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Abstract. The appearance of the Android platform and its popularity
has resulted in a sharp rise in the number of reported vulnerabilities and
consequently in the number of mobile threats. Leveraging openness of
Android app markets and the lack of security testing, malware authors
commonly plagiarize Android applications (e.g., through code reuse and
repackaging) boosting the amount of malware on the markets and con-
sequently the infection rate.

In this paper, we present DroidKin, a robust approach for the detec-
tion of Android apps similarity. Based on a set of characteristics derived
from binary and meta data accompanying it, DroidKin is able to detect
similarity among applications under various levels of obfuscation. Droid-
Kin performs analysis pinpointing similarities between applications and
identifying their relationships. We validated our approach on a set of
manually prepared Android applications and evaluated it with datasets
made available by three recent studies: The Android Malware Genome
project, Drebin, DroidAnalytics. This data sets showed that several rela-
tions exists between the samples. Finally, we performed a large-scale
study of over 8,000 Android applications from Google play and Virus
Total service.

Keywords: Android · Malware · Similarity

1 Introduction

An appearance of a new Android platform and its popularity has resulted in
a sharp rise in the number of reported vulnerabilities and consequently in the
number of threats. This unprecedented growth has swiftly attracted an attention
of a security community resulting in a number of security solutions for malware
detection, response and analysis.

The lack of suitable datasets has quickly proved to be the major hindrance for
research efforts in the field. To remedy the situation a number of studies ventured
to generate several malware data sets [13,16,36], some of which quickly became
benchmarks for malware analysis and evaluation.

There are generally two criteria that are considered for inclusion of a malware
sample into a data set: uniqueness of a sample and its ability to represent a
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family of interest. Traditionally cryptographic hash values have served as unique
identifiers (i.e., fingerprints) of malware samples. MD5 and SHA have been the
most common hash functions usually employed for this purpose. In spite of
their wide spread implementation, the use of hash values has been seen as very
restrictive mostly due to its inability to allow insignificant sample modifications.
Such modifications often come from application of various obfuscation techniques
varying from simple repackaging to encryption that change the form of a malware
sample (i.e., binary) while retaining the same functionality.

Detection of mobile app repackaging, as well as general detection malware
apps have been extensively studied in the last several years. RiskRanger [20],
DroidRanger [37], Drebin [7], DroidScope [31] are among general detection meth-
ods that are able to pinpoint malicious behavior either through a dynamic analy-
sis of app’s run-time behavior or through its static analysis. Although many of
these methods offer good accuracy and scalability, all of them focus on producing
a binary output generally indicating whether an app is benign or not. Several
studies gave a deeper insight into possibly malicious apps introducing methods
for detecting repackaged applications [22,35]. Similarly to the general detection
techniques, these methods are designed to indicate whether an app is repackaged
or not.

Unfortunately, these methods are not sufficient for comprehensive evaluation
and study of mobile malware for several reasons. Evaluating classification accu-
racy of any malware detection method requires a clear understanding of the data,
i.e., samples’ distribution across families, diversity of samples, their uniqueness
and existence of duplications. Such transparent view of data is essential for accu-
rate assessment of the method’s performance. For example, this allows to under-
stand whether current method performance is due to the majority of samples
being descendants of the same original instance and essentially being identical in
nature or it reflects method’s true detection ability in a real world environment.

The ability to prepare such data set for evaluation requires the existence of
suitable lightweight methods equipped with means to give a multidimensional
view of sample’s maliciousness. Most of the existing methods, however, do not
indicate the reasoning behind their decisions, and similarly do not identify the
relations between malicious apps [7]. They also employ sophisticated heuris-
tics incurring run-time overhead [37] or requiring hand-crafted detection pat-
terns [20], thus confining method’s application to a certain (not always available)
deployment environment.

In this paper, we develop a lightweight approach to identify Android apps
similarity and infer their relationship to each other. More specifically, the pro-
posed approach called DroidKin allows us to detect the existence of similarity
between apps and understanding its nature, i.e., how and why the apps are
related. This assessment is based on a static analysis of a set of characteristics
gathered from application’s package. To avoid pair-wise analysis of all apps, our
approach employs a filtering stage that guides the similarity assessment process
to only a subset of related applications. This efficiency enables a deeper analysis
of selected apps providing more insight into their similarity relationships.
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We validate our approach on a set of manually prepared Android applications.
We further evaluate it with datasets made available by three recent studies:
The Android Malware Genome project, Drebin, DroidAnalytics and performed
a large-scale study of over 8,000 Android application from Google market and
Virus Total repository.

The rest of the paper discusses the related works in Sect. 2, presents the
details of the proposed approach in Sect. 4, and validation and evaluation results
in Sects. 5 and 6. Section 8 concludes the paper.

2 Related Work

The past decade has been marked with extensive research in the area of mobile
security. A broad study looking at a variety of mobile technologies (e.g., GSM,
Bluetooth), their vulnerabilities, attacks, and the corresponding detection
approaches was conducted by Polla et al. [23]. More focused studies survey-
ing characteristics of mobile malware were offered by Alzahrani et al. [6], Felt
et al. [16] and Zhou and Jiang [36].

With the recent burst of research interest in the area of Android device
security, there have been a number studies focusing on mobile malware detec-
tion. These studies include detection of privacy violations during apps’ runtime
(TaintDroid [14], MockDroid [9], VetDroid [32]), unsafe permission usage [8,12,
15,27,29] and security policy violations [24,28]. All these techniques are designed
for detection of specific violations that deem an app to be abnormal and poten-
tially malicious. As such they are unsuitable for more general analysis of mobile
apps for their uniqueness (e.g., detection of legitimate repackaged apps or mali-
cious apps not requesting suspicious permissions).

There were a number of general studies offering methods for malicious app
detection. These methods can be broadly divided into those focused on the
detection prior to app installation (e.g., market analysis) and those that monitor
app behavior directly on a mobile device.

Among the studies in the first group are RiskRanger [20], DroidRanger [37],
DroidScope [31] that dynamically monitor mobile apps behavior in an isolated
environment collecting detailed information that might indicate maliciousness of
a sample. Similarly, DroidMat [30] and DroidAPIMiner [5] looked at identifica-
tion of malicious apps using machine leaning techniques. Since these techniques
are computationally expensive for a resource-constraint environment of a mobile
platform, they are mostly intended for an offline detection. A number of stud-
ies introduced lightweight approaches to malware detection to be applied on a
mobile device directly, among them is Drebin [7]. This approach employs static
analysis in combination with machine learning to detect suspicious patterns in
app behavior. Although Drebin aims to provide explainable results, it is able to
give insight into malware uniqueness.

With a recent wave of cloned applications, a number of studies looked at the
problem of apps similarity in mobile apps. A general overview of plagiarized apps
was given by Gibler et al. [19]. The majority of the existing methods look at the
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content of .dex files for app comparison. Juxtapp [21] evaluates code similar-
ity based k-grams opcodes extracted from selected packages of the disassembled
.dex file. The generated k-grams are hashed before they undergo a clustering pro-
cedure that groups similar apps together. Similarly, DroidMOSS [35] evaluates
app similarity based of fuzzy hashes constructed based on a series of opcodes.
Aside from opcodes other methods can be employed to fingerprint mobile apps.
For example, AnDarwin [10], DNADroid [11], and PiggyApp [34] employ Pro-
gram Dependance Graphs (PDG) that represent dependencies between code
statements/packages. Potharaju et al. [26] computes fingerprints using several
methods based on Abstract Syntax Tree (AST).

3 Background

An Android app is written in Java language and compiled into a .dex file that
can be run by Dalvik virtual machine on an Android platform. The apps are
packaged in an .apk file containing the executable .dex file; manifest.xml file
that describes the content of the package including the permissions information;
native code (optional) in form of executable or libraries that usually is called
from the .dex file; the file with a digital certificate authenticating an author;
and the resources that the app uses (e.g., image files, sounds). Each .apk file
is annotated with additional information, so called meta-data, such as the app
creation date and time, version, size, etc.

While the majority of the existing approaches are focusing their analysis on
the .dex file, there are a number of other factors that need to be considered.

First of all, the digital certification plays an important role in Android apps.
This is the only mechanism developed to attest the ownership of an app. The
certificates are self-signed, i.e., no certificate authority (CA) is required. While
the mechanism was originally meant to tie an author to an app, allowing a
legitimate owner to issue new apps and update older versions under the same
key, several problems have quickly surfaced. Through our preliminary analysis of
Android markets, we discovered that the authors (both legitimate and malicious)
tend to generate a new pair of private/public keys for each application. The value
of the self-certification is also undermined through an extensive use of public
keys made available for debugging purposes. Although these days the official
Google play market bans apps signed with these keys, other markets do not seem
to enforce this policy. Finally, the recently discovered master key vulnerability
opened a new window allowing attackers to inject malware into legitimate apps
without invalidating a digital certification [17]. These weaknesses challenge the
legitimacy of using digital certificates for app authorship identification. In this
light some of the methods designed to rely on the existence of the original app
(determined based on the certification) for detection of plagiarized applications
(e.g., [35]) require readjustment.

Another practice that have been gaining popularity in mobile apps is the use
of external code, i.e., an additional code that is loaded and executed at runtime
of an app [25]. This mechanism allows for the use of legitimate applications to
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load malicious functionality without requiring any modifications to the existing
legitimate code. As such the original bytecode remains intact allowing the app to
evade detection. Poeplau et al. [25] defined several techniques to load external
code on a device: with the help of class loaders that enable the extraction of
classes from files in arbitrary locations, through the package context that allows
for the access of resources of other apps, through the use of native code, with
the help of runtime method exec that gives access to a system shell, and through
less stealthy installation of additional .apk files requested by a main .apk file.

Obfuscation. Although code obfuscation prevails in desktop malware, mobile
malware obfuscation is gaining popularity in mobile devices. Potharaju et al. [26]
have defined two obfuscation levels: basic Level-1 obfuscation that includes
renaming and removal of unused identifiers (e.g., class, variable, methods), and
the more advanced Level-2 obfuscation that includes insertion of junk code.

Until now though the most common obfuscation method applied in practice
was Level-1 [26]. Obfuscation gained popularity partially due to the wide spread
of repackaged applications, as it allows effective prevention of piggybacking mali-
cious payload into original apps [36]. In this work we experiment with various
obfuscation methods and their impact on app similarity detection.

4 Approach Design

The architecture of our system is in many respects dictated by the nature of
work. Under the broader umbrella of similarity detection, we are focusing on
detecting the presence of similarity and understanding its nature, i.e., how and
why the apps are related. As such the proposed system encompasses three steps:
feature extraction, similarity assessment and relationship analysis (Fig. 1).

For each app requiring similarity analysis, the system derives relevant features
and forms vectors that serve as a basis in the similarity assessment. Based on
these feature vectors, potential candidates that might have some relations to a
given app are identified and scored. Once the similarity is established, the nature
of the relations between apps is derived as a combination of computed scores and
participating features. Note that due to a diversity of obfuscating techniques for
different apps different features may contribute to the presence and the extend

Fig. 1. The architecture of DroidKin
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of similarity. As a result the last step mainly focuses on examining all possible
relations between similar apps prioritizing them based on the type of features
involved.

4.1 Features

We extracted the following features that serve as unique characteristics of a given
app:

– Meta-information that accompanies each .apk file (META-INF directory) and
characterizes its content. These features can be broadly divided into two
groups: descriptive features that include certificate serial number, the hash
value (md5) for the .apk container and a .dex file (md5), and a list of internal
files’ names with corresponding hash values (md5); and numerical features
such as a number of internal .apk, .zip, java, .jar, images, libraries and binary
files found within a container .apk file; size of .apk and .dex files; number of
files in .apk file.

– N-grams characterizing the .dex file. In the literature, malware analysis is
typically conducted at bytecode and opcode levels. Opcodes are generally
beneficial in representing low-level semantics of the code. Since extracting
opcodes alone might abstract specific details describing a program control
transfer or an arithmetical operation, opcodes are often enhanced with the
corresponding operands. Bytecode is seen as the complete representation of
the code at low-level. As such we experimented with opcode n-gram (with and
without operands) and with bytecode n-grams.

The extracted features are abstracted in a feature vector composed of two
parts corresponding to meta-information features and n-grams respectively.

4.2 Similarity Assessment

The similarity between apps is assessed in two stages: filtering stage and the
similarity scoring stage.

Filtering. The primary goal of the filtering process is to reduce the number of
comparisons necessary to find the relationships between the analyzed app and
the apps which information is already stored in a database. Filtering is mostly
based on meta-data features guiding the analysis process to a reduced set of apps
which require similarity scoring. The flow of this process is presented in Fig. 2.

Similarity Scoring. Once the set of potentially related apps is identified, the pair-
wise similarity between a given app and this set is calculated using a variation
of a similarity measure, called Simplified Profile Intersection (SPI) proposed
by [18]. The metric was proposed for evaluation of source code author profiles
often limited in size and thus unable to offer a reliable estimate for distance
metrics based on frequency analysis. Given Simplified Profiles SPi and SPj for
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Fig. 2. Filtering process

authors i and j, the similarity distance, called Similarity Profile Intersection
SPI is the size of intersection between these profiles. Formally, the normalized
SPI is given as follows:

SPI =
|SPi

⋂
SPj |

max(|SPi|, |SPj |) (1)

In other words, the similarity between two apps is defined by the amount of
commonalties existing in their profiles. Thus, the larger the size of intersection,
the more similar two apps are.

In our context, we compute a normalized similarity distance between two
apps using the descriptive meta features, SPIf and the n-grams, SPIng. The
similarity between meta features is computed separately for hashes SPIfh and
file names SPIfn using formula (1). The resulting values are then combined
(with a preference to similarity of files’ content) as follows

SPIf = 60 × SPIfh + 40 × SPIfn (2)

Similarity profile intersection based on the n-gram vectors, SPIngn, is also
calculated using formula (1). In this case, SP is represented by an n-gram
frequency vector of an app. To generate these frequency vectors, each app is dis-
assembled/processed to extract unique opcodes, opcode/operand pairs or byte-
code. Let Op represent this sequence of opcodes, then SP = (fm)1≤m≤k, where
fm is the frequency (i.e., the number of occurrences) of opcode (or opcode/
operand pair, bytecode) om ∈ Op.

The resulting SPIf and SPIng values are used to establish a relationship
between a pair of apps.
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4.3 Relationships

One of the goals of this study is to give deeper insight into the nature of apps
similarity. To abstract the details while providing a better sense of related apps,
we introduce the following definitions that outline relations between apps (in
decreasing order of closeness):

– Twins: are the apps with almost identical content, but different hash of .apk
file. Typically these are repackaged applications. The difference in packaging
time or a lack of alignment results in different hash value.

– Siblings: have identical .dex file, but as opposed to twins they only have some
of resource files in common (not all of them). This scenario is common for
piggybacked apps that retain the same original code while adding malicious
functionality, for instance, by loading external code through resources.

– False siblings: are sibling apps that do not have many resources in common.
– Step siblings: are even more distant from the twins. These apps share the

majority of the .dex file and the majority of the resources indicating that
although the content is likely to be plagiarized the app introduces additional
functionality.

– False stepsiblings: are the apps that appear to be step siblings, but do not
share many of the resources.

– Cousins: are defined as distant relatives that do not share common content
with .dex file, they however, employ the majority of same resources.

The exact relationship between two apps is derived via a filtering process and
analysis of similarity values SPIf and SPIng. Through our preliminary exper-
iments, we identified several similarity thresholds that maintain high accuracy
while causing no false positives (Table 1).

Table 1. Relationships’ thresholds.

Twins: SPIng = 100% and SPIf > 95%
Siblings: SPIng = 100% and SPIf > 60%
False Siblings: SPIng = 100% and SPIf < 60%
Step siblings: SPIng > 60% and SPIf > 60%
False step siblings: SPIng > 60% and SPIf < 60%
Cousins: SPIng < 60% and SPIf > 60%

5 Validation

The lack of comprehensive datasets has been repeatedly emphasized as a signifi-
cant problem. Although several datasets were generated, the selection of samples
was mostly done on the basis of hash uniqueness. As a result, none of these exist-
ing sets can serve as a ‘ground truth’ data for our experimentation purposes. To
ensure a comprehensive evaluation of the proposed approach, we constructed a
validation dataset with known relations between apps.
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5.1 Data

For the validation dataset 72 unique Android apps were selected from differ-
ent sources. We manually selected one sample from each family of the Android
Malware Genome Project dataset [36], eight samples from the Android Malware
Virus Share package [2], nine samples from the Virus Total [3] and five sam-
ples from the official Google Play market. Their uniqueness was verified through
VirusTotal labeling and confirmed manually.

To investigate the impact of obfuscation on similarity detection, this set of
unique apps underwent the following transformations:

Modification of .dex file:

– Repackaging. Using apk tool, we unpack the .apk file, to the smali presentation
of the .dex file, then repackage the content back into an .apk file without
modifying the content. This transformation alters the timestamp of all files
and produces a new .dex file which results in step sibling relation between the
original and repackaged version of the app.

– Rerepackaging. Using the same apk tool, we unpack the already repackaged
file to the smali representation, and repackaged again. Similar to repackaging
this transformation produces step sibling relations.

– String url modifications. Common well known urls such as google.com,
bing.com, yahoo.com were kept intact, while the rest of the urls were replaced
with randomly generated strings. Such modification changes the content of
the .dex file producing step siblings.

– Junk code insertion. Using the apk tool, we unpack the .apk file to its smali
representation of the .dex file, then we modify the code adding junk random
code at the beginning of every public method. The junk code was designed to
not do anything, and therefore did not change the functionality of the app.
This transformation only affected the final .dex file, and therefore is expected
to produce step sibling or cousin relationships with the original app.

No modification of .dex file:

– File alignment to 4 and 8 bytes. zipalign utility [4] is commonly used to opti-
mize the application package, aligning uncompressed data to the specified
number of bytes. Although such alignment preserves both the functionality
and the content of the internal files, it alters the hash of the .apk container
file. Since alignment is a common process in Android app development, for
this transformation we employ repackaged apps rather than the originals that
are likely to be already aligned. We expect this transformation to produce
step sibling of the original app (4-byte alignment) and a twin version (8-byte
alignment).

– Icon change. Using the aapt tool [1], we replace the original icon.png. The
only alteration this transformation introduces is the change of the image file
and its timestamp. Thus we consider two versions: a pure image file change
(that results in a twin app) and file replacement followed by a repackaging of
the original app that produces a step sibling.
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– Junk files’ addition. Throughout our preliminary experiments we noticed the
presence of otherwise identical apps with different configuration files. Although
not identical, such apps have high similarity. As such using the aapt tool [1], we
recreate this scenario by adding to an original app package randomly selected
from other unrelated samples configuration or database files. This process
does not require repackaging, thus if by chance a file with the same name is
present in the original app, it will be updated to a new version with different
content. This transformation is expected to result in twin or sibling relations
with the original app.

The final set of 792 samples included original 72 apps, their altered versions
transformed using the methods described above and their combinations. The
resulting apps were randomly signed. This signing process resulted in updated
timestamps and author information in meta-data1.

5.2 Feature Assessment

The selection of the optimal size n has been the subject of many studies. The
inherit trade-off in choosing the size of ngrams is between the accuracy of detec-
tion and the size of frequency vector which ultimately affects the performance
of the approach. As such, for a given integer n, the number of components of a
program’s FV is equal to the nth power of the instruction set of the platform
or to the nth power of the number of distinct opcodes within the program, if we
ignore those opcodes which do not occur in the program.

To determine the optimal size of ngrams, we experimented with n ranging
from 2 to 8. Figure 3 shows the performance of our approach measured as sim-
ilarity detection accuracy for various parameters. For feature assessment only,
similarity detection accuracy was estimated based on n-gram analysis of .dex
files, i.e., two apps were labeled as similar if the similarity of their n-grams have
exceeded a threshold of 60 % (although we experimented with stricter thresholds,
this value provided the best overall result).

As the results show, the best performance was achieved with 2-gram opcodes.
We also experimented with various amounts of the most frequent n-grams in the
range from 100 to 5000 value comparing that performance with the effect of
retaining all available n-grams. Since 2-gram opcodes’ accuracy varied insignifi-
cantly (between 99.8 % and 99.6 %) for all size of frequency vectors, we chose to
employ a more memory-efficient variant: 100 most frequent bigrams.

5.3 Validation Results

The results of experiments with the validation data set are presented in Table 2a
and b. As the results show DroidKin mostly confirmed the presence of expected
relations in the data. Out of 72 apps, 14 were found to carry the same digital
certificate. On the surface this might suggest that all these apps came from the
1 The dataset can be requested at http://www.iscx.ca/android-data-set.

http://www.iscx.ca/android-data-set
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Fig. 3. Similarity accuracy detection for various parameters

Table 2. The similarity results for Droidkin validation dataset.

(a) Original base set.

Total apps 72 100.00%
No. of unique certificates 58 80.55%
Twins 0 0.00%
Siblings 0 0.00%
False siblings 0 0.00%
Step-siblings 0 0.00%
Cousins 2 2.50%
False step-siblings 0 0.00%

(b) Complete set with transformed apps.

Total apps 792 100.00%
No. of unique certificates 185 23.35%
Twins 168 21.21%
Siblings 167 21.09%
False siblings 46 5.81%
Step-siblings 575 72.70%
Cousins 22 2.78%
False step-siblings 177 22.35%

same author. However, upon manual inspection it was revealed that all of them
used public keys made available for debugging purposes. Two apps were found
to be cousins indicating that they share a large portion of resource files. A closer
look showed that apps in these two cases came from the same categories and
therefore share approximately 40 % of code and employ identical image files.



DroidKin: Lightweight Detection of Android Apps Similarity 447

Among the introduced transformations, 73 apps were found to be unrelated,
which means 72 original apps were detected correctly and one app was falsely
labeled as unrelated. This false negative appeared from the original app with
the smallest code size that was significantly altered with an insertion of junk
code. The rest of the apps showed close relations with the corresponding original
samples. No false relationships to original samples that did not serve as a basis
in transformations were detected.

Table 3. The similarity results.

(a) The Malware Genome dataset.

Total apps 1260 100.00%
No. of unique certificates 134 10.63%
Representative apps 879 69.76%
Unique apps 379 29.61%
Unique apps with unique
certificates

86 6.72%

Twins 290 23.02%
Siblings 91 7.22%
False Siblings 2 0.16%
Step-siblings 584 45.63%
Cousins 607 47.42%
False step-siblings 117 9.14%

(b) Drebin dataset.

Total apps 5560 100.00%
No. of unique certificates 963 17.32%
Representative apps 3549 63.83%
Unique apps 1441 25.92%
Unique apps with unique
certificates

681 12.25%

Twins 519 9.33%
Siblings 1332 23.96%
False Siblings 136 2.45%
Step-siblings 2365 42.54%
Cousins 2214 39.82%
False step-siblings 1386 24.93%

6 Experimentation

To further evaluate the performance of the proposed approach we employed three
datasets made available by the recent studies: The Malware Genome project [36],
Drebin [7], DroidAnalytics [33], and we performed a large-scale study of 5,066
Android applications retrieved from Google Play market and 3,116 .apk files
retrieved from Virus Total.

The results of similarity analysis are given in Tables 3a, b, and 4a. Among
the analyzed apps, only 30 % are unique apps, i.e., apps that do not exhibit
any ties to the rest of the apps. It should be noted that a large portion of them
is signed by repetitive keys, indicating that the majority of malware apps come
from the same authors.

Among discovered relationships, a significant percent of relatives (30–36 %)
constitute twins and siblings/false siblings, i.e., apps with identical .dex files.
This is an important issue for an evaluation of malware detection methods, as in
essence these samples are repetitive and can be recognized with the same set of
features. The example of distribution of samples within these categories is shown
in Table 4b. Although DroidKin is not designed to detected malware apps, this
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Table 4. The similarity results.

(a) Droidanalytics dataset

Total apps 2044 100.00%
No. of unique certificates 232 11.35%
Representative apps 1173 57.39%
Unique apps 773 37.82%
Unique apps with unique
certificates

229 11.20%

Twins 545 26.66%
Siblings 211 10.32%
False Siblings 0 0.00%
Step-siblings 960 46.97%
Cousins 703 34.39%
False step-siblings 172 8.41%

(b) Top families in twins/siblings categories
(Drebin dataset).

Count Malware family
Twins
10 GinMaster
11 Geinimi
13 Adrd
17 FakeInstaller
27 SendPay
41 Kmin
79 DroidKungFu
90 FakeDoc
166 BaseBridge
Siblings
10 Boxer
20 Kmin
33 Imlog
34 BaseBridge
38 DroidKungFu
402 Opfake
704 FakeInstaller

result shows its ability to reliably group apps based on their content and link
them to known malware.

While close relations between samples within one family are expected, cross
ties raise many questions. As such, close examination of relations within the
Malware Genome data set revealed 197 apps (15.63 %) that showed relationships
with other families in addition to close ties within the family. Among them only
15 apps (1.19 %) had relationships only with other families. Although this might
be a result of mislabeling, manual inspection revealed a simple code reuse.

Similarly, in the Drebin dataset, we found 249 (4.47 %) apps related to other
families as well as their own, and 62 apps (1.11 %) with exclusive ties to other
families. For example, Anserbot was found to be a cousin of BaseBridge apps
(i.e., share the majority of resources), while BaseBridge samples did not exhibit
any similarity to the other families.

Based on the analysis of the discovered relationships, we believe that the
original sets can be reduced to a smaller set of representative apps that are
sufficient to infer the existing similarity among the apps. For example, Drebin
data set (5560 apps) can be effectively represented by a set of 3549 apps, which
offers a significant reduction and consequently efficiency in analysis.

Using Drebin results as a base, we analyzed a set of apps retrieved from the
Google play market and Virus Total. The results are presented in Table 5. While
the apps detected in Google market were found to be related to adware, the
majority of samples from VirusTotal (155 out of 206) are relatives of LinuxLotoor
exploit.
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Table 5. DroidKin similarity analysis.

No. of apps Relations

5066 Google Play market

2 Step siblings

9 False step siblings

(7 different malware labels)

3166 VirusTotal

206 Relations found

(18 different malware labels)

6.1 Performance

The experiments were conducted on an Intel Core i7 @3.40 Ghz and 16 GB of
RAM. The processing of one application through the initial stage of features
extraction on average took only a few milisec. The most ’expensive’ parts of
analysis are the filtering stage, wich determined a set of candidate apps and
similarity scoring of related apps. For example, the complete processing of one
unique app (including scoring of 1165 related apps) took 2.57 s. In total process-
ing of 1280 apps from the Malware Genome data set took 29 min, processing the
Drebin dataset (5560 apps) took 64 min, and DroidAnalytics’ data took 10 min.

While the performance of DroidKin at these stages highly depends on the
amount of feature vectors stored in the database and the uniqueness of a given
app, we provide a relative analysis of the number of pair-wise similarity scoring
performed on The Malware Genome project’ and Drebin data sets. As Fig. 4
shows, the largest number of similarity calculations performed for related apps
was roughly 600 in Malware Genome data set and 1200 in Drebin dataset, which
is considerably less than it would be required for exhaustive pair-wise compar-
isons.

Fig. 4. The run-time performance of DroidKin
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In the previous experiments, we performed a single thread analysis, but for
the large-scale experiment, we employed in parallel seven threads to speed up
the computations, resulting in less than 2.5 h to completely process all apps.

7 Limitations

Although DroidKin is mainly designed to provide an insight for researchers on
relations between various apps and guide them through selection and analysis
of samples for further study, it showed good detection capabilities. Relying on
the analysis of relations between samples, DroidKin effectively groups similar
samples without requiring ‘expensive’ training or predefined detection patterns.
This functionality can be enhanced by attributing a group of related apps to
specific malware by providing a set of malware samples.

Since DroidKin leverages the application’s content, the quality of analysis
depends on the size of app. While small code and resource alterations are mag-
nified through the similarity assessment, major changes remain hidden behind
a small app size. This is mainly attributed to parasite injections, when benign
applications are equipped with a payload in a form of extra classes or files that
is in proportion constitute a large chunk of an app’s code.

8 Conclusion

With the popularity of the Android platform, the amount of research studies on
Android security is rapidly increasing. The value of a study is often dictated by
the quality of data employed for the experiments. In this context understanding
of relationships behind a diverse set of malware samples becomes an essential
step.

In this work we presented DroidKin, a tool for assessing the similarity of
Android applications. As opposed to the previous approaches, DroidKin offers
deeper insight into app relations, indicating the presence of potential similarity
and describing how and why the apps are related. In summary, our experimental
results showed:

– DroidKin is effective in identifying similarity among apps: as our experiments
show DroidKin is able to pinpoint the existing relations correctly introducing
a very small misclassification error (1 false positive and 1 false negative).

– Although it is not designed for malware detection, DroidKin can be potentially
leveraged to indicate malicious apps through the analysis of relatives of known
malware samples.

– DroidKin is efficient : as opposed to the existing techniques DroidKin can
incrementally process apps without training period or predefined detection
patterns.

– DroidKin is robust : with only 64 min to process 5560 apps DroidKin presents
a good alternative for malware detection tools (e.g., Drebin requires 1 day to
process 100,000 apps).
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