
Platform Neutral Sandbox for Analyzing
Malware and Resource Hogger Apps

Parvez Faruki1(B), Vijay Kumar1, Ammar B.1,
M.S. Gaur1, Vijay Laxmi1, and Mauro Conti2

1 Department of Computer Engineering,
Malaviya National Institute of Technology, Jaipur, India

{parvez,vlaxmi}@mnit.ac.in,
{vijay.ganmoor,bharmal.ammar,gaurms}@gmail.com

2 University of Padua-Department of Mathematics, Padua, Italy
conti@math.unipd.it

Abstract. In this paper, we propose an automated, scalable, and
dynamic analysis framework incorporating static anti anti-analysis tech-
niques to detect the analysis environment aware Android malware and
Resource Hogger apps. The proposed framework can automatically trig-
ger malicious execution by sending simulated User-Interface (UI) events
and Intent broadcasts. The Proposed approach is scalable and platform
invarient for different Android OS versions.

Keywords: Dynamic Analysis · Environment Reactive Behavior ·
Resource Hogger Apps

1 Introduction

Smartphone stores personal information, thus privacy and security of device is
the prime concern. Android devices control 2/3 market presence among the total
smartphone [4]. Android platform secures apps by: (1) sandboxing app execution
(2) Permissions based access model [2]. Anti-malware apps protects devices, but
cannot detect unseen variants or zero-day malware [11].

In this paper we propose a scalable, dynamic analysis framework to analyze
and detect Android malware, Resource Hoggers and data leaking apps. Privacy
risk apps may leak user information such as smartphone identification number
(IMEI), subscriber identification (IMSI) without user knowledge. We execute
Android apps in an emulated environment enriched with static anti anti-analysis
capability to detect environment reactive malware. Proposed Sandbox monitors
file operations, downloads, suspicious payload installation. Proposed approach
also monitors aggressive app behavior such as contacting URLs and exhausting
network bandwidth.

The paper is organized as follows. Section 2 defines proposed methodology, its
salient features and anti anti-analysis environment. Section 3 covers experimental
setup, analysis and comparison with prominent existing frameworks. Finally,
Sect. 4 concludes this paper with pointers to future work.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 556–560, 2015.
DOI: 10.1007/978-3-319-23829-6 43



Platform Neutral Sandbox for Analyzing Malware 557

2 Proposed Methodology

The essence of the proposed dynamic analysis sandbox is its multiple analysis
methods to detect malicious apps as depicted in Fig. 1. When an app is submit-
ted to the Sandbox, clean isolated environment is initialized with a refreshed
Android emulator with clean OS snapshot for a quick start. Android Virtual
Device (AVD) manager [1] allows creation, saving and snapshot restore and load
the emulator. The Sandbox starts the emulator(s) with save-to-snapshot func-
tionality to resemble it as a real device by adding wallpaper, messages, contacts
and setting custom device settings. Each time an app is submitted for analysis,
clean emulator snapshot is loaded.

As shown in Fig. 1, Framework core controls all the components for essential
feature collection, facilitating the AVD loading, and generating analysis reports.
Dalvik Dynamik Instrumentation (DDI) hooking libraries are used to hook var-
ious methods that are helpful in behavior monitoring. Analysis module results
are summarized to predict malicious, resource hogger, potential risk or a benign
app. Proposed sandbox employs DDI to identify resource hoggers and privacy
risk apps.

Features of Proposed Sandbox

The analysis environment sets up static anti anti-analysis features to modify
static emulator properties to resemble it as real device. Proposed Sandbox is
scalable as we employ a transparent functionality without modifying the Android
platform. Resource Hogger App detection is based on anomalous consumption of
CPU, memory or network resource consumption in comparison to benign apps.

Fig. 1. Proposed Dynamic Analysis Approach



558 P. Faruki et al.

Proposed approach finds a strong link between malware and its resource usage
pattern. App tagging is performed based on its behavior.

Anti anti-analysis Features

Targeted malware families Bgserv and AnserverBot use static anti-analysis tech-
niques to avoid analysis environment detection and bypass the default analy-
sis configuration parameters. Proposed framework generates static anti anti-
analysis environment and resembles the emulated device as real. IMEI, IMSI,
serial number, phone number defaults are modified to resemble real device. Geo-
location properties, system time, e-mail account configuration, wallpaper, images
and audio/video files are added to the standard emulator. These static changes
to the analysis environment correspond to real devices, hence we have been able
to uncover quite a few anti-analysis malware.

Revealing App Behavior with Triggers

Proposed behavioral analysis framework lures the apps and provides them with
required events to force reveal the malicious functionality. Triggers such as
Intents, SMS sent/received, app activation time etc. are important triggers for
malware activation. We find all the Intents needed by the app and generate
them using Android Debug Bridge (ADB) to initiate corresponding component
(i.e., activity, service or broadcast receiver). We generate few implicit Intent(s)
such as SMS SENT or NEW OUTGOING CALL and explicitly generate other Intents.
In case of time triggered actions, AVD system time is set to some future time
with fixed interval(s). Automated user inputs are generated with monkey [1].

Behavioral Analysis. After recording the app actions, we analyze them with
behavioral analysis with logcat results to detect any installations, new process
spawns and SMS sent. We scan the traffic (.pcap) files to analyze malicious
URLs’ or sensitive information leakage. Analysis of system calls relates file and
network related activities. Proposed analysis reports few system calls (bind and
connect) prominently visible among malware apps, hence an app with such calls
is considered risky. Proposed Sandbox marks actions like sending SMS, e-mail(s)
without user consent as covert misuse of existing facilities not seen among nor-
mal apps. Sending private user data such as call logs, contacts, existing SMS
and e-mails, encrypting sensitive user data (contacts, SMS), GPS co-ordinates
activities not visible in normal apps, hence considered grave potential risk.

Dalvik Dynamic Instrumentation (DDI). DDI [6] hooks itself to classes
and methods of Dalvik Virtual Machine (DVM). We use DDI to observe various
runtime strings to detect encrypted malware. Framework Instruments hooks for
SMSManager class to keep track of messages sent by an app and Intent class to
monitor phone calls and e-mails.



Platform Neutral Sandbox for Analyzing Malware 559

Resource Hoggers or Aggressive Malware Analysis. An app is catego-
rized aggressive when resource usage pattern is anomalous compared to benign
usage. Monitoring memory consumption, network usage (URLs, bandwidth con-
sumed), CPU utilization, battery utilization is useful to detect behavioral anom-
aly. We analyzed the comparative resource usage among a pool of categorized
benign and malware apps and generate experimental threshold to detect anom-
alous resource usage.

3 Experimental Set-Up

Proposed model sets up multiple emulator(s) in parallel. Submitted apps are
concurrently divided among free emulators. The Sandbox loads emulator(s) with
a clean snapshot for quick start. ADB interacts with the emulator(s) for data
collection. Proposed Sandbox utilizes recording tools such as logcat, tcpdump,
monkey, strace and dumpsys [1] and prefers a scalable environment without any
modification to the existing OS.

Aggregated Analysis

Proposed Sandbox has a rich set of multiple analysis techniques capable of pre-
dicting the app behavior. To minimize false positives, malware prediction is
set by the behavioral detection module. Proposed detection model marks an
app malware if malicious behaviors are discovered and are justifiable as purely
malicious. If all three modules cannot find anomaly within monitored app, the
Sandbox declares it as a benign.

Comparison with Existing Works

Droidbox and Taintdroid form base of other existing dynamic frameworks such as
Andrubis, Apps Playground and SmartDroid. Proposed analysis employs Sand-
box as a platform-neutral and scalable analysis environment. A similar approach

Table 1. Comparison of proposed framework with existing works



560 P. Faruki et al.

to target quite different target has also been adopted in [9]. Table 1 compares
proposed approach with some techniques.

4 Conclusion and Future Work

In this paper, we have proposed a platform neutral, scalable dynamic analysis
framework that uncovers targeted and advanced Android malware, Resource
Hoggers and risky apps equipped with anti anti-analysis capabilities. To the best
of our knowledge, proposed framework for the first time integrates novel features
such as platform neutral, scalability and DDI monitoring. Preliminary results
suggest a corelation between Android malware and heavy resource utilization.
In future, we aim to integrate dynamic anti anti-analysis techniques and perform
large scale app analysis on the as a web based malware app detection framework.

References

1. Android tools: Adb, emulator, avd manager, android, mksdcard, monkey, logcat.
http://developer.android.com/tools/help

2. Android Security Overview. http://source.android.com/devices/tech/security
(Online last accesed on 24 April 2014)

3. Blasing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S.A., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 5th International
Conference on Malicious and Unwanted Software (MALWARE), 2010, pp. 55–62.
IEEE (2010)

4. G. Inc., Android Smartphone Sales Report (2013). http://www.gartner.com/
newsroom/id/2665715 (online last accessed 17 March 2014)

5. Lindorfer, M.: Andrubis: a tool for analyzing unknown android applications.
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-
android-applications-2/

6. Mulliner, C.: Dalvik dynamic instrumentation, October 2013. http://www.
mulliner.org/android/feed/mulliner dbi hitb kul2013.pdf

7. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, CODASPY 2013, pp. 209–220. ACM, New
York (2013)

8. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: “Andromaly”: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2012)

9. Suarez-Tangil, G., Conti, M., Tapiador, J.E., Peris-Lopez, P.: Detecting targeted
smartphone malware with behavior-triggering stochastic models. In: Kuty�lowski,
M., Vaidya, J. (eds.) ICAIS 2014, Part I. LNCS, vol. 8712, pp. 183–201. Springer,
Heidelberg (2014)

10. Yan, L.K., Yin, H.: Droidscope: Seamlessly reconstructing the os and dalvik
semantic views for dynamic android malware analysis. In: Proceedings of the 21st
USENIX Conference on Security Symposium, Security 2012, pp. 29–29. USENIX
Association, Berkeley (2012)

11. Zheng, M., Lee, P.P.C., Lui, J.C.S.: ADAM: an automatic and extensible platform
to stress test android anti-virus systems. In: Flegel, U., Markatos, E., Robertson,
W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 82–101. Springer, Heidelberg (2013)

http://developer.android.com/tools/help
http://source.android.com/devices/tech/security
http://www.gartner.com/newsroom/id/2665715
http://www.gartner.com/newsroom/id/2665715
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://blog.iseclab.org/2012/06/04/andrubis-a-tool-for-analyzing-unknown-android-applications-2/
http://www.mulliner.org/android/feed/mulliner_dbi_hitb_kul2013.pdf
http://www.mulliner.org/android/feed/mulliner_dbi_hitb_kul2013.pdf

	Platform Neutral Sandbox for Analyzing Malware and Resource Hogger Apps
	1 Introduction
	2 Proposed Methodology
	3 Experimental Set-Up
	4 Conclusion and Future Work
	References


