Hack-
ing. We assume that the websites on these domains did not change significantly
from where they were XSSed and the time when they were found in the poten-
tially vulnerable websites. Thus, the websites appeared in the intersection of



608 J. Zhang et al.

XSSed database and our potentially vulnerable websites should be victims of
Google Hacking. We cross check these victim websites with potentially vulnera-
ble domains, which we term as victim-vulnerable websites. 6,301 websites belong
to victim-vulnerable websites.

Table 1 is a short summary of our collected data.

Table 1. Data summary

Google Dork Dork CVE Web CVE Potentially
vulnerable
webs

Victim webs Victim-
vulnerable
webs

2,101 997 26,453 305,485 21,368 6,301

4 Measurement Methodology and Results

In this section, we study the characteristics of Google Hacking from different
perspectives.

4.1 Targeted Vulnerability Study

As we know, most of Google Dorks used in Google Hacking are generated based
on vulnerabilities. However, not all of web vulnerabilities can be represented in
the form of Google Dorks, and not all of such vulnerabilities are interested to
attackers. In this part, we try to study what kind of vulnerabilities are typically
targeted by Google Hacking through examining the following characteristics of
vulnerabilities.

Attack Categories. To verify if Google Hacking targets on some specific attack
categories, we compare the categories of vulnerabilities targeted by Dork CVE
with categories of all web related vulnerabilities in Web CVE database. We cat-
egorize each type of vulnerability by examining the keywords in their descrip-
tions. Figure 3 shows the category distribution for vulnerabilities in Dork CVE
and Web CVE.

We can see that the categories of vulnerabilities targeted by Google Hacking
are very different with that of web related vulnerabilities in Web CVE. Specifi-
cally, SQL, EXE, XSS, Path account for 92 % Google Hacking targeted vulnera-
bilities while they only contribute 64 % in Web CVE. In addition, SQL injection
vulnerability is exploited by most Google Hacking (57 % in Dork CVE) but
only 12 % in Web CVE, which reflects that most of Google Hacking will lead
to SQL injection attacks. From this perspective, only studying vulnerabilities
in Web CVE can not truly reflect attackers’ interests. We further compare the
trends of vulnerability category in both Google Hacking and Web CVE data-
base. Figure 4 are the trend distribution for vulnerabilities in Dork CVE and



Characterizing Google Hacking: A First Large-Scale Quantitative Study 609

(a) Google Hacking (b) Web CVE

Fig. 3. Vulnerabilities category distribution

(a) Web CVE (b) Google Hacking

Fig. 4. Vulnerabilities category trends

Web CVE. We can see that by the end of 2010, EXE and XSS vulnerability
became top vulnerability in Web CVE as shown in Fig. 4(a). However, for Google
Hacking, SQL is still the top one vulnerability as shown in Fig. 4(b). In addi-
tion, although the number of XSS vulnerabilities begun to decrease since 2008
in Web CVE, it started increasing in Google Hacking.

To further understand why these vulnerabilities are chosen to be targeted in
Google Hacking, we examine them in terms of the exploit complexity, potential
damage, and the age of these vulnerabilities targeted in Dork CVE. Intuitively
the vulnerabilities reported recently with high damage and low attack complexi-
ties should be good candidates for Google Hacking. We also examine the vendors
of these vulnerabilities to verify if Google Hacking only targets on vulnerabilities
of certain web applications.

Attack Complexity. Ideally attackers prefer vulnerabilities that can be eas-
ily exploited so that they can launch attacks automatically in a large scale. To
study how easily these vulnerabilities can be exploited, we check the complexity
of exploiting these vulnerabilities. We use the feature “Access Complexity” pro-
vided in CVSS [2] to evaluate attack complexity. High access complexity means
that attackers need specialized access conditions to launch attacks while low
access complexity means that it is relatively easy to launch attacks. Figure 5(a)
shows the access complexity distribution.



610 J. Zhang et al.

(a)Attack complexity distribution (b) Attack severity distribution

Fig. 5. Attack category distribution

We can see that most of vulnerabilities (e.g., SQL, EXE, Path) targeted
by Google Hacking have relatively low access complexities, which means that
attackers can easily launch attacks automatically at scale when they collect vul-
nerable websites. For each category, since the category itself already has low
access complexity (e.g., SQL injection vulnerability is easy to attack), the per-
centage of vulnerabilities with low access complexity in Dork CVE is similar to
vulnerabilities in Web CVE. However, in total, about 80 % of the vulnerabilities
of Dork CVE have low access complexity while only about 55 % of the vulnera-
bilities in Web CVE have. In addition, attack complexity distribution is similar
to the attack category distribution for Dork CVE in Fig. 3, which also reflects
that complexity is a candidate consideration for Google Hacking attacks.

Attack Damage. Ideally attackers prefer vulnerabilities that have huge damage
such as getting the full privilege of a vulnerable website. To study the damage
of these vulnerabilities, we check the attack severity of these vulnerabilities. We
use the feature “CVSS Severity Score” provided in CVE database to evaluate
the damage. Figure 5(b) shows the attack severity distribution.

We can see that most of vulnerabilities targeted by Google Hacking have
high severity levels, which may cause serious damage if these vulnerabilities are
exploited successfully. In total, about 74 % vulnerabilities in Dork CVE have
high severity level while only 47 % vulnerabilities in Web CVE have. In addition,
the attack severity distribution is also similar to attack category distribution for
Dork CVE in Fig. 3. Thus, attack damage is also a good candidate consideration
for Google Hacking attacks.

We further cross check the attack damage and attack complexity of vulner-
abilities, only 2 vulnerabilities (cve-2006-3571 and cve-2010-0971) in Dork CVE
out of 815 such vulnerabilities in Web CVE have low attack damage with high
attack complexity. We then check the details of these two vulnerabilities, both of
them belong to XSS vulnerability and allow remote attackers to inject arbitrary
web scripts, which are essentially severe vulnerabilities.

Vulnerability Age. Older vulnerabilities usually have more mature attack
tools, which can be easily exploited. However, newer vulnerabilities may not
be widely patched so that they may have a large victim population. To further
check whether Google Hacking targets on old vulnerabilities or recent vulnera-



Characterizing Google Hacking: A First Large-Scale Quantitative Study 611

bilities, we use the metric “Age”, the time difference between the report time of
the vulnerabilities and the submission time of the Google Dorks, to evaluate it.
A vulnerability with a large age means that it is a relatively old vulnerability.
Figure 6 shows the age distribution of vulnerabilities in Dork CVE.

Fig. 6. Age distribution

We can see that most of these Google Dorks target on older vulnerabilities,
only 1 % Google Dorks target on vulnerabilities exposed in the same year. It is
probably because that the techniques exploiting older vulnerabilities are more
mature and most users do not patch their servers on time. Thus they are still
lucrative for criminals [3]. We acknowledge that our results may have some bias
since the submission time of those Google Dorks may not accurately characterize
the attack time. However, the submission time somehow reflects the observation
of such attacks, which can be used to estimate the trend of attackers’ tastes.

Table 2. Variety of vendors and applications

Rank Vendor Application

Dork CVE Web CVE Dork CVE Web CVE

1 joomla (65) joomla (226) joomla (9) wordpress (110)

2 mambo (20) novell (196) cms made simple (5) moodle (105)

3 xoops (12) wordpress (154) mambo (4) php-nuke (102)

4 yourfreeworld (10) drupal (141) kwsphp (4) phpmyadmin (98)

5 wordpress (8) apache (123) adodb lite (3) weblogic server (97)



612 J. Zhang et al.

Application. Intuitively, famous web applications usually have a large number
of customers, which could be a good target for Google Hacking. To verify if these
Google Dorks are created to target on some specific famous applications/vendors,
we check the variety of applications of these vulnerabilities. There are totally 899
web applications affected by these 997 Dork CVE vulnerabilities, which shows
that Google Hacking could target on a variety of web applications, not limit to
certain applications.

Table 2 shows the top 5 vendors/applications for both Dork CVE and
Web CVE vulnerabilities, the numbers in the bracket shows the number of vul-
nerabilities. For example, there are 65 dorks in Dork CVE targeting on vulnera-
bility of joomla while there are 226 vulnerabilities related to joomla in Web CVE.
Although the application distribution is not strongly consistent between
Dork CVE and Web CVE, we can see that Joomla2 and WordPress appear
top in both Dork CVE and Web CVE. From [18], Joomla and WordPress are
two popular applications that are frequently queried by bots through Google
Hacking.

Fig. 7. Distribution of the number of vulnerabilities for web applications

To further check whether it is because WordPress and Joomla have many
vulnerabilities that lead to be exploited by Google Hacking, we extract all web
applications targeted by Google Hacking and check the number of vulnerabili-
ties in Web CVE for the same application. The high number of vulnerabilities
in Web CVE means that these applications are much more vulnerable and have
a higher chance to be exploited. Figure 7 shows the vulnerability number dis-
tribution of these web applications. Interestingly, we find that more than 50 %
web applications targeted by Google Hacking have only one vulnerability in
Web CVE, which means that the choice of Google Hacking targeted applications
is not strongly correlated with the numbers of vulnerabilities for this application.

Lessons: Most Google Hacking attacks target on certain categories of vulnerabil-
ity (e.g., SQL, XSS, EXE, Path), which usually have high attack damage with low
attack complexity. Thus, launching Google Hacking on them makes it easy for
attackers to compromise vulnerable websites. In addition, most of Google Hack-
ing attacks target on relatively older vulnerabilities, probably because exploita-
2 Joomla is an open source content management system which is estimated to be the

second most used CMS on the Internet after WordPress.



Characterizing Google Hacking: A First Large-Scale Quantitative Study 613

tion techniques are more mature. Furthermore, both the trend of vulnerabil-
ity category and application distribution of vulnerabilities are quite different
between Dork CVE and Web CVE, and the target applications of Google Hack-
ing are not strongly consistent with their vulnerabilities number. Thus, only
studying the characteristics of Web CVE vulnerabilities may not fully represent
the taste of Google Hacking.

4.2 Vulnerability-Victim Relationship Study

Through searching Dork CVE in Google, we collect a large number of potentially
vulnerable websites. With a large number of potentially vulnerable websites,
we further investigate the relationship between vulnerabilities and potentially
vulnerable websites. As we know, the goal of attackers is trying to find a large
number of possible vulnerable websites through Google Hacking. So what is the
possible cause for a large population of vulnerable websites? To answer this
question, we try to study what kind of characteristics of vulnerabilities may lead
to a large population.

Fig. 8. Potentially vulnerable websites distribution in different vulnerability categories

Attack Category. Intuitively, different attacks targeting on different vulnera-
bilities are likely to have different numbers of potentially vulnerable websites.
To verify if the attack category may lead to different numbers of potentially
vulnerable websites, we compare the distribution of the number of potentially
vulnerable websites among different vulnerability categories. Figure 8 shows the
distribution results.

We can see that all of the four attacks have very similar distribution although
they have quite different vulnerability numbers. We further run T-test [11] to
determine if these distributions are significantly different from each other. T-test
is a statistical hypothesis test that can be used to determine if two sets of data
are significantly different from each other. In our experiment, we chose statistical
significance as 0.05, thus, if the calculated p-value is below 0.05, the null hypoth-
esis is rejected and the two distribution are significantly different. T-test for all



614 J. Zhang et al.

Table 3. Top 10 vulnerabilities with large number of potentially vulnerable websites

CVE Category # of potentially vulnerable websites

2007-6649 EXE 991

2007-6139 EXE 956

2008-0502 EXE 932

2007-0233 Other 930

2007-0232 EXE 924

2008-5489 SQL 917

2007-1776 SQL 909

2007-6057 EXE 899

2007-5992 SQL 898

2009-0451 SQL 894

pairs of attacks are higher than 0.05, which further demonstrates the four attacks
have very similar distribution. We then check the category of vulnerabilities with
the highest number of potentially vulnerable websites. Table 3 is the Top 10 vul-
nerabilities with a large number of potentially vulnerable websites. We can see
that vulnerabilities in “EXE” category have the highest number of potentially
vulnerable websites. However, it still has a similar population distribution with
vulnerabilities in other categories. Thus, the population of potentially vulnerable
websites does not have a strong correlation with vulnerability categories.

Application. Intuitively, popular/famous applications should have a large pop-
ulation. To verify that whether it is the vulnerable applications that lead to
different numbers of potentially vulnerable websites or not, we compare the
average number of potentially vulnerable websites among different vendors.3

Figure 9 is the cumulative distribution of the average number of potentially
vulnerable websites for different applications. We can see that the overall dis-
tribution is almost linear. Less than 20 % vulnerabilities have the number of
potentially vulnerable websites larger than 600. Table 4 shows the top 5 vendors
with the largest average number of potentially vulnerable websites. Interestingly,
the top vulnerable applications are different in that of Dork CVE and Web CVE
shown in Table 2. However, they are all popular web applications or applications
containing sensitive information. Social networking script is a datecomm social
network web application, which allows remote attackers to execute arbitrary
SQL commands. FrontAcoutning is a web-based accounting system that also
allows remote attackers to execute arbitrary SQL commands, which will lead to
sensitive information exposure. Thus, the popularity of these applications could
be a key cause to the size of potentially vulnerable websites population.
3 We ignore vendors with only 1 vulnerability, because the number of potentially

vulnerable websites of them could be easily oscillated and might not be reliable.



Characterizing Google Hacking: A First Large-Scale Quantitative Study 615

Fig. 9. Potentially vulnerable websites distribution with vendors

Table 4. Top 5 vendors of potentially vulnerable websites

Vendors Avg. # of potentially vulnerable websites

social networking script 898.5

skadate online dating 718.5

frontaccounting 687

minitwitter 677

minerva 654

Attack Severity. To verify whether different risk levels of vulnerabilities will
lead to different numbers of potentially vulnerable websites, we compare the dis-
tribution of the number of potentially vulnerable websites among vulnerabilities
with different severity levels. Figure 10(a) shows the cumulative distribution of
the population of potentially vulnerable websites for vulnerabilities with differ-
ent risk levels. Since we only have few low-risk vulnerabilities, its distribution
is not continuous. However, both high-risk and medium-risk vulnerabilities have
very similar distributions. Thus, attack severity maybe not be a cause for large
population of potentially vulnerable websites.

Attack Complexity. To verify whether the attack complexity will lead to dif-
ferent numbers of potentially vulnerable websites, we compare the distribution
of the number of potentially vulnerable websites among vulnerabilities with dif-
ferent complexities.

Figure 10(b) shows the cumulative distribution of vulnerabilities with dif-
ferent attack complexities. Although we only have few vulnerabilities with low
attack complexities, their distribution is still very similar to other vulnerabili-



616 J. Zhang et al.

(a) different risk levels (b) different complexity levels

Fig. 10. Potentially vulnerable websites distribution

Fig. 11. Potentially vulnerable websites distribution with exposure time

ties with high or medium attack complexities. Thus, attack complexity may not
contribute a lot to the population of potentially vulnerable websites.

Exposure Time. To verify if the exposure time of vulnerabilities will lead
to different numbers of potentially vulnerable websites, we compare the distri-
bution among vulnerabilities with different exposure time. Figure 11 shows the
distribution of the average number of potentially vulnerable websites in different
exposure time. We can see that the number of potentially vulnerable websites
does not decrease much along with time, this is possible because people are usu-
ally lazy to patch their systems [3]. The exception of 2005 is because there are
only few vulnerabilities disclosed in 2005, which makes the average number of
potentially vulnerable websites not reliable. Thus, the exposure time seems not
to be a good indicator of large potentially vulnerable website population.

Lessons: Although most Google Hacking attacks target on SQL vulnerability,
Google Hacking targeting on EXE vulnerability usually has a large number of
population. And vulnerable applications could be a key factor accounting for the
different population of vulnerable websites.

4.3 Attack Impact Study

To measure the impacts of Google Hacking, we essentially check the quality and
popularity of those victim-vulnerable websites.



Characterizing Google Hacking: A First Large-Scale Quantitative Study 617

Fig. 12. Pagerank distribution

Quality. Since the final goal of attackers is trying to compromise benign websites
through Google Hacking, thus the higher quality websites have, the more value
attackers can gain (e.g., website reputation, sensitive information, and a large
number of visitors). PageRank score is widely used by search engines to rank the
importance of websites. A higher PageRank score indicates a better reputation of
the website. To evaluate the overall quality of these victim-vulnerable websites,
we use PageRank score as an indicator of the website quality. Figure 12 shows the
PageRank score distribution. We also compare it with randomly chosen 1,000
domains from the XSSed database (Victim websites).

Table 5. Top 5 Top Level Domains of vulnerable and victim websites

Vulnerable websites Percentage Victim websites Percentage

com 53.91 % com 44.12 %

org 8.68 % org 6.00 %

net 6.49 % net 5.18 %

de 4.15 % de 3.36 %

uk 2.29 % uk 3.17 %

Table 6. Top 5 country of vulnerable and victim websites

Vulnerable websites Percentage Victim websites Percentage

United States 61.09 % United States 46.17 %

Germany 8.43 % Germany 6.78 %

United Kingdom 3.25 % France 5.36 %

France 3.09 % United Kingdom 5.19 %

Netherlands 2.92 % Turkey 3.59 %



618 J. Zhang et al.

We can see that victim-vulnerable websites have relatively high reputations
compared with victim websites. 87.6 % of victim-vulnerable websites have page
rank scores higher than 3 while only 68.5 % for victim websites. We also cross
check vulnerable and victim-vulnerable websites with Alexa ranks. 14 of them
belong to top 1,000 Alexa ranks. which also reflects that Google Dorks could be
a good way to find high quality vulnerable websites.

Popularity. Those vulnerable and victim-vulnerable websites are widely dis-
tributed over 367 Top Level Domains (TLD) in total. Table 5 presents Top 5
TLDs. We can see that more than half of them hosted in .com domain, which is
also the largest domain [7] on current Internet.

We further check the country code of these websites based on their IP
addresses. The vulnerable websites and victim-vulnerable websites are distrib-
uted over 153 countries. From Table 6, we can see that about 60 % of them are
located in United States, this is possible because our query location is in United
States, thus more local websites are likely returned by search engines.

Lessons: The vulnerable websites of Google Hacking attacks are widely distrib-
uted on current Internet in terms of their popularity and quality, which makes
Google Hacking attacks become a popular way to find vulnerable websites.

4.4 Attack Robustness Study

To defend against Google Hacking attacks, the best way is to patch/fix all the
vulnerabilities, which are usually expensive and impractical. One alternative way
is to prevent attackers from finding those vulnerable websites. To achieve this
goal, we study the structure of Google Dorks. There are totally 6 operators
abused by Google Hacking attacks as shown in Table 7. We define three robust
levels of those dorks based on the cost for defenders to modify their websites’
content to defeat Google Hacking attacks. For example, intext/doublequote oper-
ators try to find keywords in webpages. In this case, administrators can easily
replace these keywords in the content with synonyms or images to avoid being
searched out. Thus, intext and doublequote operators will have lowest robust-
ness. intitle/allintitle operators try to find keywords in the title of webpages.
Although it is easy to replace these keywords in titles, however, these titles usu-
ally reflect the function of these pages which is important for normal operation
usage. Thus, they will have medium robustness. inurl/allinurl operators try to
find certain files/scripts in the web server. These files are usually associated with
other files. Directly modifying these files may lead to dependent errors of other
files. Thus inurl/allinurl will have highest robustness.

We also noticed that some dorks may use multiple operators. Thus, their
robustness should be the minimal level among all operators because modifying
the keywords with minimal robustness level is enough to protect the web server
from being searched out. In this case, 65.5 % of dorks have low robustness and can
be easily defeated by careful website administrators. For example, google dork
“Powered by NovaBoard v1.1.2” tries to find websites with vulnerable appli-
cation NovaBoard installed. In this case, administrator can easily remove such



Characterizing Google Hacking: A First Large-Scale Quantitative Study 619

Table 7. Google Dork Structure

Operator # of dorks robust level

double quote 610 low

intext 43 low

intitle/allintitle 22 medium

inurl/allinurl 322 High

content in the webpage or replace such information with a picture, which can
successfully evade such attack without leading to any malfunctions.

Lessons: Although Google Hacking is efficient for attackers to find high qual-
ity vulnerable websites, simply modifying the web content of a server can help
administrators defeat more than half (65.5 %) of Google Hacking attacks.

5 Related Work

In this section, we discuss related research from three perspectives.

Large Scale Vulnerability Analysis. Vulnerabilities have been widely studied
by [15,28] in terms of vulnerability evolution, life cycle, vulnerability category,
vulnerability priority analysis, etc. Frei et al. [15] presented a comprehensive
study on the life cycle of general vulnerabilities in terms of the discovery, dis-
closure, exploit and patch time of vulnerabilities on more than 14,000 vulner-
abilities. Their results show that acquiring exploits is always faster than get-
ting patches. Shahzad et al. [28] extended this work by considering vendors and
types of vulnerabilities. Their results supported the previous study and presented
interesting trends on vulnerability patching and exploitation. Scholte et al. [29]
performed an empirical analysis of a large number of web related vulnerabilities.
Their results show that the complexity of XSS and SQL injection exploits has
not been increasing, and many web problems are still simple in nature. Edwards
et al. [14] conducted a study on the vulnerabilities history of various popular
open source software using a static source code analyzer and the entry rate in
CVE database. They demonstrated a correlation between the change in the num-
ber and density of issues and the change in the rate of the discovery of exploitable
bugs for new releases. An analysis of CVSS score has also been conducted by
Scarfone et al. [26], while Fruhwirth et al. [16] and Gallonc [27] attempted to
prioritize the vulnerabilities based on the CVSS framework.

Most of these studies only focus on vulnerabilities themselves. However, the
characteristics of these vulnerabilities themselves can not fully represent the
interests of attackers’. Thus, through studying the Google Hacking, our work
complements existing research by understanding the connections among the vul-
nerabilities with Google Dorks, vulnerable websites, and victim websites.

Studies Using Google Dorks. Moore et al. [24] showed that at least 18 % of
website compromises are triggered by Google dorks. John et al. [20] found that



620 J. Zhang et al.

some bots explored Google Dorks to find target websites and built an automated
detection tool by generating regular expressions for query dorks. Their results
show that at least 12 % of search results are vulnerable to SQL injection attacks.
Later, John et al. [21] further exploited those malicious query dorks to find
vulnerable websites and built honeypots of these vulnerable web pages to collect
attack patterns. In [25], Pelizzi used Google Dorks from online hacking database
to find seed vulnerable websites and then automatically generate Google Dorks
from these vulnerable websites. Recently, Invernizzi et al. [17] used Google Dorks
to locate more malicious websites by starting from an evil seed set.

Different from existing work using Google Dorks to find more malicious web-
sites, we start form a new angle by studying what kind of vulnerabilities are
usually exploited as Google Dorks and the quality of these Google Dorks.

Large-Scale Victim Websites Analysis. Research [19,22] conducted a study
on search poisoning attacks in terms of detection and measurement. They col-
lected a large number of victim websites compromised by attackers to either redi-
rect user traffic to some malicious websites or host spam directly. Then they also
presented basic measurement of these victim websites. Zhang et al. [30] further
extended their work to automatically find more victim websites, and conducted
a comprehensive measurement of these victim websites in terms of distribution
and quality. Balduzzi et al. [23] presented an automated approach to discover
HTTP parameter pollution vulnerabilities. With their proposed method, they
conducted a large-scale analysis on more than 5,000 popular websites and showed
that 30 % of them have vulnerable parameters and 14 % of them suffer from
HTTP parameter pollution attacks. Unlike these existing work, we focus on the
relationship between victim websites and vulnerable websites rather than victim
websites themselves, and we target on more generic web attacks.

6 Conclusion

In this paper, we have conducted the first quantitative study of Google Hacking.
Through analyzing the relationship among vulnerabilities targeted by Google
Hacking, the general web exploit vulnerabilities in Web CVE, potentially vul-
nerable websites, and victim websites, we conclude that Google Hacking only
targets on a few specially chosen vulnerabilities. Thus existing studies on generic
vulnerabilities in Web CVE may not truly reflect the tastes of Google Hacking.

To defend against Google Hacking attacks, we investigate the robustness
of Google Hacking. Our study shows that most Google Hacking can be easily
defeated through modifying a few web content without leading to any malfunc-
tions.

In our future work, we will perform a deeper study with more data, and
prioritize web vulnerabilities based on the attackers’ tastes.



Characterizing Google Hacking: A First Large-Scale Quantitative Study 621

Acknowledgments. This material is based upon work supported in part by the
National Science Foundation (NSF) under Grant No. CNS-1314823. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NSF.

References

1. The common vulnerabilities and exposures dictionary. http://cve.mitre.org/
2. A complete guide to the common vulnerability scoring system version 2.0. http://

www.first.org/cvss/cvss-guide.html
3. Crims prefer old exploits: Microsoft. http://www.theregister.co.uk/2011/10/11/

zero day overrated says ms/
4. Cross-site scripting. http://en.wikipedia.org/wiki/Cross-site scripting
5. Directory traversal attack. http://en.wikipedia.org/wiki/Directory traversal

attack
6. Exploit database. http://www.exploit-db.com/google-dorks/
7. Host distribution by top-level domain. http://userpage.fu-berlin.de/∼mr94/dns/

node8.html
8. Nvd, “national vulnerbality database”. http://nvd.nist.gov/
9. Reomote code execution. http://en.wikipedia.org/wiki/Arbitrary code execution

10. Sql injection. http://en.wikipedia.org/wiki/SQL injection
11. T-test. http://en.wikipedia.org/wiki/Student’s t-test
12. What does your google pagerank mean. http://www.redfusionmedia.com/google

pagerank.htm
13. Xss attacks information and archive. http://www.xssed.com/archive
14. Edwards, N., Chen, L.: An historical examination of open source releases and their

vulnerabilities. In: Proceedings of the 2012 ACM Conference on CCS (2012)
15. Frei, S., May, M., Fiedler, U., Plattner, B.: Large-scale vulnerability analysis. In:

Proceedings of the 2006 SIGCOMM Workshop on Large-Scale Attack Defense
(2006)

16. Fruhwirth, C., Mannisto, T.: Improving CVSS-based vulnerability prioritization
and response with context information. In: Proceedings of the 3rd International
Symposium on Empirical Software Engineering and Measurement (2009)

17. Invernizzi, L., Comparetti, P., Benvenuti, S., Kruegel, C., Cova, M., Vigna, G.:
EVILSEED: a guided approach to finding malicious web pages. In: IEEE Sympo-
sium on Security and Privacy, Oakland (2009)

18. Yu, F., Soukal, D., Zhang, J., Xie, Y., Lee, W.: Intention and origination: an inside
look at large-scale bot queries. In: Proceedings of the 20th NDSS (2013)

19. John, J., Yu, F., Xie, Y., Abadi, M., Krishnamurthy, A.: deSEO: combating search-
result poisoning. In: Proceedings of the 20th USENIX Security (2011)

20. John, J.P., Yu, F., Xie, Y., Abadi, M., Krishnamurthy, A.: Searching the searchers
with searchaudit. In: Proceedings of the 19th USENIX Conference on Security
(2010)

21. John, J.P., Yu, F., Xie, Y., Krishnamurthy, A., Abadi, M.: Heat-seeking honeypots:
design and experience. In: Proceedings of the 20th WWW (2011)

22. Leontiadis, N., Moore, T., Christin, N.: Measuring and analyzing search-redirection
attacks in the illicit online prescription drug trade. In: Proceedings of the 20th
USENIX Security (2011)

http://cve.mitre.org/
http://www.first.org/cvss/cvss-guide.html
http://www.first.org/cvss/cvss-guide.html
http://www.theregister.co.uk/2011/10/11/zero_day_overrated_says_ms/
http://www.theregister.co.uk/2011/10/11/zero_day_overrated_says_ms/
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Directory_traversal_attack
http://en.wikipedia.org/wiki/Directory_traversal_attack
http://www.exploit-db.com/google-dorks/
http://userpage.fu-berlin.de/~mr94/dns/node8.html
http://userpage.fu-berlin.de/~mr94/dns/node8.html
http://nvd.nist.gov/
http://en.wikipedia.org/wiki/Arbitrary_code_execution
http://en.wikipedia.org/wiki/SQL_injection
http://en.wikipedia.org/wiki/Student's_t-test
http://www.redfusionmedia.com/google_pagerank.htm
http://www.redfusionmedia.com/google_pagerank.htm
http://www.xssed.com/archive


622 J. Zhang et al.

23. Balzarotti, D., Balduzzi, M., Gimenez, C., Kirda, E.: Automated discovery of para-
meter pollution vulnerabilities in web applications. In: Proceedings of the NDSS
(2011)

24. Moore, T., Clayton, R.: Evil searching: compromise and recompromise of internet
hosts for phishing. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628,
pp. 256–272. Springer, Heidelberg (2009)

25. Pelizzi, R., Tran, T., Saberi, A.: Large-scale, automatic xss detection using google
dorks (2011)

26. Scarfone, K., Mell, P.: An analysis of cvss version 2 vulnerability scoring. In: Pro-
ceedings of ESEM 2009, pp. 516–525 (2009)

27. Scarfone, K., Mell, P.: Vulnerability discrimination using cvss framework. In: Pro-
ceedings of NTMS 2011, pp. 1–6 (2011)

28. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of software
vulnerability life cycles. In: 34th International Conference on Software Engineering
(ICSE) (2012)

29. Scholte, T., Balzarotti, D., Kirda, E.: Quo vadis? a study of the evolution of input
validation vulnerabilities in web applications. In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 284–298. Springer, Heidelberg (2012)

30. Zhang, J., Yang, C., Xu, Z., Gu, G.: PoisonAmplifier: a guided approach of dis-
covering compromised websites through reversing search poisoning attacks. In:
Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012. LNCS, vol. 7462, pp.
230–253. Springer, Heidelberg (2012)


	Characterizing Google Hacking: A First Large-Scale Quantitative Study
	1 Introduction
	2 Background
	2.1 Google Dork
	2.2 Web Vulnerability
	2.3 Google Hacking

	3 Data Collection
	3.1 Vulnerabilities
	3.2 Google Dorks
	3.3 Potentially Vulnerable Websites
	3.4 Victim Websites

	4 Measurement Methodology and Results
	4.1 Targeted Vulnerability Study
	4.2 Vulnerability-Victim Relationship Study
	4.3 Attack Impact Study
	4.4 Attack Robustness Study

	5 Related Work
	6 Conclusion
	References


