
Hybrid Detection Using Permission Analysis
for Android Malware

Haofeng Jiao1,2, Xiaohong Li1,2(&), Lei Zhang1,2, Guangquan Xu1,2,
and Zhiyong Feng1,2

1 School of Computer Science and Technology,
Tianjin University, Tianjin, China

{hfjiao,xiaohongli,lzhang,losin,zyfeng}@tju.edu.cn
2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin

University, Weijin Road no. 92, Nankai District, Tianjin, China

Abstract. The growth of malicious applications poses a great threat to the
Android platform. In order to detect Android malware, this paper proposes a
hybrid detection method based on permission. Firstly, applications are detected
according to their permissions so that benign and malicious applications can be
discriminated. Secondly, suspicious applications are run in order to collect the
function calls related to sensitive permissions. Then suspicious applications are
represented in a vector space model and their feature vectors are calculated by
TF-IDF algorithm. Finally, the detection of suspicious applications is completed
via security detection techniques adopting Euclidean distance and cosine simi-
larity. At the end of this paper, an experiment including 982 samples is used as
an empirical validation. The result shows that our method has a true positive rate
at 91.2 % and a false positive rate at 2.1 %.

Keywords: Android � Hybrid detection � Euclidean distance � Cosine
similarity

1 Introduction

Android has become one of the most popular mobile platforms since it was released.
With several hundred thousands of applications, it provides kinds of functionality to
its users. Unfortunately, smartphones running Android are increasingly targeted by
attackers and infected with malicious software. According to a study of F-Secure lab,
the species of Android malware increased by 144 % from 2012 to 2013. This statistic
shows that there is a need to do research for Android malware detection.

In this paper, a permission based hybrid detection method is proposed to detect
Android malware. The method performs permission detection at first. Then suspicious
applications are executed to obtain function calls related to sensitive permissions.
Finally, applications are represented algebraically and security detection is employed to
determine the security type of suspicious applications.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 541–545, 2015.
DOI: 10.1007/978-3-319-23829-6_40

2 Methodology

To systematically detect malicious applications in Android markets, this paper pro-
poses a hybrid detection method for Android malware which is shown in Fig. 1.

Permission Detection. If applications want to accomplish some tasks in Android, they
have to explicitly request permissions. Thus, rules of permission can be employed for
detection to discriminate benign and malicious applications.

All sensitive permissions are divided into 12 sets according to their classes. They
can be represented by perSeti 1� i� 12ð Þ. perSet13 and perSeti represent the set of
permissions with a protection level of Normal and SignatureOrSystem, respectively.

Rules of permission detection can be given as following: If AppPer \ perSet13 ¼
AppPer, it can be judged as benign application. If AppPer \ perSet14 6¼ £, it can be
judged as malicious application. If AppPer \ perSeti 6¼ £; ð1� i� 12Þ, it applies the
sensitive permissions of the ith class and can be judged as suspicious application.

The Collection of Runtime Function Calls. Suspicious applications need behavior
tracking to complete their detection. In order to collect as many function calls as
possible, monkeyrunner is used to run an automated start-to-finish test of applications.
Then, function calls are filtered to reserve the function calls related to sensitive per-
missions. To relate functions with permissions, the method introduced by Felt et al. [1]
is used.

Application Vectorization. Let ε := {f1, f2, f3, …, fn} be the set of function calls of
application and fi(1 ≤ i ≤ n) stands for the ith function of application, therefore every
application can be represented by a set ε. Let C is the set of ε and stands for the set of all
suspicious applications.

Define wi,j as the times of function fi appearing in application εj. If fi is not present in
εj, wi,j = 0. Therefore, an application εj can be represented as the vector εj = {w1,j, w2,j,
w3,j, …, wn,j}.

To represent a function collection, VSM (vector space model) is employed. The
(i, j)th element illustrates the value of fi in application εj and is nonnegative.

permission

detection

security

detection

application

vectorization

decompilation
permission

of apps

Android
apps

the
collection
of runtime
function

calls

permission sets
of Android

malicious apps

benign apps
benign apps set

malicious apps
set

suspicious apps
set

Fig. 1. The framework of hybrid detection

542 H. Jiao et al.

To obtain the feature vectors of applications, TF-IDF algorithm is adopted to
calculate the weight of every function in applications. Thus, as for the function fi in
application εj, weightði; jÞ is defined as:

weightði; jÞ ¼ tfi;j � idfi:

where tfi;j represents the frequency of fi in application ej and idfi represents inverse term
frequency of fi in set C.

Security Detection Techniques. After application vectorization, applications can be
represented as points in the feature space. When an application is being inspected, it is
represented in the feature space and then compared with the points of benign and
malicious applications. To this end, we use Euclidean distance and Cosine similarity as
the distance measures. In order to obtain a final distance and give a result of security
detection, three rules of calculating distance are employed. They are the mean distance,
the max distance and the min distance.

3 Evaluation Measures

Let nben!ben be the number of benign samples classified as benign and nben!mal be the
number of misclassified benign samples. nmal!ben and nmal!mal are defined similarly.
Thus, the FPR and TPR (false and true positive rate) are given by:

FPR ¼ nben!mal

nben!ben þ nben!mal
ð1Þ

TPR ¼ nmal!mal

nmal!ben þ nmal!mal
ð2Þ

4 Empirical Validation

An experiment is done to improve the effectiveness of the detection method. This
section gives the data set and the results.

Data Set. The experiment employs a data set including 982 samples collected from
Google Play, third-part markets and AMGP (Android Malware Genome Project).
Every sample is inspected by F-Secure, Kaspersky, McAfee and Symantec. Table 1
shows the statistic result of data set.

Table 1. The statistic of experiment samples.

Source Number of samples Number of malware Percentage of malware

Google Play 552 0 0 %
Third-part markets 232 51 22.0 %
AMGP 198 198 100 %

Hybrid Detection Using Permission Analysis for Android Malware 543

The Validation of Permission Detection. After permission detection, the samples of
data set are separated into three groups. Table 2 shows the number and percentage of
samples in different groups.

The Validation of Behavior Detection. Three-fold cross validation is used for
detecting of suspicious samples. Meanwhile, the experiment selects 10, 15 and 20
behaviors as the standard of classification. The result is shown in Tables 3 and 4.

5 Related Work

A large body of research has been done to analyze and detect Android malware.
Malware analysis focuses on the study of vulnerability in Android application. For
example, Woodpecker [2] search for capability leaks of Android application. Comdroid
[3] analyze the vulnerability in inner-app communication in Android applications.
While malware detection puts emphasis on detecting the security type of applications.
For example, TaintDroid [4], Crowdroid [5] and DroidRanger [6] are methods that can
monitor the behavior of applications at runtime. Although very effective in identifying

Table 2. The result of permission detection.

Application type Number of samples Percentage

Benign software 156 15.9 %
Suspicious software 784 79.8 %
Malicious software 42 4.3 %

Table 3. Results for the different combination measures using Euclidean distance.

Comb. 10 behavior
features

15 behavior
features

20 behavior
features

TPR FPR TPR FPR TPR FPR

Max length 0.703 0.226 0.754 0.214 0.756 0.198
Mean length 0.809 0.168 0.854 0.132 0.857 0.124
Min length 0.712 0.243 0.762 0.200 0.760 0.188

Table 4. Results for the different combination measures using cosine similarity.

Comb. 10 behavior
features

15 behavior
features

20 behavior
features

TPR FPR TPR FPR TPR FPR

Max length 0.778 0.194 0.828 0.168 0.832 0.124
Mean length 0.873 0.061 0.912 0.029 0.912 0.021
Min length 0.812 0.114 0.873 0.097 0.876 0.081

544 H. Jiao et al.

malicious activity, they suffer from a significant overhead. However, methods such as
Stowaway [7] usually induce only a small runtime overload. While these approaches
are efficient, they mainly build on manually crafted detection patterns which are often
not available for new malware instances.

6 Conclusion

Comparing the result of different combination measures, the result obtained by using
cosine similarity and average length is the best of all. In particular, the best result has an
accuracy of 95.8 %, with an FPR of 2.1 % and TPR of 91.2 %.

Future work is oriented in two main directions. The algorithm we used actually
only weights the importance of one function based on its frequency of appearance. This
may leads to FPR in some degree, other algorithms should be used to achieve a better
result. Second, other distance measurements and combination rules could be tested.

Acknowledgements. This work has partially been sponsored by the National Science Foun-
dation of China (No. 91118003, 61272106, 61340039), 985 funds of Tianjin University and
Tianjin Key Laboratory of Cognitive Computing and Application.

References

1. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In:
Proceedings of ACM Conference on Computer and Communications Security (CCS),
pp. 627–638 (2011)

2. Grace, M., Zhou, Y,. Wang, Z., Jiang, X.: Systematic detection of capability leaks in stock
android smartphones. In: Proceedings of the 19th Annual Symposium on Network and Dis-
tributed System Security. NDSS 2012 (2012)

3. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application communication
in android. In: Proceedings of the 9th Annual Symposium on Network and Distributed System
Security. MobiSys 2011 (2011)

4. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.: Taint-
Droid: an information-flow tracking system for realtime privacy monitoring on smartphones.
In: Proceedings of the 9th USENIX Symposium on Operating Systems Design and Imple-
mentation. USENIXOSDI 2010 (2010)

5. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection
system for android. In: Proceedings of the 1st Workshop on Security Privacy in Smartphones
and Mobile Devices. CCSSPSM 2011 (2011)

6. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, You, Get Off of My Market: detecting
malicious apps in official and alternative android markets. In: Proceedings of the Network and
Distributed System Security Symposium (NDSS) (2012)

7. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In:
Proceedings of the 18th ACM Conference on Computer and Communications Security. CCS
2011 (2011)

Hybrid Detection Using Permission Analysis for Android Malware 545

	Hybrid Detection Using Permission Analysis for Android Malware
	Abstract
	1 Introduction
	2 Methodology
	3 Evaluation Measures
	4 Empirical Validation
	5 Related Work
	6 Conclusion
	Acknowledgements
	References

