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Abstract. With the rapid development of Android devices, mobile mal-
ware in Android becomes more prevalent. Therefore, it is rather impor-
tant to develop an effective model for malware detection. Permissions,
system calls, and control flow graphs have been proved to be important
features in detection. In this paper, we utilize both static and dynamic
strategies with a text classification method, TMSVM, to identify the
mobile malware in these three aspects. At first, features have to be
selected. Since the sum of control flow graphs is very large, Chi-Square
method is used to get the key graphs. Then features are transformed
into vectors and TMSVM is subsequently applied to get the classifi-
cation result. In the static method, we firstly analyze permissions and
control flow graphs respectively and then think of the combination of
them. In the dynamic method, the system calls are considered. At last,
based on the results of the static method and dynamic method, a hybrid
classification model of three layers classification is proposed. Compared
with the other methods, our method increases the TPR and decreases
the FPR.
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1 Introduction

With the mobile device becoming more and more popular, the malware enjoyed
a prevalence in the market, especially in the Android market. With the special
policy of Google Android Market, every developer has to declare permissions to
get access to the important resources [1]. Hence, permissions have become an
important factor to identify whether an application is malicious [2]. However,
many developers may have bad habits that they would tend to announce more
permissions than they need. Thus only using the permissions is not enough to
identify the application’s behaviors. So we think of two more factors: Control
Flow Graphs(CFGs) and system calls of the applications. Control flow graphs
have been proved to be a very prominent feature in detecting the malware [3].
Nevertheless, the control flow graphs may neglect the semantic meaning of every
program. The extra factor, the system call, could make up for this drawback.
In this paper, we distinguish the malware from the benign applications in
three terms: permissions, control flow graphs, and system calls. We use both
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the static analysis and dynamic analysis method to obtain a hybrid multi-layer
classification model. In our work, the basic classification model is the Support
Vector Machine and the elementary classification method is the text classification
method. The text classification method we use is TMSVM, which can be got
from https://code.google.com/p/tmsvm/. In the static method, we first do the
classification with only permissions or control flow graphs, and then do the
classifications with the combination of them. In the dynamic method, the system
calls of one application during its execution become the detection feature. After
analyzing the results of the dynamic method and the static method, a hybrid
multi-layer classification model is proposed. In this hybrid multi-layer model,
applications would be classified by three classifiers chosen from the dynamic
analysis experiment and the static analysis experiments. The detection result of
this model is much better than the result of SCSDroid [4] and Peirvavian [5].
The major contributions of this paper can be summarised as follows:

1. We use TMSVM to do the malware classification. Different with the ordinary
SVM model, TMSVM could automatically choose the best kernel trick to
build the SVM model for different datasets.

2. We identify the malware in all the three features: permissions, system calls,
and control flow graphs. Researchers have analyzed the features respectively,
but the combination of these features has not been used for malware detection.

3. We examine the role of control flow graphs in detecting malware. However,
control flow graphs were only used in identifying the malware variants before.

4. We propose a hybrid multi-layer classification model. Compared with the
result of the one layer classification, the hybrid multi-layer classification
increases the TPR and decreases the FPR.

2 Related Work

For malware detection, it’s important to get detailed knowledge of application’s
characteristics. Static analysis and dynamic analysis of software are the two com-
mon practices recently [6]. In static analysis, various binary forensic techniques
are used, and applications don’t need to be executed. However, in dynamic analy-
sis, it involves running an application in a controlled environment and monitoring
its behavior. Both of the two analysis strategies have advantages and disadvan-
tages [7], and many approaches using both of the two methods exist.

The principal skill of the static analysis is identifying the malicious code by
unpacking the samples and looking into the result codes [8,9]. Static analysis is
also used for detecting vulnerabilities or information leakages of the applications
[10-13]. For example, Lu et al. [14] split Android apps by the component entry
points and used static analysis method to detect the Android apps for component
hijacking vulnerabilities. Felt et al. [15] created the Stowaway system to make
a map between the API set and the permissions to detect the over-privileged
attack. Many researchers work on distracting the distinguishing features and
utilizing the similarity distance to identify the malware [16].
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The static analysis is convenient and fast, while it could not achieve the
real time detection of malware [17]. The dynamic detection could address this
issue. The CrowDroid system [18] collected the kernel system call to detect the
malware in the form of Trojan horses. Authors in [19] logged the activity of all
applications and used the signature matching approach to detect the personal
information leakage. Enck et al. [20] proposed TaintDroid, an efficient, system-
wide dynamic taint tracking and analyzing system capable of simultaneously
tracking multiple sources of sensitive data.

The dynamic analysis also has a few flaws. The execution paths covered by
the dynamic method are limited, making it difficult to fully cover all the running
condition of malware, which would influence the detection precision. Thus many
researchers try to find a way to combine both the dynamic method and the static
method [21]. In [22], the author first decompiled the Android applications to find
the suspicious model, then run the apps in AAsandbox. Finally, they analyzed
the logs to find malware.

3 Background

Android is an open-source operating system built on Linux kernel. The secu-
rity scheme of Android has its unique characters. Android protects the user
data and the system resources by providing an isolation from other applications.
Softwares run in the application sandbox. For additional capabilities not pro-
vided by the basic sandbox, applications need to declare the permissions they
require. Users have to grant or deny all the requested permissions at a block
before the application is installed. Control flow graphs in computer science is
a visual representation of all paths the computer program can take during its
execution. In this paper, we use the string form of control flow graphs defined
in [3]. The process of Android is divided into user space and kernel space. The
system call is the fundamental interface between an application and the operat-
ing system’s kernel. Most operations interacting with the system require the use
of system calls.

4 The Proposed Hybrid Model

We use the static and dynamic methods to detect whether an application is
malware. TMSVM is employed in this paper to do the classifications. It is a
text mining model which can choose a best SVM model in LIBSVM for different
datasets. In TMSVM, we choose term frequency to calculate the weight of each
feature vector. The malware dataset in this paper is from [23], including 1260
malware samples and the benign dataset, containing 1280 applications, is down-
loaded from the Google Play. The training set of the classifiers contains half of
the malware dataset and half of the benign dataset. Accordingly, the test set
contains the other half of them.
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4.1 Static Analysis

In static analysis, the different roles of permissions and control flow graphs
in identifying malware have been tested. Firstly, permissions and control flow
graphs are set as the feature separately, and then combined by different weights.

Permission Analysis. Aapt is supplied by Google in Android SDK and can be
used to dissemble the apk file and get its permission set. Before using TMSVM,
the permission set would be turned into a numerical vector according to the
index of every permission. The index of one permission is its index in the stan-
dard permission set which contains all the official 134 permissions in Android
4.3. Then with the training dataset, we could get a best SVM classifier using
TMSVM. Test dataset would be classified with this classifier. The last row in
Table 1 gives the result of the permission classification, since in this experiment,
the weight of the permission is 1in the static hybrid model.

Control Flow Graph Analysis. Androguard is used to get control flow graphs
of every application. As the sum of control flow graphs of one application is large
and the string format of a CFG can be very long, each CFG is firstly mapped
into an integer value using Blizzard hash method. Since the Chi-square method
has been proved to be an efficient feature selection method in text mining field
[24], we use it to abstract the important control flow graphs. The first row in
Table 1 shows the classification result with CFG.

The Static Hybrid Analysis. For further research, permissions and con-
trol flow graphs are joined together to form the application’s detection feature.
TMSVM use term frequency to calculate each application’s frequency vector.
Putting permissions and control flow graphs together directly is unfair for per-
missions, since each permission could appear at most once, while, control flow
graphs can be repeated, and the sum of the permissions each application declares
is much less than the sum of its control flow graphs. Hence, we need to repeat
permissions enough times to make it achieve the weight we set below in the
joined vector. According to the term frequency method, the repeated times R
should satisfy the equation below.

RxP C

X  1-Xx- L
where, X is the weight of permissions we set in the joined vector, P is the
permission’s sum in one application, and C is the sum of its control flow graphs.
In this experiment, the weights of the permission in the combined vector range
from 1/8 to 7/8 to do the comparison. Therefore, the weights of control flow
graph range from 7/8 to 1/8. The TPR and FPR of different weights are shown
in Table1.
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Table 1. Static Hybrid Classification Result

Weights of Permissions | TPR | FPR
0 0.97310.05
0.125 0.973 | 0.030
0.25 0.975 | 0.038
0.375 0.962 | 0.038
0.5 0.959 | 0.022
0.625 0.957 1 0.013
0.75 0.965 | 0.038
0.875 0.964 | 0.028
1 0.958 | 0.021

4.2 Dynamic Analysis

In the dynamic experiment, every application runs in a real Android device,
meanwhile, the system calls of every application are tracked. Monkey is used
to randomly generate 1000 events for every application, including almost all the
different kinds of events. Due to objective reasons, some application’s system call
has not yet been obtained. In the malware dataset, there are 1179 applications
been tracked, and in the benign dataset, there are 1188 applications been tracked.
Similarly with permissions, the system call set would also be transformed
into a digital vector according to the index of every system call in the standard
system call vector. The standard system call vector contains all the 185 system
calls in Android System 4.0.4. We calculate each application’s frequency vector
in both benign and malware dataset of the training set to obtain the average
frequency vector for each dataset. Compared the two average frequency vector in
Fig. 1, we find out that the average system call frequency vectors are dramatically
different. Table 2 shows the FPR and TPR of the system call classification.

4.3 Hybrid Multi-Layer Model

The architecture of the hybrid multi-layer classification model is shown in Fig. 2,
which is composed of three steps classification. All the classifiers are obtained
in the experiments above in the training phase.As shown before, the system call
classification could identify the malware with the relatively low FPR. In order
to get low FPR, once the application is identified as malware in the system call
classification, the hybrid multi-layer classification model. If the application is
recognized as a benign application in the system call classification, it will be
sent to the static hybrid classification model with the permission’s weight being
1/8 which is represented as static hybrid classification in Fig.2. In the second
step, if an application is labeled as a benign application, the result is considered
as its classification result in the hybrid multi-layer classification model. At the
same time, the application classified as malware will be sent to the permission
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Fig. 2. The hybrid multi-layer classification model

classification. At last, its classification result in the third step will be its final
result in the hybrid multi-layer classification model.

5 Experiment Result and Discussion

In Fig. 3 we report the results related to the one-step classifiers and the two-step
classifiers. The one-step classifiers represent the static hybrid classifications that
have been introduced above in Sect. 4.1. It is shown that among all the one step
classification models, the static hybrid model with the permission’s weight, 5/8,
gets the best result. This classification is called Static/0.625. In the two-step
classifications, the first step classification is the system call classifier and the
second step is the static classifications with different permission weights. Among
all the two-step classification models, the ideal result could be got if the second
classification is the permission classification. Two-Step/1 is used to represent the
best two steps classification.
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Table 2. Result of Different Classification Model

Classification Model | TPR | FPR | F-score
Static/0 0.9730.05 |0.962
Static/0.625 0.957 | 0.013 | 0.972
Static/1 0.958 | 0.021 | 0.969
Dynamic 0.901 | 0.018 | 0.939
Two-step/1 0.997 | 0.037 | 0.982
Hybrid 0.989 | 0.017 | 0.986
SCSDroid [4] 0.96 | 0.02 |0.941
Peirvavian [5] 0.941|0.025 | 0.945

Table 2 compares the result of different classification models. These mod-
els are the control flow graph classification(Static/0), the best static hybrid
classification(Static/0.625), the permission classification(Static/1), the system
call classification(Dynamic), the best two steps classification(Two-step/1), the
hybrid multi-layer classification(Hybrid), SCSDroid [4],and Peirvavian [5]. As
shown in Table 2, the hybrid multi-layer classification model increases the TPR
as well as decreases the FPR, leading to the best F-score result of all the above
methods. Comparing the results in Table2 and Fig.3, it can be seen that,
all the one step classifications have a much better result than SCSDroid and
Peirvavian. From Table2, it shows that, the combination of permissions and
control flow graphs is more accurate than the combination of permissions and
API calls [5]. Taking the permissions, system calls and control flow graphs into
account, it can be concluded that the permission is a more effective feature to
identify the malware than the two other features.



514 X. Xiao et al.

6 Conclusion and Future Work

In this paper, permissions and control flow graphs are used as static analysis
of the detection. We also do the dynamic analysis by means of system calls.
According to the static analysis result, it can be drawn a conclusion that the
combination of permissions and CFGs could improve the malware detection rate.
Based on the static method and the dynamic method, we propose a hybrid multi-
layer classification model which could increase the TPR and decrease the FPR.
Compared with SCSDroid and Peirvavian, our results are much better. But the
structure of the hybrid multi-layer model still needs some theoretical evidences.
Meanwhile, some improvements are also required for the classification by system
calls. A malicious application could be identified if it has suspicious actions in
the form of system call sequences, which could be a research focus in the mobile
malware detection in the future.
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