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Abstract. Recently, the security problem of Android applications has been
increasingly prominent. In this paper, we propose a novel approach to detect
malicious behaviors in loosely-coupled repackaged Android apps. We extract
and modify the FCG of an app based on its loosely-coupled property, and divide
it into several sub-graphs to identify primary module and its related modules. In
each remaining sub-graph, API calls are added and sensitive API paths are
extracted for dynamic instrumentation on top of APIMonitor. The experiments
are conducted with 438 malwares and 1529 apps from two third-party Android
markets. Through manual verification, we confirm 5 kinds of malwares in 16
apps detected by our approach. And the detection rate of collected malwares
reaches 99.77 %. The reduction rate of monitored functions reaches 42.95 %
with 98.79 % of malicious functions being successfully saved. The time spent
on static and dynamic analysis is 74.9 s and 16.0 s on average.

Keywords: Android security + Malicious behaviors - Payloads filtering -
Dynamic instrumentation

1 Introduction

The development and popularity of Android mobile system is extremely rapid in recent
years due to its open-source nature and the popularity of its app markets. However,
malwares against Android devices has been increasingly rampant at the same time. The
huge damage caused by Android malwares should never be tolerated. The Symantec
Security Report [3] shows the security risks on Android app markets in the first half of
2013 and points out that the volume of malwares has reached almost 275,000 in June
2013 and its 2013 Annual Report indicates Android system is the number one target for
malware.

For this end, it is imperative to design a precise and efficient approach to detect
malicious behaviors in Android apps. We propose HunterDroid, an efficient and
accurate system for detecting malicious behaviors in repackaged Android applications
based on following key assumptions. Firstly, most malicious payloads are unnaturally
added to legitimate apps so, they are usually loosely coupled with legitimate modules.
Secondly, primary module of a legitimate app can be identified for it generally consists
of activities decorated with certain APIs to enhance user interactions.
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To evaluate the effectiveness of our approach, we conduct experiments with 438
malwares from Zhou [5] and 1529 apps from two third-party Android markets in
China. Through manual verification, we confirm that 5 different kinds of malwares in
16 apps have been detected by our approach. Besides, the detection rate of collected
malwares reaches 99.77 %. And the accuracy of primary module identification reached
94.14 %, 98.79 % of function nodes in malicious payloads are saved, and we reduce the
number of function nodes to be monitored during instrumentation by 42.95 %. As for
performance, the execution time caused in static analysis phase and dynamic instru-
mentation phase is 74.9 and 16.0 s on average respectively, which is reasonably
negligible for an offline analysis tool.

In this paper, we make the following major contributions.

e We propose a novel payloads filtering scheme to detect malicious behaviors trig-
gered by malicious payloads in repackaged Android apps.

e We instrument our samples on top of APIMonitor to cover complete sensitive API
paths in malicious payloads.

e We implement a prototype system, HunterDroid, and conduct extensive experi-
ments to evaluate its effectiveness and accuracy with 438 real-world malwares and
1529 apps from two third-party Android markets. And we confirm 5 kinds of
malwares in 16 samples.

The rest of the paper is organized as follows. In Sect. 2 we describe our motivation
and the overall architecture of our prototype system. In Sect. 3 we give detailed system
design. After that, we present our evaluation results in Sect. 4. And we discuss the
limitations and further work of our system in Sect. 5. Then we present the related work
in Sect. 6 and finally we conclude in Sect. 7.

2 Motivation and Overall Architecture

As Zhou et al. indicates 86 % of their collected malware samples are repackaged
versions of legitimate applications by adding malicious payloads, our system is
designed to be an automated tool combined with static and dynamic analysis
approaches to identify malicious behaviors in repackaged Android apps.

2.1 Motivation

There are three major analysis approaches to detect malicious behaviors in Android
apps: static analysis, dynamic analysis and the combination of static analysis and
dynamic analysis.

Static analysis focuses on finding certain malicious patterns based on pre-defined
signatures. If pre-defined signatures are not complete, it is difficult to discover
new-born malwares. Therefore, we propose to identify legitimate payloads in an app
and analyze the remaining payloads further, so we need to distinguish legitimate
payloads from non-legitimate payloads.

As for dynamic analysis, it is common to instrument Android system or app
samples and then execute samples to analyze runtime behaviors. Google offers several
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useful testing and debugging tools for monitoring and automatic execution like
Monkeyrunner, Monkey, Logcat, there are still some problems to solve. For example,
though Logcat is designed for recording runtime logs, it is hard for analysts to quickly
recognize malicious behaviors from massive logs without setting proper filtering rules.
Therefore, we think it is time-saving to filter unrelated function calls during static
analysis before instrumentation.

2.2 Overall Architecture

Our prototype system, HunterDroid, detects malicious behaviors in repackaged
Android apps in four steps, and the overall architecture is shown in Fig. 1.

Preparation. We obtain FCG with the help of Androguard and modify it based on the
loosely-coupled property in repackaged Android apps.
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Fig. 1. Overall Architecture of HunterDroid

Sensitive API Path Extraction. We obtain sub-graphs in FCG by DFS and identify
the primary module based on that most legitimate apps consist of activities that invoke
its decoration APIs for user interactions. As for its related modules, they are filtered by
computing the correlation values between them and the primary module. Finally we
add API calls to each remaining module and extract sensitive API paths.

Instrumentation and Repackaging. This step is on top of APIMonitor, the major
extension focuses on instrumenting sensitive API paths that contain both API nodes
and self-defined function nodes rather than merely API nodes.

Dynamic Detection and Log Analysis. Each instrumented and repackaged appli-
cation is executed by Monkeyrunner which is feed with an automatically built script
based on distinct application manifest file.

3 System Design

In this section, we present detailed system design, including the modification of ori-
ginal FCG, sensitive API paths extraction, instrumentation and repackaging, and
dynamic detection.
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3.1 Modification of Original FCG

Though legitimate payloads and malicious payloads are loosely-coupled, they may be
linked by few edges. Meanwhile, app developers tend to arrange package hierarchy
according to the functions of different classes and malicious payloads often contain
packages with relatively unrelated names. Based on these facts, we design a tactics to
divide loosely-coupled sub-graphs into separated parts, as is shown in formula 1, where
X and Y represent the function node set in a package, Edge(X, Y) represents the set that
contains edge starts with X and ends with Y, pkg_sim(X, Y) is simply defined as
follows. For instance, the similarity of “android.content” and “android.net.http” is
1/min(2,3) = 0.5, 2 and 3 represent the level number of “android.content” and “android.
net.http”, and 1 is the shared “android”. We remove edges across X and Y if their CV
value is less than T.

A proper threshold T should be able to separate the primary module and malicious
modules without producing too many modules. By counting the number of separated
modules with different thresholds, we find this tactics works well when T is 0.3.

CV(X,Y) = max (Edge(x,Y)l |[Edge(Y.X) |> o

N KX W

3.2 Sensitive API Path Extraction

Definition 1. A sensitive API path is a call path in FCG that starts from a function
node that is never called by any other function node and ends with an API that could be
used maliciously.

Firstly, we formally define sensitive API path as Definition 1 and identify the
primary module based on the following assumption: legitimate apps tend to enhance
user interaction with activity decoration API which is presented in Definition 2, while
malicious payloads tend to hide their behaviors by few or even no user interactions.
Therefore, we build a list containing activity decoration APIs. By ranking the occur-
rences of these APIs in each module we identify the primary module.

Definition 2. An activity decoration API is a member method of an activity whose
function is to modify the appearance of this activity by setting views.

Then we compute the correlation value between remaining modules and primary
module by counting the elements belonging to primary class set occur in other mod-
ules. If exist, these modules are treated as related modules and filtered as well. Finally,
we extend the remaining modules with APIs and extract sensitive API paths. Figure 2
depicts the whole payloads filtering process in static analysis.

3.3 Instrumentation and Repackaging

Samples are instrumented and repackaged based on APIMonitor, which is a promising
tool by instrumenting an app with a user-defined API list and an android database. The
major extension can be divided into following two aspects.
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Algorithm 1 Payloads filtering scheme

Input: Function call graph (FCG) of an app
Output: A list of self-defined functions and APIs
1: package node_map = create pkg node_map (FCG)
for each pair<eleml,elem2> in package node map
if ( cohesion value(eleml,elem2) <= threshold )

2
3
4: remove_edges_across (FCG,eleml, elem?2)
5 end if

6: end for

7: sub-graphs = create_connected subgraphs_by_ DFS (FCG)
8: compute occurrence of decoration APIs(sub-graphs)

9: primary graph = select_the max occurrence (sub-graphs)

10: filtered graphs={ primary graph}
11: FCG = FCG - { primary _graph}
12: while contain_related graph(FCG,filtered graphs)

13: related graph = select graph related(FCG,filtered graphs)
14: filtered graphs = filtered graphs U {related graph}
15: FCG = FCG - {related graph}

16: end while

17: remove_nodes_and_edges (FCG, filtered_qraphs)
18: extend remaining graphs with APIs (FCG)

19: save_nodes_to_file(FCG)

Fig. 2. The whole payloads filtering algorithm

Firstly, we notice that some sensitive APIs are widely used among all kinds of
payloads. As APIMonitor does not consider where and how a sensitive API is invoked
during instrumentation, we replace the API list with our sensitive API path file, only
APIs invoked in remaining payloads are instrumented.

Secondly, we instrument self-defined functions to better understand the malicious
working mechanism. However, the way APIMonitor instruments functions is to replace
the original method with an exterior stub method in a newly-defined stub class, so we
need to change the access type of original methods from private to public to ensure
correct instrumentation.

3.4 Dynamic Detection

Our dynamic detection is executed by a distinct component-based python script for
each sample, which enumerates all activities, receivers and services as well as their
intent-filter information declared in manifest file.

In the script, Monkeyrunner starts activities with “android.intent.action.MAIN”
first. Then it starts all remaining components by sending various fake events such as
SMS_RECEIVED, BATTERY_CHANGED and BOOT_COMPLETED according to
their own intent-filters. Each activity is exercised randomly by Monkey with user
inputs and events. Finally, runtime logs are saved for further manual analysis.

4 Evaluation

In this section, we present our evaluation on the effectiveness and accuracy of Hun-
terDroid. All experiments are conducted on an Intel Core machine with a four-core
CPU 3.40 GHz CPU and 24 GB memory. a real Android device (HTC T329T with OS
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version 4.1.1) is used to conduct dynamic detection. We first evaluate its effectiveness
and accuracy in recognizing malicious payloads. Next, we measure the time perfor-
mance of HunterDroid. Finally, we present its detection results.

4.1 Evaluation

The malware dataset consists of 438 malwares from Zhou [4] and 1529 samples
crawled from two third-party Android markets in July 2013, we name them Eoe and
Mumayi respectively.

To evaluate the accuracy of identifying primary modules, we manually verify each
sample in Malware and 200 apps randomly sampled from Eoe and Mumayi. Our result
shows 18 out of 638 samples are not correctly identified. So the accuracy of identifying
primary module is 94.14 %.

Next, we evaluate the effects of our filtering payloads scheme, we define FN as the
percentage of malicious function nodes in filtered function nodes and FP as the per-
centage of legitimate function nodes in monitored function nodes. Our experiment
results show that the FN of Malware reaches as low as 1.21 %, i.e. 98.79 % of
malicious function nodes are correctly saved for instrumentation. And the detection rate
of malwares reached 99.77 %, there is only one sample from DroidKungFu3 is not
detected for its malicious payloads is incorrectly labeled as primary module. As for FP,
it reaches 18.22 %, as there are lots of callback nodes, which will not be instrumented
anyway, so the real FP is lower.

In terms of effectiveness, we calculate the reduction rate of function node number,
call edge and sub-graph after payload filtering process. Figure 3 depicts the difference
between number of function nodes before and after filtering payloads process for all
samples. The average reduction rate of function nodes is 42.95 %, which means almost
half of function nodes are filtered before being instrumented.
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Fig. 3. The reduction rate of function nodes for all families or categories, x axis is the family id
or category id, y axis is the number of function node

In order to evaluate the performance of our system, we record the execution time of
static filtering scheme and dynamic instrumentation for each app. The time cost in
filtering process is 74.9 s on average, and the average time for instrumentation is 16.0 s.
Therefore, the total time to get a newly instrumented app is around 91 s on average,
which is reasonably acceptable for an offline tool. As for detection results, by
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inspecting the saved logs, we manually confirm 5 kinds of malwares in 16 apps, which
further indicates the effectiveness of HunterDroid.

5 Discussion and Future Work

In this work, we focus on identifying malicious payloads in repackaged Android
applications and our prototype system HunterDroid demonstrates some promising
results. Now we discuss some limitations and improvements in future work.

Due to the incomplete list of decoration APIs, there are about 5 % apps that we
cannot identify their primary modules. So in the future work, we will extend the
decoration API list with APIs provided by other classes related to user interaction, like
classes in “android.view”.

In addition, we resort to manually analyzing logs to discover malicious behaviors.
As the log files are well-formatted in the future work, we will resort to some clustering
and classification algorithms to better understand malicious behaviors in Android apps.

6 Related Work

HunterDroid is an approach to detect malicious behaviors in repackaged Android apps.
In the field of Android malware detection, approaches can be divided into three aspects:
dynamic detection, static detection and a combination of static and dynamic
approaches.

Dynamic detection approach tracks the sensitive behaviors at runtime by instru-
menting app code or Android system [1]. Enck et al. [7] proposed a dynamic taint
tracking analysis system to track multiple sources of sensitive data and analyze at
runtime within Android virtualized execution environment. Zhang [2] et al. imple-
mented VetDroid for reconstructing sensitive behaviors from a permission usage
perspective.

On the other hand, static detection approaches mainly focus on identifying the pos-
sible malicious behaviors with the help of reachability analysis and program slicing [1].
Grace et al. [11] developed RiskRanker aimed at root exploits detection, permission
analysis and data-flow analysis. Crussel et al. [8] proposed AnDarwin to detect similar
Android applications based on semantic information of app codes.

As for Approaches combined with static analysis and dynamic detection, Yang
et al. [1] proposed Applntent to identify whether data transmission is by user intention
or not by building and executing GUI manipulation sequences generated by
event-space constraint graph. Zheng et al. [19] proposed SmartDroid to reveal Ul-based
event trigger condition based on function call graph and activity switch paths.

Our approach belongs to the third aspect. It takes the loosely-coupled property of
repackaged apps into account to extract malicious payloads in form of sensitive API
paths before instrumentation. Compared with RiskRanker [10] and DroidRanger [9],
we pay attention to the features legitimate apps share commonly and treat the
remaining payloads as suspicious rather than detecting malwares by pre-defining
malicious symptoms. In comparison with Andarwin [8] and Peng [4], our focus is to
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detect malicious behaviors rather than cluster static features or calculate risk scores, and
leave users to make decision.

7 Conclusion

In this paper, we present HunterDroid, a system for detecting malicious behaviors in
repackaged Android applications. Based on our key assumptions that added payloads
are mostly loosely-coupled with original codes and legitimate apps are commonly well
decorated to enhance user interactions, we propose an efficient payload filtering scheme
to locate malicious payloads for dynamic instrumentation. We have implemented a
prototype HunterDoid and evaluated its effectiveness and accuracy with 438 real-world
malwares and 1529 apps from third-party markets. Our experiments successfully verify
5 kinds of malwares in 16 apps in the wild detected by HunterDroid. And the detection
rate of our malware dataset reaches 99.77 %. The reduction rate of monitored functions
reaches 42.95 % with 98.79 % of malicious functions being successfully saved. The
static analysis only takes 74.9 s and 16.0 s for instrumentation for each app on average.
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