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Abstract. Anonymity systems such as Tor are being blocked by many
countries, as they are increasingly being used to circumvent censorship
systems. As a response, several pluggable transport (proxy) systems have
been developed that obfuscate the first hop of the Tor circuit (i.e., the
connection between the Tor client and the bridge node). In this paper, we
tackle a common challenge faced by all web-based pluggable transports –
the need to perfectly emulate the complexities of a web-browser and web-
server. To that end, we propose a new system called the JumpBox that
readily integrates with existing pluggable transports and avoids emula-
tion by forwarding the HTTP/HTTPS requests through a real browser
and webserver. We evaluate our system using multiple pluggable trans-
ports and demonstrate that it imposes minimal additional overhead.

1 Introduction

Anonymity systems such as Tor are increasingly being used as circumvention
systems to bypass Internet filtering and censorship. However, these systems by
themselves are ill-suited for this purpose as they serve to obfuscate only under-
lying use case of the anonymity system (i.e., Tor) and not the use of anonymity
system itself. Hence, systems such as Tor are repeatedly and often continuously
subject to wholesale blocking attempts, through the use of advanced DPI tech-
nologies, by many countries [4,5,17,19,21].

To address this limitation, the Tor research community has embarked on a
collective effort to develop an assortment of pluggable transports that morph
Tor traffic to make it resemble some other protocol stream. Examples of such
systems include Dust [22], Flash proxy [9], FreeWave [12], Format Transform-
ing Encryption (FTE) proxy [6], Obfsproxy [13], Meek [8], ScrambleSuit [23],
SkypeMorph [18] and StegoTorus [20].

A common requirement shared by many of these pluggable transports (e.g.,
StegoTorus, FTE proxy, Meek) is the need to emulate a browser-based protocol
(e.g., HTTP, HTTPS). Prior research has pointed to this as fundamental limita-
tion affecting these systems [10]. The argument is that browsers and web servers
are complex systems and the only unobservable way to emulate a browser or a
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web server is to actually be the browser or the web server. We take their sugges-
tion to heart while trying to reconcile the fundamental limitations of developing
systems inside a browser-based environment.

Contributions. We describe a new system framework called JumpBox that
explicitly addresses the HTTP endpoint emulation problem. The JumpBox
framework attempts to strike a balance by implementing two lightweight shims
(i.e., a browser plug-in and web server module) that tunnel traffic between exist-
ing pluggable transport endpoints. This design choice has three important advan-
tages: (i) uses an unmodified browser and web server; (ii) flexibility to develop
applications outside the constraints of a browser environment and (iii) seamless
integration with existing pluggable transports. In addition, we implement an
HTTPS extension to Chrome that improves HTTPS security with the ability to
pin certificates of known HTTP servers.

In the following sections, we first describe related work on pluggable trans-
ports and circumvention systems. Then we describe the design and implementa-
tion of the JumpBox prototype system and the known hosts verification exten-
sion. We then demonstrate system utility by extending three existing pluggable
transports: StegoTorus, Meek and FTE proxy. Our system evaluations demon-
strate the flexibility of the JumpBox design in supporting diverse use cases while
imposing minimal performance overhead. Finally, we conclude by discussing sys-
tem challenges, limitations and future work.

2 Related Work

Here, we provide background information on pluggable transport research and
summarize other related research in the area of blocking resistance.

2.1 Pluggable-Transports Overview

Obfsproxy [13] was the first implementation of a Tor pluggable transport. Unlike
other pluggable transports that attempt to make Tor look like popular benign or
unblockable protocols, Obfsproxy transforms Tor to make it look like an unknown
high-entropy traffic stream. While Obfsproxy scrubs Tor-related content iden-
tifiers, its transformation preserves higher-order statistics such as inter-packet
arrival times and packet sizes.

ScrambleSuit [23] is an extension to Obfsproxy that morphs packet lengths
and inter-arrival times while also providing a new authentication mechanism that
defends against active-probing attacks. However, like Obfsproxy, it also does not
attempt to mimic any specific cover protocol.

Flash proxy [9] uses WebSockets to proxy the traffic between a Tor client
and a Tor bridge through short-term, frequently changing proxies provided by
Internet users who visit volunteer websites helping Flash proxy. The original
Flash proxy did not attempt to mimic another protocol, however, it has recently
been integrated with Obfsproxy.
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SkypeMorph [18] intends to make the traffic between a Tor client and a Tor
bridge look like a Skype video call. FreeWave [12] also hides data by modulating
a clients Internet traffic into acoustic signals that are carried over Skype connec-
tions. However, FreeWave’s operation is not bound to a specific VoIP provider
and so it its more resilient to blocking attempts that target a specific VoIP
service.

StegoTorus [20] transforms a Tor stream into a series of short-lived HTTP
connections and implements a client-side request generator and a server-side
response generator. The request generator hides data in cookies, URI and
upstream JSON POST messages. The response generator hides data in down-
stream PDF, SWF, JavaScript and JSON content. StegoTorus makes limited
attempt to accurately mimic the behavior of browser and web server. Thus it is
easily detectable through active probing and man-in-the-middle attacks.

The FTE proxy [6] fools DPI systems into protocol misidentification by ensur-
ing that ciphertexts are formatted to include the telltale protocol fingerprints
that DPI systems look for. Protocol formats are specified as regular expressions
lifted from system source code or automatically learned from network traces. As
we show in our evaluation, HTTP requests generated by FTE proxy are easily
distinguishable from that of normal browser requests.

Meek is a new pluggable transport that leverages the Google App engine as
an unblockable proxy to relay Tor traffic. It wraps Tor transport with an HTTP
header, which is further concealed within a TLS session for obfuscation. Meek
is vulnerable to rogue certificate attacks and its TLS requests are acknowledged
to be distinguishable from that of the Chrome browser [8].

Dust [22] attempts to define a cryptosystem whose output is wholly indis-
tinguishable from randomness and could be theoretically be blocked by protocol
whitelisting techniques. Flash proxies [9] attempt to evade proxy blocking by
recruiting thousands of volunteer proxies available from website visitors making
it infeasible to block them all. However, it makes no attempt to mask the con-
tent of the traffic and is vulnerable to a censor that simply blocks all encrypted
connections. Like Meek, Flash proxies could also benefit from browser-based
HTTPS tunneling and certificate pinning functionality provided by JumpBox.

2.2 Related Circumvention Systems

Telex [24], Decoy Routing [14], and Cirripede [11] take a different approach to
address-filtering resistance: TCP streams are covertly tagged to request that
a router somewhere on the path to the overt destination divert the traffic to
a covert alternate destination. Telex and Decoy Routing place the tag in the
TLS handshake, whereas Cirripede uses the initial sequence numbers of several
TCP connections. As all three system rely on the impenetrability of TLS, these
clients could also use the browser frontend and certificate pinning functionality
provided by JumpBox.

Infranet [7], like StegoTorus and FTE proxy, implements a tunnel protocol for
enabling covert communication channel between its clients and servers, modu-
lated over standard HTTP transactions that are intended to resemble innocuous
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web browsing. Infranet’s requestor proxy could be interfaced with the JumpBox
daemon for improved HTTP mimicry. Their responder is implemented as an
Apache module much like mod jumpbox. Collage [3] is a scheme for stegano-
graphically hiding messages within postings on sites that host user-generated
content, such as photos, music, and videos. The sheer number of these sites,
their widespread legitimate use, and the variety of types of content that can be
posted make it impractical for the censor to block all such messages. However,
it is suitable only for small messages that do not need to be delivered quickly.
We believe that it could be useful as a rendezvous mechanism for pluggable
transports.

3 Background: Goals and Challenges

3.1 Design Goals

We specify below the key design goals of the JumpBox system:

Goal 1. Be the browser – The system should improve the resiliency of
the pluggable transport against HTTP mimicry attacks discussed below. We
identify ways in which the JumpBox becomes the browser, attacks that we are
still vulnerable to and potential ways to address them.

Goal 2. Extensibility – The system should be designed in a way that
makes it easy to integrate additional capabilities, i.e., without the constraints of
a browser environment.

Goal 3. Seamless integration – The system should be readily integrated,
i.e., without any code changes to existing pluggable transports.

Goal 4. Minimal overhead – The system should impose minimal perfor-
mance overhead to existing pluggable transports.

4 JumpBox System Design

We illustrate the design and the dataflow of a pluggable transport through the
JumpBox architecture in Fig. 1. At the client endpoint, our design introduces
two lightweight shims: a browser plug-in and a broker module. The former is
implemented as a Chrome (or Chromium) browser extension while the latter is a
C-based daemon (jbd). At the server endpoint, we design a web server extension
(i.e., an Apache module called mod jumpbox) that forwards connections to the
pluggable transport server (PTS). In this section we concentrate on the role of
JumpBox as a conduit between a PTC and PTS. In addition, JumpBox serves
several purposes, such as enabling rendezvous services that we describe in Sect. 5.

The JumpBox daemon (jbd) listens on a well-known localhost port for con-
nections from both the PTC and plug-in, which in Chrome can’t open a listen
port, while acting as a bridge that buffers data between the two components.
The plug-in communicates with the jbd using the pull request to GET the next
buffered PTC HTTP request to proxy and POSTs back the response through the
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Fig. 1. Overview of the JumpBox architecture. On the left side is the protocol stack
running the user host and on the right is the protocol stack running at the remote
proxy server. All communications between these two endpoints may be observed by
the censor and uses HTTP or HTTPS. The Tor bridge may be either part of the proxy
server or the Tor network.

Fig. 2. A single unproxied request/reply

Fig. 3. The JumpBox proxied request/reply

push request. Thus the JumpBox system, transforms a single request-response
round trip sequence, as shown in Fig. 2, into a series of three plug-in initiated
XMLHttpRequests [1] directed to the jbd, mod jumpbox, and jbd, respectively,
as depicted in Fig. 3.

4.1 View from the jbd Daemon

The JumpBox C-based daemon (jbd) provides an HTTP/HTTPS interface on
a (local) address and the PTC is simply configured to directs its requests to
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the PTS as if it were located at this address. The jbd daemon forwards such a
request to the plug-in in the form of a response to a plug-in pull request. The
response to the PTC request is synthesized from the corresponding plug-in push
request to the jbd daemon. The pull-push requests form an integral part of the
Jumpbox API which we describe in more detail below.

4.2 View from the Plug-In

From the perspective of the plug-in the communication has three legs:

– [Leg 1 (XHR1):] The plug-in requests the next data block (i.e., HTTP
request) to forward. This is a “GET /pull” request whose response contains
the ordinal PTC request (which can either be an HTTP GET or POST). The
URI, method, and cookie from the original PTC request are stored in unique
jbd header fields. In addition, there is a jbd sequence number field that is
added by jbd. HTTP contents, if any, are forwarded without modification.

– [Leg 2 (XHR2):] The plug-in transforms the result of the first leg into
the actual request sent to the remote mod jumpbox front-end. Here, we only
preserve the URI, cookie and content from the first leg and rely on the host
browser to generate all other aspects of the HTTP request.

– [Leg 3 (XHR3):] The response to the request from the mod jumpbox front-
end is forwarded back to jbd.

Note that legs (1) and (3) are on localhost while (2) is visible over wide-area
network links and so is subject to adversarial scrutiny.

4.3 The JumpBox Plug-In API

The core of the API relevant to the JumpBox’s role as a proxy conduit for the
PTC is centered around the pull and push requests. When the PTC makes a
request to jbd, this request is synthesized into the response to (a presumably
pending) pull request from the plug-in. The response to the plug-in pull request
is the contents of the PTC request together with the following five additional
jbd headers: JB-URI, JB-Method, JB-Content-Type, JB-Cookie, and JB-SeqNo.
A description of these headers is provided in Table 1.

Table 1. Summary of additional headers introduced by jbd when communicating with
the plug-in

Header field Description

JB-URI URI of the original PTC request

JB-Method HTTP method used in the original PTC request

JB-Content-Type Content type of the underlying PTC request

JB-Cookie PTC cookie value

JB-SeqNo Sequence number for jbd book-keeping
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Table 2. Summary of additional headers introduced by the plug-in when responding
back to jbd

Header field Description

JB-HTTPCode Status code of the underlying PTS response

JB-HTTPText HTTP status text of the underlying PTS response

JB-SeqNo Book-keeping sequence no, maintained by jbdthat is preserved by
the plug-in

JB-Set-Cookie Value of any Set-Cookie header received by the plug-in in the
response from mod jumpbox

The plug-in processes such a request by making an XMLHttpRequest to PTS
through the mod jumpbox server, with the method and headers as specified
by the above jbd headers. The PTS response through mod jumpbox to this
synthesized request is then forwarded back to jbd as a push POST request,
again making use of additional jbd headers. In this case the push jbd headers
are JB-HTTPCode, JB-HTTPText, JB-SeqNo, and JB-Set-Cookie (as described
in Table 2).

5 System Implementation

5.1 JumpBox Plug-In Prototype

The JumpBox prototype plug-in is a relatively simple Chrome (or Chromium)
plug-in written entirely in JavaScript (approximately 2,100 LoC). Apart from
the XMLHttpRequest API that it uses to carry out the underlying HTTP
requests, and the usual chromium plug-in infrastructure (chrome.tabs and
localStorage) it uses to present a reasonable UI experience. It also makes use
of two other APIs: the chrome.WebRequest and chrome.browsingData APIs.
The use of chrome.browsingData is to ensure that our browser cache remains
empty. We do not want the browser to cache our requests to the PTS, since
we have no real knowledge of whether the request will look unique to the host-
ing browser. The use of the chrome.WebRequest API requires more explanation
since it is central to the design.

Two design problems were encountered in developing the prototype. First,
the ECMAScript specification [2] provides no mechanism to modify either the
Cookie or Set-Cookie headers of an XMLHttpRequest. Hence, we rely on the
chrome.cookies API to make the transformation, which introduces few addi-
tional complexities. For example, we need to incorporate logic for parsing the
cookies, since the chrome.cookies API exposes them as key-value pairs, not as
raw headers). We also need to protect against possible race conditions if we ever
issued than one XHR to the server at a time, since the browser’s cookie store is
essentially an unprotected global variable.

Second, in POSTs but not GETs Chrome adds a Origin:chrome-extension
header similar to the following:
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Origin:chrome-extension://mbglkmfnbeigkhacbnmokgfddkecciin

which somewhat defeats the whole purpose of the plug-in, as adversaries could
use this as a signal for filtering. Hence, we use the chrome.webRequest API to
scrub the origin header before the request is sent out to the remote server. We
also use the chrome.webRequest API to convert the intangible cookie related
headers into more tangible ones. Specifically, we convert JB-Cookie headers into
a Cookie header for outbound requests and convert an incoming Set-Cookie into
a JB-Set-Cookie header. Finally, we also add a distinguishing header to the Leg
(1) & (3) XHRs, so that the chrome.webRequest event does not modify them.

5.2 JumpBox Daemon Prototype

The JumpBox daemon (jbd) is implemented in pure C (approximately 3,600
LoC) and exposes a JSON/HTTP-based interface through which both HTTP
clients (PTC) and our JumpBox plug-in communicate. The core functionality is
built around a generic Functions and Utilities library libfutil (approximately
10,000 LoC) which supports a broad range of network functionality including an
HTTP Server engine, a generic network sockets framework and list functions.

Our implementation is optimized for performance and scalability. The HTTP
Server engine is event based and has several worker threads to handle multiple
requests in parallel. When a network read from a client would block the request
is moved back to it’s queue and the read is retried when data becomes available
on the socket.

Internally jbd has three request queues: proxy new, proxy out and api
pull. All API requests are matched to responses using the JB-SeqNo field. The
JB-SeqNo is generated by jbd, and preserved by the plug-in, though of course it
does not appear in the headers sent over the wire to the remote server.

jbd differentiates between a client or Plug-in request by looking for an HTTP
Host: header of localhost:<listen port>. The presence of such a header field
indicates that the request was originated by the Browser plug-in. For jbd an
incoming request from a normal client is a ‘proxy request’, these are stored
in the proxy new list, where they await for the browser plug-in to retrieve
them with the API /pull/ request at which point these requests are moved to
the proxy out list, awaiting an API /push/ which contains the response to the
proxied HTTP request.

The client proxy request is blocking, i.e., the answer only comes back when
the Browser plug-in has performed an API /push/ to return the answer. In an
API request, jbd causes HTTP JB-Set-Cookie: headers to be translated to a
standard Set-Cookie header, this as Chrome/Chromium does not allow setting
of the Set-Cookie header in AJAX requests.

Similarly, to prevent the browser from using and caching the Cookie, we
send out the cookie header as JB-Cookie. The various API requests are
either in jbd main (/pull/, /push/, /acs/, /shutdown/, /launch/ and /) or
in their specific modules (/acs/, /rendezvous/, and /preferences/). This
is ordered this way to allow new code to easily extend jbd. Requesting
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http://localhost:<listen port>/ returns a simple HTML page with status
details, showing the request queue status inside jbd and a variety of statistics.

Finally, the API /launch/ URI allows launching of either Tor or the PTC
along with the parameters that jbd retrieved using rendezvous and ACS (see
below). Processes launched through this API are tracked inside jbd.

The current JumpBox prototype serves several related functions in addi-
tion to its role as an HTTP proxy between the PTC and the PTS. Specifically,
it provides: (i) an implementation of rendezvous based on mod freedom [15];
(ii) an implementation of Address Change Signaling (ACS) [15]. Both of these
features provide representative examples of how the JumpBox can provide binary
services that are unavailable in the JavaScript environment provided by the host-
ing browser. One example is for instance steganographic or other crypto-related
functions that would be slow/hard to implement securely inside a browser, espe-
cially as one can host the key material outside the browser and thus outside the
reach of potentially harmful code.

5.3 Mod jumpbox Prototype

We use a custom Apache2 module (mod jumpbox) to intercept requests to the
PTS process. Our objective is to make the client-facing server as similar to
a normal web server as possible. mod jumpbox installs itself at the head of the
Apache internal module handler list. If mod jumpbox sees an anticipated request,
it forwards details of the request to the appropriate pluggable transport server.

6 HTTPS Known Hosts Verification

In this section, we describe an extension to the JumpBox plug-in that improves
security of HTTPS communications by adding the ability to pin the certificates
of known HTTPS servers.

The JumpBox plug-in uses Asynchronous JavaScript and XML (AJAX)
requests for communication. A normal HTTPS AJAX request is made using
the following Javascript code:

ajax = new XMLHttpRequest();
ajax.onreadystatechange = function () { ... };
ajax.open(’GET’,’https://www.example.org/ajax/’);
ajax.send(null);

This contacts the webserver www.example.org using TLS and makes a GET
/ajax/ HTTP/1.1 request over the TLS connection. The web browser uses the
X.509 certificate chain to verify, based on the root certificates, that the certificate
of the server is valid and that it really is the site we expect to be talking to. In
case an adversary is able to control or otherwise issue a valid certificate for this
site, they would be able to perform a man-in-the-middle (MiTM) attack and
eavesdrop on communications unbeknownst to the browser.

www.example.org
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One solution to this attack is to verify the fingerprints of the TLS certificates
being used. Modern browsers (Chrome, Firefox) do not provide any built-in
mechanisms for performing this check1.

We therefore propose a modification to the XMLHttpRequest object that
allows us to specify a callback that allows us to verify the fingerprints of the
certificates when the certificates are being verified. Additionally we propose that
the HTTP request URL and optional body can be replaced with a ‘innocuous’
request, e.g., GET / HTTP/1.1 that would not be uncommon to be executed by
a standard browser.

The combination of these two modifications allows us to verify the fingerprint
of the certificates involved and if we detect an inconsistency warn the caller of
this code. They can then decide to change the request to an innocuous request.
This allows one to use HTTPS as a covert channel with extra verification, while
not compromising or demonstrating to the attacker that you noticed that the
certificate had an issue by merely dropping the connection without making an
actual request even though one did perform a TLS handshake and certificate
exchange.

Our proposed modification looks as follows:

ajax = new XMLHttpRequest();
ajax.onreadystatechange = function () { ... };
ajax.open(’GET’,’https://www.example.org/ajax/’);
ajax.oncertificatecheck = function () { ... };
ajax.send(null);

The oncertificatecheck() callback has one argument which is a Javascript
object containing the following structure:

{

"cn": "*.example.net",

"serial": "00 A1 A4 94 40 B8 CC E4 29 0E 71 01 2\,C 40 E0 52 9E",

"valid-from": "2013-11-23 00:00:00 UTC",

"valid-till": "2016-11-23 00:59:59 UTC",

"fingerprint":

{

"sha1": "46 B8 FC C4 4D 9F 8D E8 3\,F 89 D2 42 12 CF 58 7F BF 61 02 D8",

"md5": "D5 5F E7 FF 78 05 13 43 83 88 57 23 61 C3 12 A3"

},

"signed-by":

{

"cn": "ca.example.com",

"serial": "1",

"valid-from": "2000-05-30 10:48:38 UTC",

"valid-till": "2020-05-30 10:48:38 UTC",

"fingerprint":

{

1 While Chrome provides limited certificate-pinning ability for selected Google prop-
erties, it is insufficient for our needs as it does not extend to all sites and also does
not have the innocuous request generation capability described below.
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"02 FA F3 E2 91 43 54 68 60 78 57 69 4D F5 E4 5B 68 85 18 68",

"1D 35 54 04 85 78 B0 3\,F 42 42 4D BF 20 73 0\,A 3F",

}

}

}

The structure illustrated above illustrates a certificate with the root certifi-
cate that signed for it. The caller follows the signed-by chain effectively up the
chain verifying if it has the same fingerprints for those certificates. Note that
SSL certificate chains are normally shown from the root down to the signed
certificate. As most users of this modification will know the fingerprint of the
signed certificate and not those of the root certificates, the object is effectively
listed in reverse order making it quicker to find at which level the compromise
likely happened.

For JumpBox, the ACS Bridge list returned by the ACS Redirect Contact
contains the fingerprints of the SSL certificates that will be used for the commu-
nications in the Relay phase. This allows JumpBox to discern between a valid,
but falsely issued SSL certificate. In case of a fingerprint mismatch it will send
an innocuous GET / HTTP/1.1 request and possibly a few follow-up requests.
When the fingerprints matches with the details provided by the ACS protocol,
JumpBox will make the real requests that proxies data. As we have a trusted
HTTPS channel we can opt to not use a transforming PTC, and thus maximize
performance.

In addition to this known hosts validation extension being important for
JumpBox, it is also useful for the anonymous browser (operating without the
JumpBox) in the case that the adversary performs a MiTM attack between the
Tor exit node and the real website. Our modification allows the browser to detect
this attack, send an innocuous request in a similar fashion as JumpBox would
and notify the user that the communications are being tampered with.

7 JumpBox System Evaluation

We conduct a performance evaluation of the JumpBox system against three Tor
pluggable transports: Meek, StegoTorus and FTE proxy. For performance testing
we run 20000 requests using ApacheBench over the following two scenarios: (i)
communication between the WebClient and WebServer through the PTC and
PTS (ii) communication between the WebClient and WebServer through the
PTC, JumpBox and PTS. All tests are performed locally, to exclude any side-
effects of the network. The two scenarios are illustrated below in Figs. 4 and 5.

Fig. 4. Scenario: testing direct PTC
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Fig. 5. Scenario: testing PTC and JumpBox

Note that the typical interface of a PTC and Tor is a SOCKS port, as
ApacheBench does not support SOCKS we additionally use socat to interface
them together. However, most web browsers do support native proxies and thus
provide for SOCKS connections.

Meek normally runs on Google App Engine so that the SSL certificate pre-
sented is that as provided by Google, all traffic is thus SSL verified. The Google
App Engine acts as a very lightweight HTTP Proxy. In our test, the web server
forwards the traffic directly to the Meek Server which allows for simpler and
reproducible testing. Running Meek through JumpBox with the Known Hosts
HTTPS Fingerprint verification allows for a significant advantage in the case an
adversary is able to present a forged certificate (that is fake, but validatable) e.g.,
when they control a root certificate of an authorized CA on the user’s computer.
Using JumpBox enables one to verify the fingerprint of the certificate and send
innocuous HTTP traffic instead of the HTTP-wrapped Tor traffic forwarded by
Meek, which is easily detectable as such.

FTE proxy attempts to hide Tor from standard filters by subjecting them to
protocol misidentification attacks. One of the protocols it mimics is HTTP, but
unfortunately the data it sends and receives does not comply with the HTTP
protocol (missing Host header in the request and missing Content-Length in
the replies are two basic examples of such problems). A standard transparent
HTTP Proxy would thus break the FTE proxy communication. As JumpBox
expects well-formed HTTP, FTE proxy in its current form would not run through
JumpBox. For the tests we have thus added an additional mini proxy that detects
response boundaries based on the “HTTP/1.1 200 OK” which is fixed as output
and inserts Content-Length headers with the correct byte count. In addition,
we correct the Content-Type to application/octet-stream instead of “H” so that
we are sufficiently HTTP compatible to work through the JumpBox. Note that
these are minimal changes, the remaining complexities of the full HTTP protocol
support are handled by JumpBox, though more importantly by the browser and
WebServer module that it uses.

Below we provide an illustration of basic FTE proxy on the wire:

C: GET /GPcoEIlMxXBh...<base64-encoded-bytes>...LoQas HTTP/1.1
S: HTTP/1.1 200 OK
S: Content-Type: H
S:
S: ....<binary bytes>...

Next, we illustrate FTE proxy on the wire through Jumpbox (‘...’ indicates
ommited data):
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C: GET /Id5UdpnNYFB...<base64-encoded-bytes>...160VG HTTP/1.1

C: Host: example.com

C: User-Agent:

C: Connection: keep-alive

C: Accept: text/html,...,application/xml;q=0.9,image/webp,*/*;q=0.8

C: User-Agent: Mozilla/5.0 ... Chrome/34.0.1833.5 Safari/537.36

C: Referer: http://www.example.com/

C: Accept-Encoding: gzip,deflate,sdch

C: Accept-Language: en-US;q=0.8,en;q=0.2,de;q=0.2

S: HTTP/1.1 200 OK

S: Date: Thu, 01 Feb 2013 09:01:28 GMT

S: Server: Apache

S: Accept-Ranges: bytes

S: Content-Length: 2529

S: Keep-Alive: timeout=5, max=100 S: Connection: Keep-Alive

S: Content-Type: application/octets

S: Content-Language: en-GB

S:

S: ....<binary bytes>...

In both experimental setups an adversary will have to do content-analysis to detect
the traffic as non-standard, and hence classify it as either Meek, StegoTorus or FTE
proxy. Jumpbox connections are 100 % HTTP compliant as they originate from a
real browser while the server side is a standard web server. As such fingerprinting
based on protocols becomes as good as impossible. Using a standard browser like
Chromium/Chrome means that all these HTTP Pluggable Transports also gain sup-
port for SPDY, QUIC and other new protocols and methods that the used browser
supports.

In Figs. 6, 7 and 8, we respectively illustrate the response time variation when
directly connecting using the three pluggable transports: Meek, StegoTorus and FTE
proxy. In each case, the graph on the left corresponds to response time variation when
making a single connection at a time and the graph on the right corresponds to making

Fig. 6. Response time variation when connecting directly with Meek using 1 (left) and
10 (right) parallel connections. X-axis is absolute time.
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Fig. 7. Response time variation when connecting directly with StegoTorus using 1
(left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 8. Response time variation when connecting directly with FTE proxy using 1
(left) and 10 (right) parallel connections. X-axis is absolute time.

10 parallel connections at a time. Next, in Figs. 9, 10 and 11, we respectively illustrate
the response time variation when connecting with the three pluggable transports and
JumpBox.

Our results are quite encouraging. We find that for Meek and StegoTorus the per-
connection overhead is under 15 % (5 ms) and for FTE proxy the per-connection over-
head is about 80 % (20 ms) when we operate with one active connection. Note that
the higher overhead for FTE proxy could likely be due to the extra proxying added
by our mini-proxy to make its requests more HTTP conformant. Interestingly, when
we consider the case with 10 parallel connections, these overheads are further reduced,
although the average latency of each connection increases. Here, the additional over-
head for StegoTorus and Meek is about 10 % (10 ms) while FTE proxy the added
overhead is roughly 35 % (30 ms). Overall, we find these to be quite reasonable and
worth the trade-off in terms of reducing complexity in the pluggable transports and
improved indistinguishability.
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Fig. 9. Response time variation when connecting through the JumpBox and Meek
using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 10. Response time variation when connecting through the JumpBox and Stego-
Torus using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.

Fig. 11. Response time variation when connecting through the JumpBox and FTE
proxy using 1 (left) and 10 (right) parallel connections. X-axis is absolute time.
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8 Challenges, Limitations, and Future Work

There are several challenges involved in emulating browser-based HTTP communi-
cations which adversaries could exploit to distinguish between real clients. JumpBox
addresses some of these detections and relies on the pluggable transport to handle
others. In this section, we make explicit the division of responsibility between the two
components.

8.1 Passive and Active Man-in-the-Middle Attacks

HTTP Header Inconsistencies. The header fields in the HTTP protocol are colon-
separated name value pairs, each terminated by a carriage return and line feed (\r\n),
that are transmitted immediately following the request or response line. It is important
that the ordering and types of various fields in the HTTP header (e.g., Content-Type,
Accept, Content-Length, Host, User-Agent) be consistent with the browser or web
server that one imitates.

Adversaries may use both active and passive techniques to detect inconsistencies
in header parsing between and browser and mimicing agent. By using a real web server
and browser, JumpBox is resilient to such attacks.

HTTP URI Encodings. There are several popular encodings for the URI field in
the HTTP header (e.g., hex encoding, double hex encoding, %u encoding). Adversaries
could employ active man-in-the-middle attacks that leverage these encoding techniques
to disrupt the pluggable transport communications. By using an Apache web server
at the receiver end, JumpBox is able to normalize such transformations, allowing the
pluggable transport server to be agnostic to such encodings.

HTTP Content Encodings. In addition HTTP specifies various content encodings
to improve performance of web downloads. Common encoding techniques include gzip,
chunked-encoding etc. If a pluggable transport client, that mimics HTTP, fails to sup-
port one of these encodings that is supported by the browser it is claiming to be
(through the User-Agent string), this could be detected through an active man-in-the-
middle attack by the adversary that essentially encodes responses back from the web
server. By using a real web server and browser, JumpBox is able to support all encoding
agents claimed by the underlying browser.

Replay Attacks. Adversaries could replay HTTP requests and use variability in
response as a potential means to detect pluggable transports. The current JumpBox
system does not explicitly address this attack and relies on the pluggable transport
to handle such scenarios. Note, pluggable transports such as StegoTorus are currently
stateless and do not handle this. An alternate solution would be to place a caching
HTTP proxy in front of the web server running the mod jumpbox.

Content-Injection Attacks. Adversaries could insert new content into web pages
and identify JumpBox users from the way it reacts to data tampering. JumpBox relies
on the pluggable transport to detect such corruptions and react in a manner that is
non-fingerprintable. For example, StegoTorus has the ability to detect and recover from
data corruption in specific content-types.

Content-Rendering Attacks. The JumpBox systems does not actually render the
HTML content within a browser. Hence, it does not follow links on a page and does
not execute JavaScript content within the browser. There are benign reasons for both
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of these scenarios, caching and disabling JavaScript. Furthermore, not following links
is an explicit design choice that was made for performance reasons. This capability
could be included in the JumpBox with additional performance cost or more optimally
introduced into pluggable transports. The advantage of the latter approach is that each
of the link traversals could actually transport steganographic data.

Timing Attacks. Adversaries could also attempt to distinguish JumpBox using timing
signatures that fingerprint the extra delay introduced by JumpBox at both ends due to
proxying. However, building effective timing attacks at layer 7 is complicated as similar
delays could also be introduced due to webserver or database load, web proxies, load
balancers etc., which are commonplace on the Internet. Studying the vulnerability of
the JumpBox to such attacks is future work.

HTTPS Attacks. Similarly HTTPS is vulnerable to a range of attacks including
rogue certificate attacks, fingerprinting TLS handshake differences [5,8] and imple-
mentation bugs such as HeartBleed [16]. Certificate-pinning and browser emulation
through the JumpBox are attempts to address the first two classes of attacks. Protocol
implementation bugs are out of scope.

8.2 Active Probing Attacks

Unsupported Methods. Adversaries could pro-actively send malformed requests
(e.g., unsupported method types) to Pluggable Transport servers and distinguish them
through differences in the way in which they respond from a legitimate web server. In
the JumpBox scenario, mod jumpbox only forwards GET, HEAD and POST requests
to the pluggable transport. Other method types include unknown methods that are
handled by the default Apache handler, which typically cause a 404 or 405 error.

9 Conclusion

We propose JumpBox as a new HTTP forwarding system for making detection of
HTTP based Tor pluggable transports much harder. JumpBox is implemented as a
set of three components that interpose the communications between the Tor Pluggable
Transport Client (PTC) and the Pluggable Transport Server (PTS): jbd, JumpBox
browser plug-in and the mod jumpbox webserver extension. Together, these compo-
nents facilitate a browser-based and webserver-based interface to pluggable transports
that improves their resilience against many MiTM attacks that exploit differences in
the HTTP implementations of browsers and pluggable transports. We implement sup-
port for HTTP as well as HTTPS transport through the JumpBox and evaluate its
integration with a range of pluggable transports including StegoTorus, FTE proxy and
Meek. Our performance measurements indicate that our prototype system introduces
minimal additional overhead.
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