
RAMSES: Revealing Android Malware Through
String Extraction and Selection

Lautaro Dolberg1(B), Quentin Jérôme1, Jérôme François1,2,
Radu State1, and Thomas Engel1

1 SnT - University of Luxembourg, 4, Rue Alphonse Weicker,
2721 Walferdange, Luxembourg

{lautaro.dolberg,quentin.jerome,jerome.francois,
radu.state,thomas.engel}@uni.lu

2 INRIA Nancy Grand Est, 615 Rue du Jardin Botanique,
54506 Vandœuvre-lès-Nancy, France

jerome.francois@inria.fr

Abstract. The relevance of malicious software targeting mobile devices
has been increasing in recent years. Smartphones, tablet computers or
embedded devices in general represent one of the most spread comput-
ing platform worldwide and an unsecure usage can cause unprecedented
damage to private users, companies and public institutions. To help in
identifying malicious software on mobile platforms, we propose RAM-
SES, an approach based on the static content stored as strings within an
application. First we extract the contents of strings, transforming appli-
cations into documents, then using information retrieval techniques, we
select the most relevant features based on frequency metrics, and finally
we classify applications using machine learning algorithms relying on
such features. We evaluate our methods using real datasets of Android
applications and show promising results for detection.

Keywords: Android · Malware · Static analysis · Detection · Security

1 Introduction

The Android Operating System (OS) officially released in November 2007 is pre-
dicted to represent between 60 % and 70 % of smartphone operating systems in
20161. It is also the main target of mobile threats for several reasons. Firstly,
its growth provides a vast set of potential victims. Secondly, restriction and ver-
ification on published applications in the official market (Google Play Store)
are limited and malicious applications have so still been published recently2.
Finally, many third party markets are prone to store malware. Therefore, detect-
ing Android malicious applications is of paramount importance. In this paper,
1 http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#
phone-shipments, accessed on 04/30/2014.

2 https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-
google-play/, accessed on 04/30/2014.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 498–506, 2015.
DOI: 10.1007/978-3-319-23829-6 34

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#phone-shipments
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#phone-shipments
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/
https://blog.lookout.com/blog/2013/04/19/the-bearer-of-badnews-malware-google-play/


RAMSES 499

RAMSES relies solely on considering constant strings, which are extracted from
the java code. Intuitively, malicious applications can differ from benign applica-
tions as they are performing different actions, like for instance accessing specific
system files or connecting to uncommon remote services. It has been shown that
communication channels used by popular applications (Facebook, Dropbox, etc.)
can be misused using specific forged connection strings (URLs) [11]. Once strings
are extracted, information retrieval methods are leveraged to compute metrics
to a selected set of meaningful strings. Moreover, a widely abused feature consist
in using the Reflexion API which allows the developer to call a method in spec-
ifying the name of the function as a String argument. We have also observed
that accessing certain files is specific of a malware as highlighted in Sect. 3.

The rest of the paper is organized as follows: Sect. 2 review the basics of
Android applications and related work. Section 3 explains the string based met-
rics which are used as input of decision algorithms in Sect. 4. Section 5 focuses
on the evaluation. Section 6 discusses the method by highlighting the positive
aspects and some limitations. Finally, Sect. 7 concludes the paper.

2 Background and Related Work

Android applications are coded in Java which are then compiled (class files)
and converted by dx to Dalvik executable files (dex files). The Dalvik Virtual
Machine (DVM for short) is then responsible for executing the bytecode on
mobile devices similarly to the common Java Virtual Machine (JVM) on a com-
puter. From a security perspective, each Android application is assigned to a
set of permissions which is defined by the developer and has to be granted by
the user when installing it. These can be abused in malicious applications since
many users do not understand properly them, as discussed in [4].

According to several anti-virus vendors3,4, the proportion of malicious appli-
cations for Android platform represents between 79 % to 99 % of reported mal-
icous applications among all the mobile platforms. The authors in [13] char-
acterize malware according how malicious payload is stored: either stored in
the application itself or remotely deployed upon a unwanted user interaction.
Complementary, malicious applications differ from their activations (bootstrap-
ping events). A common practice for malicious applications is to escalate the
privileges or to disrupt the proper functioning of the OS, to control the device
remotely by an attacker. A dataset of 1260 malicious applications is introduced in
[13]. Considering malware detection, Our approach differs from Andromaly [10]
which uses a dynamic approach by extracting features during execution (CPU
and Memory usage among others). Batyuk et al. used code disassembly to look
at malicious API use in [1]. A similar approach based on Permissions and Con-
trol Flow Graphs (CFG) is presented in [8]. Walldroid [6] aims at monitoring
3 http://thehackernews.com/2013/03/google-f-secure-can-say-that-anything.html
accessed on 04/30/2014.

4 http://www.securelist.com/en/analysis/204792255/Kaspersky Security Bulletin
2012 The overall statistics for 2012 accessed on 04/30/2014.

http://thehackernews.com/2013/03/google-f-secure-can-say-that-anything.html
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012
http://www.securelist.com/en/analysis/204792255/Kaspersky_Security_Bulletin_2012_The_overall_statistics_for_2012


500 L. Dolberg et al.

and then blocking communications with malicious servers. A close approach to
ours is [9] which also extracts strings but for application categorization (gaming,
multimedia, etc.). On the contrary, RiskRanker [5] opted for a static approach
aiming at extracting features from CFG to establish a risk score to a given appli-
cation. Hence, to the best of our knowledge, we are the first to propose a static
approach solely relying on string based metrics to identify Android malware.

3 Metrics

While a plethora of operands are available in Dalvik bytecode, only two of them
caught our attention to characterize an Android application as strings:

– const-string vAA, string@BBBB
– const-string/jumbo vAA, string@BBBBBBBB

string@ is the string index in a constant string pool and vAA is the destination
register where the string will be loaded. The string index can be coded on two
or four Bytes, this explains why there are two variants of this operand.

Because, we use strings to characterize applications, an application is repre-
sented as a document. We define formally a document as a list of Term. In this
paper we will consider Term and String as equivalent. This extraction process
is symbolized by the function StringV ariables which returns the list of terms
of an application:

StringV ariables : Application → List(String) (1)

Formally, this corresponds to a multiset, i.e. a set where the same element can
appear multiple times. Assuming the application ai, the corresponding document
is a multiset of m terms:

dai
= {t1, . . . , tm} � ∀ti, tj : ti �= tj (2)

From a set A = {a0, . . . , an}, containing n Applications, we define DA as a
multiset of all documents:

DA := {dai
: ∀ai ∈ A} (3)

For sake of clarity, we illustrate such definitions with a simple example. Sup-
posing a set A of two applications, each of them with three Term

A = {a1, a2}
StringV ariables(a1) = da1 =

[“system/etc”, “AndroidSDK”, “utf − 8”] (4)
StringV ariables(App2) = da2 =

[“phone”, “AndroidSDK”, “system.data.void”]



RAMSES 501

So the outcome of transforming set A into a multiset of documents DA is:

DA = {
[“system/etc”, “AndroidSDK”, “utf − 8”], (5)
[“phone”, “AndroidSDK”, “system.data.void”]

}

3.1 Information Retrieval

For sake of clarity, all applications are now considered as documents. For extract-
ing relevant features, we derive common metrics for documents and terms [7].
Assuming a term t and a document d ∈ Da, the term frequency (tf ) of t is
defined as:

tf : Term × Document → �

tf(t,d) =
| {ti ∈ d : ti = t} |

|d|
(6)

It is important to note that we are using multisets and so the numerator repre-
sents the number of times the term t occurs in the list of terms retrieved from
ai. For complexity reason, the idea is to select a subset of representative terms.
Therefore, the rare terms are weighted stronger by using the inverse document
frequency (idf ) measure of the term t which is computed over a collection of
documents D:

idf : Term × {Document} → �

idf(t,D) = log
|D|

|{d ∈ D : t ∈ d|
(7)

Finally, we obtain the weighted frequency also called term frequency-inverse
document frequency (tfidf ):

tfidf : Term × Document × {Document} → �
tfidf(t, d,D) = tf(t, d) × idf(t,D)

(8)

3.2 Most Relevant Terms

In theory, extracting all terms of all applications, and computing tf and tfidf
can be used to construct a complete set of features. However, this represents a
large number of terms which then entails a large overhead for further analysis.
In this paper, we extract the most relevant ones formalized as Topfk(a), which,
given an application a, returns the k’s-terms with the highest scores for a given
f (tf or tfidf ). For example, the corresponding recursive definition using tf is:



502 L. Dolberg et al.

Toptfk : Document → {Term}

Toptf1 (d) :=
{
t : max

t∈d
tf(t, d)

}

Toptfk (d) :=
{
t : max

t∈d
tf(t, d)

}
∪ Toptfk−1(d\{t})

(9)

In the last line of Eq. (9), the expression d\{t} implies removing all the occur-
rences of the term t from the document d. As expected, Toptfk is a set of terms
(not a multiset). By analogy, Toptfidfk is defined similarly but the collection of
documents is also taken as an input for evaluating idf :

Toptfidfk : Document × {Document} → {Term}

Toptfidf1 (d,D) =
{
t : max

t∈d
tfidf(t, d,D)

}

Toptfidfk (d,D) =
{
t : max

t∈d
tfidf(t, d,D)

}
∪ Toptfidfk−1 (d\{t})

(10)

Based on Eqs. (9) and (10), we retrieve the relevant by considering each term
that is present in any Topfk for a given set of documents D:

TopTermsfk : {Document} → {Term}
TopTermsfk(D) :=

⋃
diinD

Topfk(di) (11)

We obtain the two following sets TopTermstfk (D) and TopTermstfidfk (D).

4 Detection

Using the previous, we propose a scoring approach and a classifier based on
machine learning to detect maclware. The assumptions are identical:

– a set of B known benign applications represented as documents B =
{b0, . . . , bB}

– a set of M known malicious applications represented as documents M =
{m0, . . . , bM}

– a set of U applications to be classified by our approach as benign or malware:
U = {u0, . . . , uM}

4.1 Scoring

The scoring approach runs in two steps. The learning procedure extracts the most
relevant terms of benign and malicious applications using Eq. (11) and computes
associated metrics (tf or tfidf ). The testing stage looks for each of them in an
application to classify, ui ∈ U . For each term t belonging to TopTermstfk (B) and



RAMSES 503

appearing in ui, the frequency of t is computed and added up over all documents
in B which so results in a score. The same is applied to M . Formally, the Score
function returns a numerical value from a given document and a collection of
documents:

Scoretfk : Document × {Document} → �

Scoretfk (q,D) :=
∑

t∈terms

∑
d∈D

tf(t, d)
|D|

where terms = {t : t ∈ q ∧ t ∈ TopTermstfk (D)}

(12)

Similarly, this can be also calculated with tfidf, Scoretfidfk (q,D), assuming
either B or M for calculating tfidf in the second line. Assuming a metric f ∈
tf, tfidf , ui is marked as malicious if Scorefk(ui,M) > Scorefk(ui, B), benign
otherwise.

4.2 Machine Learning

Due the nature of the addressed problem, using machine learning seems appro-
priate. We consider a single metric (tf or tfidf) and the associated selected terms
(TopTermstfk (D) and TopTermstfidfk (D)) to construct the feature set. There-
fore, for each application, we compute respectively either tf or tfidf of these
terms. While D represents a common dataset mixing malicious and benign appli-
cations, each instance is so labeled with a type of application during training
and the testing stage has to predict it.

Some machine learning algorithms have been selected such that major types
of approach are represented and also based on preliminary experiments: deci-
sion tree classifiers (Random Forest), rule-based approaches (JRip, PART ) and
function-based methods (SGD, LibLINEAR [12]).

5 Evaluation

In this section, only results based on tfidf are presented since tf results in an
accuracy at least lower than 20 points compared to tfidf. Except when mentioned,
k is set to 10. In addition, a 10 fold cross validation methodology has been
employed.

Our evaluation employs the malware dataset from [13] This dataset is a
recompilation of 1200 hand collected malware samples.

The market applications has been done by crawling and automatically
retrieving applications about 25000 Google Android Market, supposed to be
benign. We randomly sampled a subset to match the Malware dataset size.



504 L. Dolberg et al.

5.1 Metric Analysis

As a preliminary experiment, our metrics are evaluated without being used for
classification. We compute TopTermstfk (D) for both the malware dataset (D =
M) and the benign application (D = B) with k = 100. In addition, we compute
the intersection of top sets over all the couples of application of a given dataset
defined as:

ComTerms(D) =
⋃

di,dj∀di∈D,dj∈D,di!=dj

Toptfk (di)
⋂

Toptfk (dj)} (13)

The constructed set represents all the words which are potential candidates to
be representative of a specific type of applications (malicious or benign) because
being at least shared between two of them. We derive the following facts:

|TopTermstf100(M)| |TopTermstf100(B)| |ComTermstf100(M)| |ComTermstf100(B)|
3538 9671 102 945

Such results highlight that selected terms by our method are helpful to char-
acterize the type of applications. In particular, the top sets of malicious appli-
cations is highly smaller than for normal applications, even if the size of each
dataset is equal. Considering the number of shared terms between at least two
applications, the number is drastically decreased for both datasets but in differ-
ent orders of magnitude. For benign applications, the number is divided by about
ten while it is divided by more than 30 % for malware. On the first hand, this
means that malicious applications could be characterized by a smaller number
of strings. On the other hand, it is representative of the frequent use of common
strings in normal applications.

5.2 Scoring

The scoring approach computes two scores for each tested application: one based
on malicious applications, Scorefk(ui,M), one based on benign applications,
Scorefk(ui, B), both with k = 10. As shown in Table 1, there exist applications
(malware). However, the separation is not always evident as highlighted by an
accuracy around 65 %.

Table 1. Scoring classifier performance (TF-IDF) in percentage

Type Bening Malware

Scorefk(ui, B) > Scorefk(ui,M) 65 24

Scorefk(ui, B) < Scorefk(ui,M) 30 69

Scorefk(ui, B) = Scorefk(ui,M) 5 7



RAMSES 505

(a) True Positive Rate (b) False Positive Rate

Fig. 1. Malware identification results (TF-IDF)

5.3 Machine Learning

As more advanced techniques, machine learning methods are expected to be
more accurate. We have first assessed the value of k for good classification
performances since k controls the number of terms (classification features) in
TopTermstfk (D) and TopTermstfidfk (D). So, it is highly important to reduce
the number of features and so k in order to limit the overhead of the classifi-
cation algorithm. True and false positive rates (TPR and FPR) are shown in
Fig. 1 when k varies. This highlights the viability of classifying classification
using only embedded strings. In particular, Random Forest [2] is the best clas-
sifier with the highest TPR with the lowest FPR. Naturally, when more terms
are used (increasing k), the performances are better but having k higher than
10 does not improve results significantly whereas k = 10 provides good results
with TPR = 0.97 and FPR = 0.025.

6 Discussion

Our method solely relies on strings easily extracted from applications. How-
ever, in case of armed malware or applications having encrypted or packed code
and data, this would limit its practicability. Nevertheless, most of application
markets dont accept these applications. It is also possible to imagine a mal-
ware developer including unused strings or dead code sections, in particular to
add strings which are usually present in benign applications. A solution will
be to consider only a malicious dataset during the training and apply one-class
classification. Furthermore, code deobfuscation is an unresolved problem by the
community, even assuming encrypted strings [3]. Such a technique could be used
as a preprocessing step of our method. Another option for the attacker is to
divide the malware into multiple programs. Even if it is not well widespread yet,
our method can easily cope with such an issue by merging the set of strings of
multiple applications.



506 L. Dolberg et al.

7 Conclusion

RAMSES is able to characterize Android malware based on constant strings of
the Dalvik bytecode and information retrieval techniques. Its main advantage is
that it can be used as a statical analysis tool without having to run suspicious
or untrusted applications. However, the proposed work could also be envisioned
as a first analysis to pre-select applications which need an in-depth analysis.
As a future work, we will move towards a collaborative approach based on user
feedback.

Acknowledgement. The Authors would like to thank the National Research Fund
of Luxembourg (FNR) for providing financial support trought CORE 2010 MOVE
Project.

References

1. Batyuk, L., Herpich, M., Camtepe, S.A., Raddatz, K., Schmidt, A.D., Albayrak,
S.: Using static analysis for automatic assessment and mitigation of unwanted and
malicious activities within android applications. In: International Conference on
Malicious and Unwanted Software, pp. 66–72 (2011)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Bremer, J.: Automated analysis and deobfuscation of android apps & malware. In:

AthCON (2013)
4. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android per-

missions: user attention, comprehension, and behavior. Technical report, EECS
Department, University of California, Berkeley, February 2012

5. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, MobiSys (2012)

6. Kilinc, C., Booth, T., Andersson, K.: Walldroid: Cloud assisted virtualized appli-
cation specific firewalls for the android os. In: Trust, Security and Privacy in Com-
puting and Communications (TrustCom). IEEE (2012)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

8. Sahs, J., Khan, L.: A machine learning approach to android malware detection. In:
Intelligence and Security Informatics Conference (EISIC). IEEE (2012)

9. Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P.: On the automatic
categorisation of android applications. In: 2012 IEEE Consumer Communications
and Networking Conference (CCNC). IEEE (2012)

10. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a behav-
ioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1),
161–190 (2011)

11. Wang, R., Xing, L., Wang, X., Chen, S.: Conference on computer and commu-
nications security (ccs). In: Unauthorized Origin Crossing on Mobile Platforms:
Threats and Mitigation. ACM (2013)

12. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning
Tools and Techniques, 3 edn. Morgan Kaufmann, San Francisco

13. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Symposium on Security and Privacy. IEEE (2012)


	RAMSES: Revealing Android Malware Through String Extraction and Selection
	1 Introduction
	2 Background and Related Work
	3 Metrics
	3.1 Information Retrieval
	3.2 Most Relevant Terms

	4 Detection
	4.1 Scoring
	4.2 Machine Learning

	5 Evaluation
	5.1 Metric Analysis
	5.2 Scoring
	5.3 Machine Learning

	6 Discussion
	7 Conclusion
	References


