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Abstract. Cloud computing is growing exponentially, whereby there are
now hundreds of cloud service providers (CSPs) of various sizes. While
the cloud consumers may enjoy cheaper data storage and computation
offered in this multi-cloud environment, they are also in face of more
complicated reliability issues and privacy preservation problems of their
outsourced data. In this paper, we propose a privacy-preserving STor-
age and REtrieval (STRE) mechanism that not only ensures security
and privacy but also provides reliability guarantees for the outsourced
searchable encrypted data. The STRE mechanism enables the cloud users
to distribute and search their encrypted data in multiple cloud service
providers (CSPs), and is robust even when a certain number of CSPs
crash. Besides the reliability, STRE also offers the benefit of partially
hidden search pattern.

Keywords: Private keyword search · Searchable encryption · Cloud
computing

1 Introduction

Cloud computing is growing exponentially, whereby there are now hundreds of
cloud service providers (CSPs) of various sizes. This multi-cloud environment
[2,10] offers plenty of new opportunities and avenues to cloud consumers. Cloud
consumers will be able to leverage not just one cloud provider, but many, to
solve their diverse needs and switch providers if one ceases service. To promote
the multiple clouds, IEEE has initiated Intercloud Testbed that helps make
interactions among multiple clouds.

However, while cloud consumers may enjoy cheaper data storage and pow-
erful computation capabilities offered by multiple clouds, consumers also face
more complicated reliability issues and privacy preservation problems of their
outsourced data. More specifically, as it is difficult to obtain clear guarantees on
the trustworthiness of each CSP [7], cloud consumers are typically suggested to
adopt searchable encryption techniques [8] to encrypt their outsourced data in
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a way that the encrypted data can be directly searched by the CSPs without
decryption. Despite many efforts (e.g., [5,6], etc.) devoted to improving efficiency
and security of the searchable encryption, there is little consideration on ensuring
the reliability of the searchable encrypted data.

Existing reliability guarantees solely rely on each CSP’s own backup solu-
tion, which however could be a single-point of failure. For instance, the crash
of Amazon’s elastic computing service in 2011 took some popular social media
sites off-line for a day and one energy department collaboration site unavailable
for nearly two days. More seriously, this crash has permanently destroyed many
customers’ data with serious consequences for some users. It is worth noting that
a comprehensive solution to simultaneously ensuring searchability, privacy, and
reliability on data outsourced to multiple clouds is not trivial to define. Simply
replicating data at multiple CSPs is the most straightforward method, which
however is the least cost-efficient approach. To the best of our knowledge, we
are not aware of any existing work that addresses the three requirements in a
comprehensive manner.

To address the aforementioned challenges, we propose a privacy-preserving
STorage and REtrieval (STRE) mechanism that enables cloud users to distrib-
ute and search their encrypted data in CSPs residing in multiple clouds while
obtaining reliability guarantees. We have designed efficient and secure multi-
party protocols based on the secret sharing mechanism, to ensure that a user
will be able to reconstruct the query results even if (n− t) CSPs have been com-
promised, where n is the total number of CSPs storing the user’s files and t is
a threshold value predefined. Moreover, the STRE mechanism also offers better
protection on the use’s search pattern compared to existing works. Specifically,
many existing works on searchable encryption would completely disclose the
user’s search pattern that indicates whether two searches are for the same key-
word or not [3,4]. In our STRE mechanism, this risk originated from pattern
leakage is lowered because the search is conducted in distribution and the search
pattern will be revealed only if there are more than t CSPs collude.

The rest of the paper is organized as follows. In Sect. 2, we present the system
model as well as introduce notations used in this paper. The proposed STRE
mechanism is provided in Sect. 3. Finally, Sect. 4 draws the conclusion of this
paper.

2 Model and Notations

2.1 System Model

In this work, we consider the cloud storage services offered in a multi-cloud
environment, which involves two types of entities: (1) Users, who store a large
number of encrypted files in multiple clouds and execute keyword-based queries
to access and manipulate their stored files; (2) Cloud Service Providers (CSPs),
who possess storage and computation resources and are willing to cooperatively
store and manage the users’ files. Under this architecture, we focus on search-
ability of encrypted data, stored by users in one or many multi-cloud service
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providers. Informally, searchability refers to the ability of end users to retrieve
encrypted files without having the CSP to decrypt it. These searches are typically
carried out using keywords, which the client uses to locate the desired files.

We assume that the CSPs in the multi-cloud environment are honest-but-
curious, in that each CSP will honestly execute the proposed protocols but they
may be curious and try to learn from the information stored at their sites. Our
design goals include the following objectives:

– Reliability. Given n CSPs, the system should still function if at most n − t
(t < n) CSPs have been compromised, where t is a predefined threshold value
for the system.

– Semantic Security. The system should be semantically secure [3] by sat-
isfying the following two requirements. First, given the file index I and the
collection of encrypted files, no adversary can learn any information about
the original files f except the file lengths. Second, given a set of trapdoors
for a sequence of keyword queries, no adversary can learn any information of
the original files except the access pattern (i.e., the identifiers of the files that
contain the query keyword) or the search pattern (i.e., whether two searches
are looking for the same keyword or not).

– Trapdoor Security. We aim to achieve the conditional trapdoor security.
Specifically, we require that any information about the query keyword -
including the search pattern- should not be leaked before the multiple CSPs’
collaborative search. This requirement holds even if at most (t − 1) CSPs
collude together.

– Robustness. We require that (1) when the protocol successfully completes,
the correct files are returned to the users; (2) when the protocol aborts, even
in the collaborative search stage, nothing is returned and CSPs learn nothing
about the file collection or the underlying searched keyword.

2.2 Notations

Let Δ = {w1, . . . , w|Δ|} be a dictionary of |Δ| distinct keywords in lexicographic
order, and 2Δ be the set of all possible files with keywords in Δ. Furthermore, let
f ⊆ 2Δ be a collection of files f = {f1, f2, . . . , f|f |}, where id(f) is the identifier
of file f whereby the identifier could be a string such as a memory location
that uniquely identifies a file, and f(w) is the lexicographically ordered vector
consisting of the identifiers of all files in f containing the keyword w. Suppose
S is a matrix. S[i][j] denotes the element at the ith row and jth column of S,
while S[i] denotes the ith column vector of S. If S is a vector, we also utilize
S[i] to denote the ith element of S.

3 STRE Mechanism

3.1 Overview

The STRE mechanism consists of two major phases: Storage Phase and Retrieval
Phase.
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Storage Phase. This phase consists of two main steps:

– Step S1. A master secret key msk is generated from a security parameter 1λ

and given to the user. Note that the security parameter 1λ which is assumed to
be known to all the adversaries, specifying the input size of the problem. Both
the resource requirements of the cryptographic algorithm or protocol and the
adversary’s probability of breaking security are also expressed in terms of the
security parameter.

– Step S2. Upon taking a collection of files f and master secret key msk as
input, user generates and uploads encrypted file chunks and file index (ci, I)
to the ith CSP for i = 1, 2, . . . , n.

Retrieval Phase. This phase includes three steps:

– Step R1. The user generates a collection of keyword trapdoors {tpi}n
i=1 based

on the query keyword w and the master secret key msk, and then send each
trapdoor to the respective CSP.

– Step R2. n CSPs collaborate together to search w, and the ith CSP returns
a collection of encrypted chunks yi back to the user for i = 1, 2, . . . , n. Note
that if a certain CSP crashes, its response is yi = ∅.

– Step R3. The user uses his/her master secret key to obtain a collection of
clear files x from at least t non-empty yi in {yi}n

i=1. The correctness of protocol
requires that for any file f , f ∈ x holds when and only when id(f) ∈ f(w).

3.2 STRE Protocols

Let SKE1 = (Gen,Enc,Dec) and SKE2 = (Gen,Enc,Dec) denote two symmetric-
key encryption schemes. We propose two novel efficient protocols: Storage Pro-
tocol and Retrieval Protocol, respectively used in the storage phase and retrieval
phase.

Storage Protocol. The storage protocol is for users to encrypt and distribute
their files to multiple CSPs. We present its detail as follows.
Step S1: Given the security parameter 1λ, the following computations are exe-
cuted.

(1) Initiate three pseudo-random functions: P : {0, 1}λ ×{0, 1}λ → {0, 1}λ+log2r,
Q : {0, 1}λ × {0, 1}s → {0, 1, . . . , |Δ|},R : {0, 1}λ × {0, 1}s+log2(maxw∈Δ|f(w)|)

→ {0, 1}log2r, where r is the total number of appearances of keywords in f and
s is the bit-size of each keyword.

(2) After computing msk1,msk2,msk3 ∈R {0, 1}λ and msk4 = SKE1.Gen(1λ),
send the master secret key msk = (msk1, msk2,msk3,msk4) to user.

Step S2: User builds an index I similar (as shown in Fig. 1) to [3,4]. This index
includes a search array A and a look-up table T, which respectively contains
r and |Δ| entries. We then describe how to construct this index for the files
consisting of a keyword w ∈ Δ.
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Fig. 1. Compressed Index

(1) Create a list lw = (N1, . . . , N|f(w)|), where each node Ni corresponds to
a certain file consisting of keyword w. We specify the structure of Ni as
Ni = f(w)[i]||ki+1|| addrA(w)[i + 1], where f(w)[i] is the identifier of the
ith file in f(w) (i.e., the ith file that consists of w), ki+1 = SKE2.Gen(1λ)
is a symmetric key to be used for encrypting the next node Ni+1 and
addrA(w)[i + 1] = R(msk3, w|| (i + 1)) which will be the location for storing
the encryption of next node Ni+1 in A. Note that for the last node Nf(w),
the stored information k|f(w)|+1 = 0λ and addrA(w)[|f(w)| + 1] = 0log2r.

(2) For each node Ni where 2 ≤ i ≤ |f(w)|, compute and store the encryption
Ci = SKE2.Enc(ki, Ni) at the location addrA(w)[i] in A.

(3) For the first node N1, after randomly picking its encryption key k1 =
SKE2.Gen(1λ) and storage position addrA(w)[1] = R(msk3, w||1), store
C1 = SKE2.Enc(k1, N1) at the location addrA(w)[1] in A.

(4) Mask addrA(w)[1] and k1 by computing and storing (addrA(w)[1]||k1) ⊕
P(msk1, w) at location Q(msk2, w) in T. This enables CSP to use P(msk1, w)
and Q(msk2, w) to know N1 and further efficiently access the identifiers of
files that consist of w.

Moreover, the user encrypts all the files in f and attaches the MDS code to
each of them. Informally, after encryption, each encrypted file is firstly divided
into t equal-sized native chunks. Further, the native chunks can then be encoded
by linear combinations to form another (n − t) code chunks. All the n chunks
(including native chunks and code chunks) will be sent one-to-one to the n
CSPs. This enables us to reconstruct the encrypted file from any t out of n
chunks (from t CSPs) so as to enhance the reliability of the outsourced files.
The detailed process for each file f ∈ f is described as follows.

(5) After computing the ciphertext c = SKE1.Enc(msk4, f), divide c into t equal-
size native chunks, denoted by {c′

i}t
i=1.

(6) Construct the n code chunks through linear combination. Specifically, pick an
encoding matrix E = [αij ]n×t for some coefficients in the Galois field GF(28)
with a rank of t, and compute ci =

∑t
j=1 αijc

′
j for i = 1, 2, . . . , n. Then, each

code chunk and the identifier id(f) form a pair (id(f), ci). Note that the
encoding matrix E should be kept at local for encrypted file reconstruction
in future.
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Finally, the user uploads the encrypted file chunks as well as the metadata
(i.e., the index) to each CSP. Specifically, for i = 1, 2, . . . , n, user sends (ci, I) to
the ith CSP, where ci = {(id(f), ci) : f ∈ f} is the set of pairs of file identifier
and its ith code chunk.

Retrieval Protocol. In order to achieve privacy preserving keyword search over
multiple clouds, we propose a novel retrieval protocol that consists of two stages:
(1) query sharing stage; (2) and reconstruction stage. The query sharing stage
generates a (t, n)-secret sharing on the user’s keyword query and distribute the
shares to n CSPs. The reconstruction stage allows the user to obtain the query
results when at least t (t ≤ n) CSPs are functioning.

Recall that a user’s keyword query in [3] is typically described as a pair of
location (e.g., Q(msk2, w)) and blinding value (e.g., P(msk1, w)), where location
records the location of the first node of the searched keyword list in T, and
blinding value is a shadow for this entry in T to prevent CSPs from accessing
it. In order to ensure trapdoor security, the query sharing stage in our retrieval
protocol conducts secret sharing on both the location and the blinding value.
This type of trapdoor is randomly and completely shared with n CSPs and its
privacy is preserved even if at most (t − 1) CSPs collude together. In this way,
the search pattern is hidden before the collaborative search. More specifically,
we leverage Bai’s multiple secret sharing scheme [1]. We build and share a secret
matrix S consisting of both the secrets and some random values which are used
for partially checking the correctness of reconstruction later. We let S[1][1] and
S[1][2] record the blinding value and location respectively, and pick random val-
ues to fill the other entries of S. In addition, another “mirror matrix” S′ defined
the same as S except S′[1][1] = 0, S′[1][2] = 0 is published. Later on, when the
secret matrix is reconstructed, S′ can be used for partially correctness checking.

In the reconstruction stage, our approach is based on the secure data aggre-
gation scheme [9]. In a general sense, for i = 1, 2, . . . , n, after receiving the share
vi on secret matrix S, the ith CSP maintains a (t × n) matrix Bi with its share
vi in the ith column and 0 otherwise. After making a (n, n)-secret sharing on
each entry of such a matrix, each CSP keeps one share Bii at local and respec-
tively distributes the remaining shares {Bij}j �=i to the other (n − 1) CSPs. In
this way, each CSP is able to obtain n “sub-shares”, (n − 1) received from other
CSPs and one kept by itself, and compute one share, say B

′
i, of the “share

matrix” B = [v1, v2, . . . , vn] through summing up all these “sub-shares” (due
to the additive homomorphism of (n, n)-secret sharing). Each CSP continues
to distribute the summing result to the other CSPs and the “share matrix” B
can be reconstructed by summing up all the gathered distributions. Then, the
rest of reconstruction is identical to Bai’s scheme [1] with an additional step
for partially checking the correctness of secret reconstructed (using the “mirror
matrix” S′).

After correctly reconstructing the location and blinding value, the encrypted
file chunks can be found and sent back by each CSP [3,4]. The user groups these
chunks according to the unique identifier of file and recovers the whole encrypted
files with MDS code. The original files can be derived through decryption.
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We now elaborate on the detailed steps of the retrieval protocol. Note that
in all the steps, whenever an entity fails or any verification step fails, the entity
sends the signal “fail” to the other entities and aborts. Moreover, whenever any
entity receives a signal “fail”, it aborts as well.
Step R1: Given the master key msk and the query keyword w, the user first
builds a secret matrix and its mirror matrix.

(1) Build (m × t) secret matrix S such that S[1][1] = P(msk1, w), S[1][2] =
Q(msk2, w) and random values are filled at the other entries. We can just
set m = 2t − 2 to reduce communication overload.

(2) Build a mirror matrix S′ as the same as S except S′[1][1] = S′[1][2] = 0.
Then, S′ is published out for correctness check in future.

Secondly, the user performs the following computations to make a multiple
secret sharing on the secret matrix S.

(3) After randomly picking a (m× t) matrix A of rank t, compute the projection
matrix M = A(ATA)−1AT mod p and publish the reminder matrix R =
S − M mod p where p is a public big prime number.

(4) Randomly choose (t × 1) vectors xi for i = 1, 2, . . . , n such that any t of
{xi}n

i=1 are linearly independent, and compute each share vi = Axi mod p.

Finally, user submits the share vi to the ith CSP for i = 1, 2, . . . , n, to retrieve
all the files containing the keyword w.
Step R2: For the ith CSP, i = 1, 2, . . . , n, upon receiving the share vi, it first
submits and collects shares through multi-party computation according to the
following steps:

(1) Build a matrix Bi such that Bi[i] = vi and the other entries of Bi are filled
with 0.

(2) After making an (n, n)-secret sharing on Bi, i.e., randomly pick Bi1, . . . , Bin

such that
∑n

j=1 Bij = Bi, send Bij to the jth CSP for j = 1, . . . , i − 1, i +
1, . . . , n. Note that the matrix Bii is kept at local by the ith CSP.

(3) Upon receiving Bji from the other CSP, where j = 1, . . . , i − 1, i + 1, . . . , n,
send back (to the jth CSP) a response ack. Note that if the response is not
received by the jth CSP, the jth CSP needs to set Bjj = Bjj + Bji.

(4) Suppose B1i, . . . , B(i−1)i, B(i+1)i, . . . , Bni have been successfully gathered
and responded. Compute and broadcast Bi =

∑n
j=1 Bji (Bii is the local

share computed by ith CSP) to all the other active CSPs (i.e., the CSPs
which have successfully sent back valid response before).

(5) After gathering B1, . . . , Bi−1, Bi+1, . . . , Bn from the other CSPs and Bi

from local, the ith CSP computes and obtains the share matrix B =∑n
j=1 Bj .

Then, the ith CSP attempts to reconstruct the secret matrix S as follows:

(6) Randomly collect any t columns from B and construct the matrix B.
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(7) Calculate projection matrix M = (B(BTB)−1BT) mod p and the secret
matrix can be reconstructed as S′′ = M + R mod p.

(8) Verify the correctness of reconstruction by checking all the entries except
S′′[1][1] and S′′[1][2] of S′′ and S′. If not passed, return back to Step R2.(6).

Step R3: Upon computing P = S′′[1][1] and Q = S′′[1][2], the ith CSP proceeds
as follows to collect and return the code chunks:

(1) Compute T[Q] ⊕ P = tmp and parse tmp as loc and k. Then, loc is the
location of the first node of lw in A and k is the symmetric key used for the
encryption of this node.

(2) Compute info = SKE2.Dec(k,A[loc]).
(3) After parsing info as id, loc and k, fetch the code chunks (id, ci) with (id, ci) ∈

ci. Then, test loc||k: if loc||k �= 0λ+log2r, return back to Step R3.(2).

After gathering all the code chunks {(id, ci)}id∈Γ for i = 1, 2, . . . , n, where Γ is
an underlying set of file identifiers satisfying the search criterion as intrinsically
indicated above, the ith CSP sends back results (i, {(id, ci)}id∈Γ).
Step R4: Upon receiving the results, the user continues to proceed as follows.

(1) Suppose Ω is the set of CSP identifiers i, the chunks of which have been suc-
cessfully received. If |Ω| < t, user reports “fail” and the protocol is aborted.
Otherwise, he/she randomly selects t-element set Ω ⊆ Ω, and constructs a
matrix E from the corresponding t row vectors of E. Recall that E is the
encoding matrix of encrypted files maintained by user. The rank of E is
t, which guarantees that E is invertible. Straightforwardly, for each file, its
encrypted form can be reconstructed by multiplying the inverse matrix of E
with the corresponding code chunks.

(2) Finally, user uses msk4 to decrypt the reconstructed encrypted files and
obtains the search results in plain.

Finally, it is worth noting that although our current discussion is focused on
CSPs that store the same amount of file chunks, our mechanism can be easily
extended to a more flexible storage strategy. For example, we can encode the
encrypted file into more than n chunks and store more than one chunk in the
cheaper or more reliable CSP.

4 Conclusion

In this paper, we propose the STRE mechanism, to promote reliability of out-
sourced searchable encrypted data. In STRE, user’s searchable encrypted data
is strategically distributed to and stored at multiple CSPs, so as to achieve high
crash tolerance. Besides reliability, the STRE mechanism also affords efficient
and flexible storage properties and partially hidden search pattern.
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