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Abstract. A hardware implementation of novel hash generator, namely LDHG,
is proposed in this paper which is based on a spatiotemporal chaos algorithm.
The proposed hash generator includes a spatiotemporal chaos algorithm
computing module, message input/output port, data cache and hash code gen-
eration module. The hardware design process, security and performance eval-
uation are presented. Using the message authorization in smart grid as an
application example, experimental results show that the proposed hash generator
is irreversible, sensitive to the message and chaos parameters. It can efficiently
defend the attack of invasion and forgery and the hardware area overhead is
relatively low.
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1 Introduction

Information security becomes increasing challenge due to the large scale attacks.
Cryptographic hash function has been used in various information security field, e.g.
digital signatures, message authentications and data corruption detections [1], which
takes an arbitrary block of message and outputs a fixed-size value. The typical hash
function, namely MD4 algorithm, was proposed in [2]; after that, various message-
digest algorithms have been proposed, e.g. MD5 [3], SHA-0, SHA-1, PIPEMD-160,
Whirlpool [4] and Whirlwind [5]. However, due to the fact that they are constructed by
arithmetical operations or multi-round iterations of ciphers, their security have been
compromised under various attacks (e.g. the proposed collisions attacks in the
approaches of [6, 7]). Therefore, researchers have looked to develop more secure and
efficient hash functions. Because chaos has cryptography characteristics (i.e. random-
like and ergodicity) and is extremely sensitive to initial conditions and system
parameters, chaos theory has been employed to construct the hash functions.

Recently, various hash functions using chaotic maps, chaotic neural networks and
parallel construction methods have been proposed. For example, a generalized
Henon-based hash function was constructed in [8]; one-way hash functions based on
hyper-chaotic cellular neural network and unified chaotic system were proposed in [9]
and [10] respectively. Although these approaches improve the system security, how-
ever, the algorithms are not efficient due to the serial computing [11]. In order to
overcome this weakness, a parallel hash function construction based on chaotic neural
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network was proposed in [11]. Another approach of [12] analyzed the security per-
formance of [11] and found that it is compromised by weak keys and forgery attacks;
therefore proposed a method to improve its security. Based on the outcomes of [11,
12], some novel parallel hash functions were also proposed, e.g. [13] and [14] are based
on spatiotemporal chaotic system and chaotic neural network.

The traditional chaotic systems are designed based on analogue circuits [15].
However, analogue circuits have the weaknesses of easily system parameters mismatch.
Therefore the approaches of [16, 17] and [18] use digital systems to design the chaotic
systems. This paper will also employ the digital system design method for the chaotic
system implementation. In our previous work of [19], a parallel hash construction
method, namely LD scheme, was proposed which is based on spatiotemporal chaos. In
this paper, the LD scheme will be employed to implement a hash generator (i.e. LDHG)
for message authorization. The LD scheme and message authorization process are
outlined in Sect. 2. Section 3 presents the hardware implementation of the proposed hash
generator and experimental results of a case study using in the smart grid will be given in
Sect. 4. Section 5 provides the conclusion and highlights the future work.

2 LD Scheme

2.1 Spatiotemporal Chaos System

LD scheme [19] uses spatiotemporal chaos as the compress function for hash codes
generation. The spatiotemporal chaos function is given by (1), where the parameter
e 2 ð0; 1Þ and l 2 ð3:5699456; 4Þ. LD scheme is a system with discrete-time and
discrete-space but its state value is continous which is in the range of (0,1). Its output is
distributed in all the space; therefore it is suitable for cryptography.

xnþ1 ið Þ ¼ 1� eð Þf xn ið Þð Þ þ 0:5e½f xn i� 1ð Þð Þ þ f ðxnðiþ 1ÞÞ�
f xn ið Þð Þ ¼ lxnðiÞð1� xn ið ÞÞ

(
ð1Þ

2.2 One-Way Hash Function and Contrunction Method

The basic purpose of one-way hash function is to compress an input message string
with an arbitrary length into a hash value with a fixed length, and its mathematical
expression is H ¼ H Mð Þ ¼ P

i
hðMiÞ, where h denotes a compression function, Mi is

the corresponding block messages. Σ usually denotes a nonlinear combination. The
message can be divided to several blocks where the message length in each block is
determined by compression function h. Then the separated message blocks can be
processed in parallel to get their respective output values. Finally all the values are
mixed to obtain a final hash value. As the spatiotemporal chaotic system has a stronger
2D spatiotemporal complexity and mixture, therefore it is suitable for constructing a
hash function.
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3 Hardware Implementation of LDHG

Based on the construction method of hash function, the hardware implementation of
LDHG is presented in this section. The implementation procedure is presented in detail
and a case study in the smart grid is also given.

3.1 Hash Coding System Structure

The LDHG system structure is presented in Fig. 1. It receives the message from a
message input port and outputs the hash code via hash code output port. The message
input is the communication interface which is connected to other processors (such as
mirco-processors). The LDHG system includes the following modules - data prepro-
cessing, packet check, FIFO, hash code output and spatiotemporal chaos computing
(including two sub-modules, data computing core and single module computing
module). The functions of the first three modules are presented as follows: (a) the data
preprocessing module converts the received packets (byte stream of 8-bit width) to a
uniform format. Because the communication protocol varies, the packets of different
protocols are converted to the standard format for the following modules processing;
(b) the packet check module checks the received packet and outputs the packet length.
The packet length varies for different packet; however, the coupled map lattice length is
constant. Therefore, if the packets length is shorter than the length of lattice then the
packet will be filled to be the full length. The output packets are forwarded to the next
module for processing and (c) the FIFO module saves the received packets tempo-
rarily. The output of FIFO is connected to the spatiotemporal chaos computing module
and triggers it to start the chaos function computing to generate the chaos sequences.
The data preprocessing, packet check and FIFO modules complete the packets format,
check and temporary save, and then send the standard packets sequentially to the next
module – spatiotemporal chaos computing module.

After received the packets, the spatiotemporal chaos computing module judges the
length of packets, distributes the packets to different message blocks and then send the
packets to the chaos system where every state value will be generated. After several
times of interactions, the state value will be obtained and processed in order to generate
the hash code. The hash codes of all the message blocks will be calclulated together to
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Fig. 1. Hash coding system structure
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generate the final hash code. The chaos computing of multiple blocks can be executed
in a parallel or serial manner. For the parallel computing procedure, after all the
received block packets are ready, they are sent to the computing modules simulta-
neously to generate the hash codes. The separated hash codes will be further calculated
to get the final hash code. However, for the serial computing procedure, the hash code
of each block is calculated sequentially and the final hash code is generated using the
previous results of separated blocks. The main advantage of parallel computing is the
high speed computing however its area overhead is a little high. The main advantage of
serial computing is that the area overhead is relative low, but its computing speed is
slow. The strategy selection can be made based on application field. However, no
matter using parallel or serial computing procedure, for the message hash code gen-
eration, the main function is the computing in a single block. Therefore, the single
block computing unit is the core module of the LDHG system.

The single block computing unit receives one block packets and generates the cor-
responding hash code. The input packet data (8-bit width integer) is scaled to the initial
value (float point) of chaos function. After calculation of n times iteration, the final
hash code (16 bytes) is generated, which is a combined value of the final chaos states.
Based on the spatiotemporal chaos equation in (1), a large storage space is required if
n and i is great. For example, if n = 1000, i = 64 and the data type is single float, the
required space is 1000*64*32 bits = 2.048*106 bits. It introduces a significant hard-
ware cost. However, it should be noted that the calculation of xnþ1ðiÞ is only related to
xnði� 1Þ, xnðiÞ and xnðiþ 1Þ. Therefore, the storage space can be minimized to 2 lines
only, i.e. 2*64*32 bits = 4096 bits, which decreases the storage space efficiently.
Therefore, the required storage space is 2*i*data_width, where i is coupled map lattice
and data_width is the width of corresponding data type.

The working flow of the single block computing unit is presented in Fig. 2. The
initial state of the unit is ‘S1. Idle’. If the data present is valid, the state will be changed
to ‘S2. Read the data to line #0’ where the initial parameters of chaos function are set.
Then the state changes to ‘S3. Calculate Line #1’ where the data in line #1 are
generated based on the value of line #0. After finished calculation, the state will be
changed to ‘S4. Move line #1 to #0’ where the data in line #1 will be moved to line #0
to be the initial value of next round calculation. If the calculation of total n round is

S1

S2

S3 S4

S5

reset C1 State No. and name:
  S1: Idle
  S2: Read the data to Line #0
  S3: Calculate Line #1 (LD)
  S4: Move Line #1 to #0
  S5: Generate Hash value

Conditions:
  C1: Data_present = 0
  C2: Data_present = 1
  C3: Finished = 0
  C4: Finished = 1
  C5: All the lines calculation are not finished
  C6: All the lines calculation are finished

C2

C4 C6

C3

C3
C5

C4

Fig. 2. The single block computing unit procedure
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completed, the state will be changed to ‘S5. Generate Hash value’; then the hash code
of this block packet is generated. During this process, the chaos calculation in the state
S4 is completed by core computing module.

The core computing module receives the data of xnði� 1Þ, xnðiÞ and xnðiþ 1Þ and
outputs the xnþ1ðiÞ, see (1). In order to use a simplified chaos function equation,
equation (1) can be simplified to xnþ1 ið Þ ¼ 3:591xn ið Þ � 3:591x2n ið Þþ 0:1995xn
i� 1ð Þ � 0:1995x2n i� 1ð Þ þ 0:1995xn iþ 1ð Þ � 0:1995x2nðiþ 1Þ, where e ¼ 0:1; l ¼
3:99. A parallel computing structure in Fig. 3 is used to process the input data of
xnði� 1Þ, xnðiÞ and xnðiþ 1Þ simultaneously. The calculation is divided to 5 stages. In
the stage 1, six multipliers calculate simultaneously which can complete the multi-
plication operation of six pairs of decimals. Stage 2 and 3 complete the multiplication
and subtraction operation of three pairs of decimals. The results are generated after
calculating in the addition operation of stage 4 and 5. However, it should be noted that
not all the operations run simultaneously. For example, the input of xnði� 1Þ has two
multipliers in the stage 1 and one multiplier in stage 2. However, the input of multiplier
in stage 2 is the outputs of stage 1. Therefore, the multiplier of stage 2 can use the
multiplier of stage 1 in a time division multiplexing manner. Similarly, the adders and
subtracters of stage 3, 4 and 5 (i.e. A3, A4, A5) can use the same physical adder. Note
that the physical adder and substracter can be switched by an input signal control.
Therefore, the required hardware resources is decreased from 9 multipliers, 3 adders
and 2 subtracters to 6 multipliers, 3 adders which reduces the hardware area overhead
efficiently.

4 Performance Analysis

In this section, the LDHG is evaluated in a case study of the smart grid application.
The LDHG can be used for the data encryption/decryption and the message authen-
tication between the server and data collector. The data collector is the communication
bridge between the server and the power meters. It collects the data from the power
meters and forwards the data to the server. The communication between the server and
data collector needs to be secure; therefore the message authentication is used to
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Fig. 3. The core computing unit structure
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guarantee the communication be legal. The main processor of the data collector is an
ARM microcontroller. The software works under the Linux 2.6.30 operation system.
The data collector can run for a long time reliably and communicates with other devices
promptly. The performance analysis of the LDHG is based on the smart grid appli-
cation and the data collector platform.

4.1 Security Performance Analysis

(1). Plaintext sensitivity analysis: If a hash function algorithm can generate the hash
values which changes more than 50 % when the plaintext has a small change, then
this algorithm is sensitive to the plaintext. In order to evaluate the plaintext
sensitivity of the proposed scheme, a data set is used for the testing - C1 is the
original message and C2-C6 is the modified message which only has small
change. The message of C1 is a real data using in the smart grid which is the
communication data of ‘server reads the power meter directly’.

C1 (original): 0x68, 0xa6, 0x00, 0xa6, 0x00, 0x68, 0x4b, 0x01, 0x44, 0x01,
0x00, 0x8a, 0x10, 0x68, 0x00, 0x00, 0x01, 0x01, 0x1f, 0x00, 0x20, 0x01, 0x01,
0x00, 0x00, 0x00, 0x00, 0x10, 0x90, 0x00, 0x00, 0x16; C2: the 1st byte of C1 is
changed from 0x68 to 0x69; C3: the 5th byte of C1 is changed from 0x00 to 0x01;
C4: the 11th byte of C1 is changed from 0x00 to 0x01; C5: the 21st byte of C1 is
changed from 0x20 to 0x21; C6: the final byte of C1 is changed from 0x16 to
0x17. The message data of C1-C6 are sent to the LDHG. The corresponding hash
values are - C1: 617bac8899c6 9cd84d0a4245d3d96ade; C2: 7959ae52f700c-
ce1cda681d6302e2f4b; C3: 707a6a8ef7 3416cad064be8c4d7842b4; C4: f9c632
ae74dbba95165d679eb1b805aa; C5: e5ba60de cd55989ec22b7416a5d36817; C6:
cffeca6786258baa443b8ed0274fc9b2.

It can be seen that the hash code changes hugely when the plaintext has a little
change. For example, the hash code of C3 is absolutely different to the original C1
but the plaintext of C3 and C1 only have one bit difference. Therefore, the
plaintext sensitivity of the proposed hash coding system is very strong which
makes it suitable for the message authentication.

(2). Parameters sensitivity analysis: The hash coding system should be not only
sensitive to the plaintext, but also to the chaos function parameters. In order to
evaluate the proposed scheme, the experimental parameters are defined as follows.
K1:e ¼ 0:1 and l ¼ 3:99; K2:e ¼ 0:1000001 and l ¼ 3:99; K3:e ¼ 0:1 and
l ¼ 3:9900001. The same message data is sent to the LDHG. The corresponding
hash codes are presented as follows. K1: 617bac8899c69cd84d0a4245d3d96ade;
K2: 991b8ec75cc0a208c80ebe091bfd91f8; K3: c34822e298ad70251c1bbe04172
c6364. It can be seen that the hash code has a huge change when the parameter
has a slight change, e.g. e has a slight change of 10�7, i.e. from 0.1 to 0.1000001.
Therefore the proposed hash coding system is also sensitive to the key.

(3). Security analysis of diffusion and confusion: Diffusion and confusion are two
essential design metrics for hash functions. Hash functions requires the message
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to diffuse its effects into the entire hash space, which means that the correction
between message and the corresponding hash code should be as small as possible.
The following statistics are used to evaluate the security of hash function. The

mean changed bit number, namely �B, is defined as �B ¼ 1
N

PN
i¼1

Bi, where N is the

number of statistics data set, Bi is the number of changed bits at time i. The mean
changed probability P is defines as P ¼ �B=HL� 100%, where HL is the length of
hash codes. The standard variance of the changed bit number ΔB, is defined as

DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN � 1Þ�PN

i¼1
ðBi � �BÞ2

s
and the standard variance ΔP, is defined as

DP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1=ðN � 1Þ�PN

i¼1
ðBi=HL� PÞ2

s
� 100%. The analysis of diffusion and

confusion are performed for the change of message and chaos function parame-
ters, respectively. The results are presented in Table 1. It can be seen that when the
message has one bit changed or the chaos function parameter has a little change, �B
is *60, P is 47 % and ΔB and ΔP are very small. The ideal values of �B and P are
64 and 50 %, respectively [20]. The results in this paper are closed the ideal values
which indicate that the proposed work has a good diffusion and confusion
capabilities.

4.2 Computing Speed and Area Overhead

In this section, two aspects of the proposed hash generator are analyzed – computing
speed and area overhead. The experimental environment is defined as follows. The
parameters of chaos function are set by e ¼ 0:1, l ¼ 3:99. The parameter i is equal to
64 according to the message length in the smart grid application. However, for
parameter n, if it is greater, then the required iteration calculation is larger, the system
nonlinear dynamic behavior is more complex and the generated hash codes are more
secure. The parameter n will be chosen from 20 to 200 for evaluation.

(1). The computing speed of different platforms: the experimental environment of
server is set as follows – Intel Core i7-2600 3.4 GHz processor, 4 G ram, 500 G
hard disk, Redhat Linux enterprise 4 operating system, Gcc 3.4.3 compiler. The
arm microcontroller is Atmel AT91SAM9G45 device, 400 MHz, 256 M ram,
Linux 2.6.30 operating system. The LDHG uses Altera Cyclone IV E
EP4CE115F29C7 device and the system clock frequency is 100 MHz. Figure 4

Table 1. Statistics of changed hash codes

Message Parameter Average
�B 60.4 59 59.7
P(%) 47.187 46.094 46.641
ΔB 7.469 4.243 5.586
ΔP(%) 5.835 3.314 4.575
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presents the required time of hash code generation on different platforms. It can be
seen that for all the platforms the required time increases if iteration time (i.e.
parameter n) increases. When n is between 20 and 200, the required time of server
is between 0.013 and 0.127 ms. This time period is short and server can meet the
time requirement of frequent message authorization. However, the required time
of LDHG is 0.034 * 6.124 ms and arm microcontroller is 5.267 * 53.198 ms.
According to the research outcome of [21], the chaos system is independent when
n > 35 and is secure. In this paper, n is set to be 40; then the required time of
LDHG is 0.618 ms and arm device is 10.961 ms. The latter is *16x greater than
the former. And if n continues to increase, the required time of arm increases more
sharply than LDHG. For example, if n = 200, the arm requires 53.198 ms which is
much larger than the LDHG, i.e. 6.125 ms.

From the required time comparisons, it can be seen that the server can
complete the calculation in a short time and meet the time requirement for highly
frequent message. However, the calculation time of arm microcontroller is much
greater than the proposed hash generator, especially when the iteration time n is
large. Therefore, the proposed hash generator is more suitable than arm micro-
controller when there are highly frequent message to be authorized; however lots
of industrial applications have this requirement, such as smart grid.

(2). The area overhead of the proposed hash generator: for the hardware implemen-
tation of LDHG, one PLL module is used and several DSP modules, FIFO are
instantiated. All the modules are design separately and connected together in the
top design. The area overhead is relatively low; only 14 % logic elements
(16,251/114,480 = 14 %) are used. A FPGA implementation of traditional MD5
algorithm was proposed in [22] based on a Xilinx Virtex V1000FG680 device,
where the area overhead (slices) of the full-loop-unrolled is 38 % (4763/12288 =
38 %). However, the security of MD5 has been compromised [6, 7].

From the computing speed comparison of different platforms, it can be seen
that the proposed LDHG has a quick computing speed, generates hash code in a
short time and is suitable for frequent message authorization. In the meantime, the
area overhead of hash coding module is low which is suitable for hardware
implementation.

Fig. 4. The required time comparison on different processors
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5 Conclusions

This paper proposed a hash generator based on spatiotemporal chaos systems,
including the principal of chaos system, the hardware implementation and experimental
results. The performances of computation speed and area overhead are evaluated. It has
been applied for smart grid system and the results showed that it can complete frequent
message authorization quickly and efficiently enhance the security of communication
data. This paper is a beneficial exploration using nonlinear chaos system to implement
a hash function and apply to the message authorization in smart grid application. The
future work includes the design of chaotic cryptographic system for image and video
secure transmission and data encryption mechanism.
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