
Towards a Systematic Study of the Covert
Channel Attacks in Smartphones

Swarup Chandra1(B), Zhiqiang Lin1, Ashish Kundu2, and Latifur Khan1

1 The University of Texas at Dallas, Richardson, TX, USA
{swarup.chandra,zhiqiang.lin,lkhan}@utdallas.edu

2 IBM T J Watson Research Center, Yorktown Heights, NY, USA
akundu@us.ibm.com

Abstract. Recently, there is a great attention on the smartphones
security and privacy due to their increasing number of users and wide
range of apps. Mobile operating systems such as Android, provide mech-
anisms for data protection by restricting the communication between
apps within the device. However, malicious apps can still overcome such
restrictions via various means such as exploiting the software vulnera-
bility in systems or using covert channels for data transferring. In this
paper, we aim to systematically analyze various resources available on
Android for the possible use of covert channels between two malicious
apps. From our systematized analysis, we identify two new hardware
resources, namely battery and phone call, that can also be used as covert
channels. We also find new features to enrich the existing approaches for
better covert channel such as using the audio volume and screen bright-
ness. Our experimental results show that high throughput data transmis-
sion can be achieved using these resources for the covert channel attacks.

Keywords: Android · Covert Channel · Mobile Security

1 Introduction

Smartphone users today install multiple apps that provide personalized services
and easy access of users’ personal information including credit card, medical
records, phone contacts, insurance card, etc. Data security of these sensitive
information has become a critical concern to these users. Android operating
system (OS) inherits the Linux security infrastructure where apps are installed
and executed within its individual virtual environment or sandbox [4]. The OS
uses security policy based permission model to control the access to the shared
resources, and an app has to seek the explicit permissions to access them during
the installation time.

An attacker interested in obtaining user’s private data must circumvent the
security policies that prevent the illegal access. In Android, covert channels can
be used by malicious apps for such an attack. A covert channel is a medium
through which two entities communicate without using conventional methods

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 427–435, 2015.
DOI: 10.1007/978-3-319-23829-6 29



428 S. Chandra et al.

(e.g., intents). In particular, an app having access to user’s private data can
transfer it to another app within the same device, or to an external server using
these non-conventional channels. This data transfer can be oblivious to an end
user. It has been generally accepted that a covert channel of bandwidth>100 bps
would pose a significant threat to data security in a system [15]. Therefore, the
existence of large bandwidth covert channels pose a high risk of storing user’s
private data on a mobile device.

Since shared resources are typically used as a medium for covert channel com-
munication between two entities. Shared resource attributes which provide apps
the ability to read, store and modify data, can be exploited by malicious apps
to execute a communication protocol for data transfer. As such, it is imperative
to identify these possible communications and mitigate their threats. The threat
model considered in this paper involves a malicious app (App A or Encoder)
having access to user’s private data, transfers the information to another app
(App B or Decoder) on the same device which does not have access to this data,
using a covert channel.

In this paper, we systematically analyze the properties of various shared
resources on an Android system and evaluate their use as possible covert channels
for establishing communications between two malicious apps installed on the
same device. Specifically, by using a shared resource matrix approach [12] to
inspect each shared resource attribute that satisfies covert channel properties,
we discover new storage and timing covert channels, which have not been studied
before. In particular, we show that the use of battery and phone call frequency
as timing channels and the use of phone call log as storage channels are realistic
threats. In addition, we enumerate other shared resources shown in existing
studies such as audio and screen to find new features and observations which
can be used to develop a better covert channel. Our experimental results show
that these channels can have sufficiently high throughput and cannot be ignored.

2 Background and Related Work

Covert channels can be classified as timing or storage channels. In a timing
channel, information between two colluding apps is transmitted using shared
resources having no storage capability (e.g., CPU) for a specific period of time.
The encoding and decoding of information is performed with precise time syn-
chronization between the two apps. In contrast, a storage channel involves the
use of shared resources having storage capability (e.g., file system). This enables
asynchronous encoding and decoding of the information.

Identification of covert channel on a system is known to be a hard prob-
lem [13]. There have been multiple studies that identify various shared resources
supporting covert communication in Android such as the network channel [5].
A recent study involves the design of a real world malware app that uses audio
and system settings as covert channels [17]. A survey of various covert chan-
nels [14] demonstrate possible timing and storage channels. However, none of the
existing work has performed a systematic study on all shared resources and their
properties in an Android system.



Towards a Systematic Study of the Covert Channel Attacks in Smartphones 429

Table 1. Overview of the shared components between apps, and the possible use of
covert channel attack. (Symbol denotes a covert channel is possible and have been
studied, the covert channel attack has not been studied yet)

In order to perform a systematized analysis of shared resource properties that
can support covert channels, we identify attributes that satisfy covert channel
properties [2] of each possible resources that are enumerated in Table 1. These
resources are classified as application level, OS level and hardware level based
on their attribute properties [14]. Previous studies have already identified many
shared resources that could form a covert channel, which is also summarized
in the table. We can observe that the hardware such as Battery and Phone
component have not been studied before to form a covert channel (indicated
by ), and the goal of this work is to find them out and demonstrate their
feasibilities.

3 Analysis Overview

In this section, we describe how we identify the shared resources (using a shared
resource matrix [12]), and inspect each of them to form a covert channel between
colluding apps within a device. In general, a shared resource that can be used
to form a covert channel needs to satisfy at least the following capability:

– Ability for apps to read from a resource.
– Ability for apps to write to a resource.
– Ability for apps to turn on (or off ) a resource.
– Ability for an app to lock a resource, in which case other apps cannot access

the same resource simultaneously.

To enumerate each shared hardware resource and check their properties, we
have created a shared resource matrix shown in Table 2. Note that hardware
resources are inherently shared by various apps in a device (because of multi-
plexing). For each resource that have the above capabilities (indicated by a
on both read and write, lock, or on/off property), we check whether we can form
a covert channel based on the following properties:



430 S. Chandra et al.

– Both the sending and receiving processes must have access to the same
attribute of a shared object.

– The sending process must be able to modify the attribute of a shared object
in the case of storage channel, or they must have access to a time reference,
such as a real-time clock, a timer or the ordering of events in the case of a
timing channel.

– The receiving process must be able to reference that attribute of the shared
object.

– The sending process must be able to control the detection time by the receiving
process, for a change in attribute value.

– A mechanism for initiating both processes, and properly sequencing their
respective accesses to the shared resources, must exist.

Table 2. A Shared Resource Matrix on Android. (Symbol denotes satisfying the
covert channel property; indicates not; denotes the covert channel attack we
enriched, and denotes the brand new covert channel we identified.)

As shown in Table 1, we find 11 out of 12 resources listed that satisfy covert
channel properties, and these resources include such as Battery, Screen, Audio
and Phone. Among them, resources such as CPU, Memory, Sensors, Vibrator,
Camera, Bluetooth and Network have already been identified in earlier work.
Hence, we do not consider them for our analysis. Interestingly, we do find two
new covert channels (denoted by ), namely Battery and Phone Calls (details
in Sect. 4). Also, for the two previously studied covert channels (denoted by ),
we enrich them by using attributes not specified in these studies (details in
Sect. 5).

4 Discovery of New Covert Channels

With our systematized analysis, we have identified two new covert channels:
Battery and Phone Call. In this section, we present the details of our discovery.

Battery. Mobile devices typically have a Lithium-ion battery, with limited
charge capacity. Parallel use of multiple resources discharges the battery at dif-
ferent rates depending on the component used. This property can be exploited



Towards a Systematic Study of the Covert Channel Attacks in Smartphones 431

for encoding of information to form a covert channel. Specifically, the Battery
Manager API provides a broadcast intent [8] informing an app (with intent fil-
ter registered with ACTION BATTERY CHANGED) about every 1 % change in the
battery charge level. A malicious app can perform a binary encoding of desired
information by running parallel operations on combination of resources such as
CPU and screen brightness, to achieve a predetermined discharge rate. A decoder
estimates the discharge rate for an exact time period using the broadcast intent,
thereby forming a covert channel.

Phone Call. Apps with CALL PHONE permission can make a phone call using
an intent with ACTION CALL, and end the call using a Java reflection method
involving the ITelephony interface. This ability to make phone calls can also
be exploited to form covert channels. More specifically, there could be two such
channels.

– Phone Call Frequency Channel : Apps can place phone calls at a predeter-
mined frequency to encode binary values. Colluding app having READ PHONE-
STATE permission can synchronously measure the call frequency by register-
ing a receiver to a broadcast intent from TelephonyManager API informing
of a change in call state [11]. Since both colluding apps require exact time
synchronization, this is a timing channel.

– Phone Call Log Channel : Apps can dial an integer value encoding a desired
information in the URI attribute of the phone call intent. The dialed number
is stored in a call log content provider, which can be read by a decoder with
READ CALL LOG permission. The information stored is determined by checking
the latest dialed number from the call log [9]. Since the dialed number is stored
in the call log as an ASCII string, the length of the number can be arbitrarily
large. The two colluding apps do not require exact time synchronization since
this is a storage channel.

5 Enrichment of Existing Covert Channels

We reported in Table 2 that there are also existing efforts (e.g.,[6,14,17]) on using
resources such as screen and audio for covert channels. While existing work did
show their feasibility, in this section we would like to concretize and enrich them
on how we would like to exploit them in the covert channel attacks.

Screen. Screen resource attribute such as system settings can be set by apps
as shown in [14,17]. Here, we analyze a specific attribute namely SCREEN BRIG-
HTNESS system settings parameter, which is not specifically mentioned in early
studies. Screen brightness can be changed to an appropriate integer value in the
range of 0 to 255 by an app accessing system settings [10], if the SCREEN BRIGHT-
NESS MODE parameter is set to 0. A decoder can read the encoded integer value
which may represent a desired information.

Audio (Volume). Prior efforts (e.g., [14,17]) identified the audio channel using
system settings and APIs involving the volume attribute. Here, we provide new



432 S. Chandra et al.

insights regarding the use of multiple API components forming a volume based
covert channel. The AudioManager API provides multiple stream volume com-
ponents including STREAM ALARM, STREAM DTMF, STREAM MUSIC, STREAM NOTIFI-
CATION, STREAM RING, STREAM SYSTEM and STREAM VOICE CALL [7]. Similar to
system settings, apps can set integer values on each component representing a
volume level, using setStreamVolume method. This property can be exploited
for encoding desired information using a combination of volume components. A
range of integer values allowed for each component can be obtained using the
getStreamMaxVolume method.

6 A Covert Channel Protocol

In this section, we briefly describe the design and implementation of a com-
munication protocol we developed to enable covert communication between two
malicious apps using channels in Sects. 4 and 5. More details about this protocol
can be found in our technical report [3].

Major challenges in using shared resources as covert channels include noise
due to external factors such as parallel app execution or end user interaction,
scheduling uncertainty, and bandwidth limitation. We can overcome these chal-
lenges by designing a synchronization protocol [17] to enable sequential ordering
of data transfer events between the two colluding apps. In particular, noise due
to uncertainty in scheduling of encoding and decoding operations occurs due to
parallel execution of the two colluding apps. Synchronization of these parallel
processes can be performed by a clocking mechanism that schedules execution of
one operation at a time from the encoder or the decoder, thereby reducing the
noise. Further, limitations due to external factors can be overcome to a certain
extent by simple checks for protocol disruptions such as unexpected change in
channel value. Finally, bandwidth limitation can be addressed by splitting the
desired information into binary strings of appropriate length. For example, an
integer value ≤ 255 corresponds to a binary string of length 8 bits. This integer
can be encoded using the Screen channel (called a data channel) whose sup-
ported range is 0 to 255. If the desired data (binary string) is of length greater
than 8 bits, the data is split into multiple chunks, each of length 8 bits. These
chunks are then transmitted over the screen channel sequentially by converting
the binary value into a corresponding integer.

The two colluding apps initialize using a single bit channel (also called sync
bit) to begin data transfer. In case of a storage channel, encoder sets the sync
bit to 1 after encoding a data chunk on a channel, and waits for a response from
the decoder before encoding the next chunk. The decoder responds by flips this
sync bit to 0 after successfully reading the data channel. Conversely, the sync
bit indicates start and end of encoding in a timing channel, which is used by the
decoder to exactly synchronize with the encoder.

Implementation of covert timing channels requires the evaluation of different
thresholds representing 0 and 1. We empirically determine the thresholds for
Phone Call Frequency channel (number of calls that can be placed per second)



Towards a Systematic Study of the Covert Channel Attacks in Smartphones 433

and Battery channel (amount of battery discharge percent is achieved by parallel
use of different components) using our test phone [3]. In the case of Battery
channel, we performed a parallel execution including CPU, Screen Brightness,
Cellular network, Vibrator, GPS data, and Phone component to determine the
threshold values. More details on how we get these threshold values can be found
in our technical report.

7 Evaluation and Discussion

We now present our experimental results on the covert channels we have ana-
lyzed. Evaluation of each channel was performed on a Samsung Galaxy S phone
running Android version 4.2.2.

Table 3. Protocol statistics with Throughput : Ratio of Input Length and Time Taken

Covert Channel
Supported Range Input

Length
L (bits)

Time
Taken
T (sec)

Throughput
L/T
(bps)

Integer
Range

Binary
Length

Phone Call Log - 2.3M (max) 2.3M (max) 67.3 34175.3

Phone Call Frequency 0 - 1 1 10 16.05 0.623

Screen 0 - 255 8 525 0.828 634.05

Audio
(Volume)

DTMF (D)
Music (M)
Alarm (A)

Notification (N)

D (0 - 15)
M (0 - 15)
A (0 - 7)
N (0 - 7)

D = 4
M = 4
A = 3
N = 3

Total = 14

525 1.6 328.125

Battery 0 - 1 1 5 1515.15 0.0033

Experiments involve data transfer of a random binary string of certain length
(given under Input Length column in Table 3), from an encoder to a decoder using
each covert channel mentioned in Sects. 4 and 5. As mentioned in Sect. 6, the
binary string is divided into data chucks of appropriate size (given under Binary
Length column in Table 3) for each channel.

The table shows the throughput obtained in our experiments on each chan-
nel, averaged over 10 experiments with different randomly selected input binary
string. We performed various experiments using the Phone Call Log channel with
multiple input lengths. We observed a near-linear increase in transfer time with
exponential increase in input length for this channel (more details are presented
in [3]). Therefore, the highest throughput of 34.17 kbps (= 2.3M

67.3 ) was obtained
by transferring 2.3M bits in 67.3 secs after encoder and decoder initialization.
However, we observed a decrease in responsiveness of answering a query to the
call log content provider with increase in input length. This negatively affected
the throughput beyond the input length of 2.3M bits on our test phone. Such
a behavior may be due to memory limitations of the call log content provider



434 S. Chandra et al.

query mechanism. Further, we obtain a higher throughput on the Screen and
Volume channel than previously reported in [14] and [6] respectively. This is
primary due to the use of higher bandwidth attribute(s) to form the channels.
Additionally, the table shows a lower throughput on the Volume channel which
uses 14 bits, compared to the Screen channel which uses only 8 bits. This is
due to slower response time of AudioManager API, and larger time required to
set and read multiple attributes in the Volume channel as compared to a single
attribute in the Screen channel.

On the other hand, a low throughput obtained using the Phone Call Fre-
quency channel can also be attributed to low bandwidth, and intent scheduling
uncertainty. Phone calls are placed using an intent which contains the number
dialed, as explained in Sect. 4. During the experiments, we found that these
intents are not scheduled at a desired frequency by the intent handler. This
may be due to interference from multiple process calls generated for handling
each intent. Finally, in case of the Battery channel, a faster battery discharge is
required to obtain higher throughput. However, the table shows an extremely low
throughput. Our empirical threshold estimation considered a bandwidth margin
beyond the average battery discharge rate due to normal device operation. On
an average, it took at least 5 mins to achieve such a discharge rate for encoding a
single bit. This can be attributed to the difficulty of an app to drain the battery
using different resources on a device since these resources are typically designed
to consume minimal power.

One possible way to reduce the bandwidth of the Phone Call Log channel is
to limit the string length of each record stored in the call log. A limitation of the
channel over the phone component is that its usage cannot be made oblivious to
an end user. The user can easily detect a phone call being made, or review the
phone call log for dialed numbers. We leave the evaluation of channel obfuscation
to avoid detection, for future work.

8 Conclusion

We have presented a systematic study of the shared resources available to an
app on an Android phone and evaluated their possibility of support of a covert
channel. In particular, we analyze various shared hardware resources that can
be potentially exploited to transfer data maliciously between two apps on the
same device. Our analysis yields two novel types of covert channel attacks that
involves the battery and the phone component. We also design a communication
protocol that can be used to achieve high throughput among the shared resources
we inspected, and overcome the limitations in data transmission by using a
synchronization mechanism between two colluding apps. Our study shows that
a high throughput, greater than 30kbps, can be achieved with the use of phone
component as a covert channel.



Towards a Systematic Study of the Covert Channel Attacks in Smartphones 435

Acknowledgment. We thank anonymous reviewers for their invaluable feedback.
This research was partially supported by The Air Force Office of Scientific Research
under Award No. FA-9550-12-1-0077. Any opinions, findings and conclusions or rec-
ommendations expressed herein are those of the authors and do not necessarily reflect
the views of the sponsors.

References

1. Ali, M., Humayun A., Zahid, A.: Enhancing stealthiness & efficiency of android
trojans and defense possibilities (EnSEAD)-android’s malware attack, stealthiness
and defense: an improvement. In: Frontiers of Information Technology (FIT). IEEE
(2011)

2. Bishop, M.: Introduction to computer security. Addison-Wesley Professional, Ams-
terdam (2004)

3. Chandra, S., Lin, Z., Kundu, A., Khan, L.: Towards a Systematic Study of the
Covert Channel Attacks in Smartphones. Technical report, University of Texas at
Dallas (2014)

4. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: USENIX Security Symposium, vol. 2, p. 2, August 2011

5. Gasior, W., Li Y.: Network covert channels on the Android platform. In: Pro-
ceedings of the Seventh Annual Workshop on Cyber Security and Information
Intelligence Research. ACM (2011)

6. Hansen, M., Raquel, H., Seth, W.: Detecting covert communication on Android.
In: 37th Conference on Local Computer Networks (LCN). IEEE (2012)

7. http://developer.android.com/reference/android/media/AudioManager.html
8. http://developer.android.com/reference/android/os/BatteryManager.html
9. http://developer.android.com/reference/android/provider/CallLog.Calls.html

10. http://developer.android.com/reference/android/provider/Settings.System.html
11. http://developer.android.com/reference/android/telephony/TelephonyManager.

html
12. Kemmerer, R.A.: Shared resource matrix methodology: an approach to identifying

storage and timing channels. ACM Trans. Comput. Syst. (TOCS) 1(3), 256–277
(1983)

13. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

14. Marforio, C., Ritzdorf, H., Francillon, A., Capkun, S.: Analysis of the communi-
cation between colluding applications on modern smartphones. In: Proceedings of
the 28th ACSAC, pp. 51–60. ACM, December 2012

15. NCSC, NSA.: Covert Channel Analysis of Trusted Systems (Light Pink Book).
NSA/NCSC-Rainbow Series publications (1993)

16. Ritzdorf, H.: Analyzing Covert Channels on Mobile Devices. Diss. Master thesis
ETH Zrich (2012)

17. Schlegel, R., Zhang, K., Zhou, X. Y., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: a stealthy and context-aware sound trojan for smartphones. In: NDSS,
vol. 11, pp. 17–33, February 2011

18. Simon, L., Ross A.: PIN skimmer: inferring PINs through the camera and micro-
phone. In: Proceedings of the Third ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. ACM (2013)

19. van Cuijk, W.P.M.: Enforcing a fine-grained network policy in Android (2011)

http://developer.android.com/reference/android/media/AudioManager.html
http://developer.android.com/reference/android/os/BatteryManager.html
http://developer.android.com/reference/android/provider/CallLog.Calls.html
http://developer.android.com/reference/android/provider/Settings.System.html
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://developer.android.com/reference/android/telephony/TelephonyManager.html

	Towards a Systematic Study of the Covert Channel Attacks in Smartphones
	1 Introduction
	2 Background and Related Work
	3 Analysis Overview
	4 Discovery of New Covert Channels
	5 Enrichment of Existing Covert Channels
	6 A Covert Channel Protocol
	7 Evaluation and Discussion
	8 Conclusion
	References


