
Tree-Based Multi-dimensional Range Search
on Encrypted Data with Enhanced Privacy

Boyang Wang1(B), Yantian Hou1, Ming Li1, Haitao Wang1, Hui Li2,
and Fenghua Li3

1 Department of Computer Science, Utah State University, Logan, USA
{bywang.usu,houyantian}@gmail.com, {ming.li,haitao.wang}@usu.edu

2 State Key Laboratory of Integrated Services Networks,
Xidian University, Xián, China
lihui@mail.xidian.edu.cn

3 State Key Laboratory of Information Security,
Chinese Academy of Sciences, Beijing, China

lfh@iie.ac.cn

Abstract. With searchable encryption, a data user is able to perform
meaningful search on encrypted data stored in the public cloud without
revealing data privacy. Besides handling simple queries (e.g., keyword
queries), complex search functions, such as multi-dimensional (conjunc-
tive) range queries, have also been studied in several approaches to pro-
vide search functionalities over multi-dimensional data. However, current
works supporting multi-dimensional range queries either only achieve lin-
ear search complexity or reveal additional private information to the pub-
lic cloud. In this paper, we propose a tree-based symmetric-key search-
able encryption to support multi-dimensional range queries on encrypted
data. Besides protecting data privacy, our proposed scheme is able to
achieve faster-than-linear search, query privacy and single-dimensional
privacy simultaneously compared to previous solutions. More specifically,
we formally define the security of our proposed scheme, prove that it is
selectively secure, and demonstrate its faster-than-linear efficiency with
experiments over a real-world dataset.

Keywords: Multi-dimensional range search · Encrypted data

1 Introduction

With the low-priced data storage and computation services offered by cloud
providers, people outsource their large-scale data to the cloud to reduce their
cost spending on local devices. While enjoying data services in the public cloud,
the leakage of private data has always been one of the major concerns to users
[21]. Using traditional encryption on the client side, such as the example of
implementing AES-256 (on the client side) in a cloud data storage application
named Wuala [1], people can preserve their private data, even from the public

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 374–394, 2015.
DOI: 10.1007/978-3-319-23829-6 26

Tree-Based Multi-dimensional Range Search on Encrypted Data 375

cloud. However, the implementation of traditional encryption on the client side
will prevent clients to utilize and compute their cloud data efficiently.

For instance, a client using Wuala has no way to operate meaningful search
on its encrypted cloud data, unless it first retrieves/syncs all the data from the
cloud side and decrypts those ciphertexts. This process is resource-consuming to
a client, especially for medical data or financial data with large-scale data size.
The client will need to face the same awkward and painful situation when it
simply encrypts data with traditional encryption on the client side, and stores
those ciphertexts in Google Drive or Amazon S3. Of course, sharing the secret
key with the cloud, which is equivalent to traditional encryption on the cloud
side (e.g., Dropbox), is another option to conduct search on outsourced data,
but that will totally reveal confidential data to the public cloud.

To enable users to search their encrypted cloud data without retrieving
the entire data or revealing private data to the public cloud, the techniques
of searchable encryption were proposed. Most of the current works [5,7,8,10,
12,14,15,17,24,26,27,30] focus on supporting simple search functions, such as
keyword queries. However, they are not suitable for handling complex search
operations, such as multi-dimensional range queries, on encrypted data in real
datasets, where plain data are generally presented with numerical values in mul-
tiple dimensions.

Some previous schemes or the extensions of them [6,23] can support multi-
dimensional range queries, but the search complexity of these schemes is linearly
increasing with the number of data records in a dataset. Moving a step forward,
several schemes [18,31] proposed to utilize multi-dimensional tree structures,
such as kd-trees [4] and R-trees [13], to achieve faster-than-linear search regard-
ing to the total number of data records. However, as pointed out in [28], these
solutions reveal single-dimensional privacy to the cloud, which simply allows the
public cloud to reveal additional privacy by performing range search in every
single dimension correctly and independently while only granted with a search
token of a multi-dimensional range query. To protect this privacy leakage while
still maintaining faster-than-linear search, Wang et al. [28] recently designed a
tree-based public-key multi-dimensional range searchable encryption based on
Hidden Vector Encryption [6] and R-trees. Unfortunately, as a trade-off, this
scheme inherently loses query privacy (i.e., the public cloud learns the content
of the queries submitted by the client) due to its public-key-based design [22].

In this paper, to overcome the limitations and enhance users’ privacy in pre-
vious solutions, we design Elm1, a tree-based symmetric-key multi-dimensional
range searchable encryption. With this proposed scheme, a data owner is able
to index its data records with an R-tree, encrypt all the nodes/data in the tree,
and outsource the encrypted tree to the public cloud. The public cloud is able
to correctly perform multi-dimensional range search on encrypted data without
1 We name it Elm because it is a tree-based solution and it can enhance users’ privacy

for multi-dimensional range queries. For the ease of description, when we mention
a scheme is faster-than-linear in the rest of this paper, it indicates that the search
complexity of it is faster-than-linear with regard to the number of data records.

376 B. Wang et al.

revealing query privacy, data privacy or single-dimensional privacy. The main
contributions of this paper are summarized as follows:

1. We formally describe the definition of a tree-based symmetric-key multi-
dimensional range searchable encryption, and present the formal security of
it in terms of query privacy, data privacy and single-dimensional privacy.

2. Besides preserving data privacy, our scheme achieves faster-than-linear search,
query privacy and single-dimensional privacy simultaneously compared to pre-
vious solutions (as shown in Table 1). Specifically, we leverage a symmetric-
key predicate encryption [22] (denoted as SSW in this paper) to encrypt all
the nodes in an R-tree, so that the public cloud is able to still follow the
original search algorithm (i.e., the one in the plaintext domain) of an R-tree
by testing corresponding geometric relations on encrypted data.

3. We prove our scheme is selectively secure and demonstrate its efficiency on
a real dataset. Moreover, compared to [28], our scheme can securely support
dynamic data of an R-tree for some simple cases due to the enhancement of
query privacy.

Note that the use of an R-tree in this paper is two-fold: (1) it achieves faster-than-
linear search; (2) it is more suitable for maintaining single-dimensional privacy
compared to other multi-dimensional tree structures (further explanations about
this privacy issue with different tree structures can be found in [28]).

Table 1. Comparison among Different Solutions.

[18] [31] [28] [23] [6] Ours

Faster-than-linear Search
√ √ √ × × √

Query Privacy
√ √ × × × √

Single-Dimensional Privacy × × √ √ √ √

2 Related Work

Keyword Search. Song et al. [24] proposed the first symmetric-key searchable
encryption. Golle et al. [12] designed a scheme for processing conjunctive key-
word queries. Curtmola et al. [10] rigorously defined and discussed the security of
searchable symmetric encryption for keyword queries, and also studied the multi-
user setting. Kamara et al. [14,15] and Stefanov et al. [26] presented keyword
search over dynamic encrypted data. Sun et al. [27] designed a multi-keyword
search scheme, which can support similarity-based ranking on encrypted data.
Cash et al. [8] recently proposed a sublinear searchable encryption to support
conjunctive keyword search and boolean keyword search, and they further stud-
ied the dynamic version of their work in [7].

Keyword search on encrypted data have also been studied in the public-key
setting. Boneh et al. [5] designed the first public-key encryption with keyword

Tree-Based Multi-dimensional Range Search on Encrypted Data 377

search (PEKS). Abdalla et al. [3] further studied the connections between anony-
mous Identity-Based Encryption and PEKS. Lai et al. [17] proposed a public-
key searchable encryption to perform expressive keyword queries. However, these
works discussed above mainly focus on keyword search, which is not sufficient
to handle multi-dimensional range queries on encrypted data.

More recently, a scheme [33] with data interoperability has been proposed to
flexibly enable a set of SQL queries (including keyword search, range search, etc.)
on encrypted data. Unfortunately, it fails to achieve faster-than-linear search or
preserve single-dimensional privacy for multi-dimensional range queries. On the
other hand, Pappas et al. [20] introduced a scheme (named Blind Seer) to flexibly
support arbitrary boolean queries with sublinear search by using Bloom-Filter-
based tree structure. However, a large amount of client-server interactions are
required to finish the entire search process (essentially, one round of client-server
interaction is needed to make search decision at each node in the tree).

Range Search. Boneh et al. [6] designed a general public-key approach to
support comparison queries, subset queries and range queries on encrypted data
by leveraging Hidden Vector Encryption (HVE). Shi et al. [23] studied a public-
key scheme, which can improve the search complexity of each data record to
O(w log T) compared to O(wT) in [6]. Unfortunately, these two approaches are
public-key-based, which fail to provide query privacy [22].

Lu [18] proposed a logarithmic range search scheme on encrypted data, named
LSED, by utilizing segment trees, predicate encryption (i.e., SSW [22]) and B+

trees. The extension of it, denoted as LSED+, can support multi-dimensional
range queries by replacing B+ trees with kd-trees in their design. However,
as pointed out by the author himself, this extension reveals single-dimensional
privacy. Wang et al. [31] presented a scheme for performing multi-dimensional
range queries with the use of R-trees and Asymmetric Scalar-product Preserving
Encryption [32]. Unfortunately, this scheme leaks single-dimensional privacy and
lacks the formal security definition.

Recently, Wang et al. [28] designed a tree-based public-key MDRSE based on
HVE and multi-dimensional tree structures (i.e., R-trees). This scheme is able to
achieve faster-than-linear search. More importantly, the authors explained that
some similar tree structures, such as kd-trees and range-trees, are inherently
not able to achieve single-dimensional privacy. However, since it is a public-key
scheme, it loses query privacy as well for the same reason as [6,23].

3 Preliminaries

Predicate Encryption. Predicate encryption is able to test whether plain data
(e.g., u) satisfies a predicate (i.e., f(u) = 1 or f(u) = 0) without revealing plain
data. SSW [22] is a symmetric-key predicate encryption and is able to support
inner product queries. Specifically, data is described as a vector u and a predicate
can be denoted as a vector v, and the evaluation on encrypted data reveals
f(u) = 1 iff v ◦ u = 0, where v ◦ u =

∑n
i=1 vi · ui denotes the inner product of

these two vectors. Besides protecting data privacy, SSW can also preserve query
privacy. The details of SSW are presented in Fig. 1.

378 B. Wang et al.

• Setup(1λ, T): Given a security parameter λ and T , output a secret key SK.
• Enc(SK,u): Given SK and a plaintext x ∈ U , where u = (u1, ..., uT) and U is the

plaintext space, output a ciphertext C.
• GenToken(SK,v): Given SK and a query v ∈ V, where v = (v1, ..., vT) and V is

the query space, output a token TK.
• Query(TK, C): Given TK and C, output 1 iff v ◦ u = 0 and 0 otherwise.
Correctness: SSW is correct, for all λ, all u ∈ U , all v ∈ V, all SK ← Setup(1λ, T),
all C ← Enc(SK,u), all TK ← GenToken(SK,v),

– If v ◦ u = 0, Query(TK, C) = 1;
– If v ◦ u = 0, Pr[Query(TK, C) = 0] ≥ 1 − negl(λ);

where negl(λ) is a negligible function in λ.

Fig. 1. Details of SSW.

R-trees. R-trees are height-balanced tree structures to index data with multi-
ple dimensions. It can improve the search efficiency of range queries on multi-
dimensional data. An example of an R-tree in two dimensions can be found in
Fig. 3. The essential idea of indexing data in an R-tree is to group nearby ele-
ments (points or hyper-rectangles) on the same level and include them into a
minimal bounding hyper-rectangle in a higher-level of the tree. Every leaf node
in an R-tree represents a point, and every non-leaf node describes a bound-
ing hyper-rectangle. Clearly, the root node of an R-tree is the largest bounding
hyper-rectangle that covers all the elements.

With this structure, the search of range queries in an R-tree can be effi-
ciently conducted from the root node by recursively checking geometric relations,
including whether two hyper-rectangles (a non-leaf node and a query) intersect
or whether a point (a leaf node) is inside a hyper-rectangle (a query). Specifi-
cally, for each non-leaf node, if it interacts with the query, continue to search its
child nodes; otherwise, stop search on this path. For each leaf node, if it is inside
the query, return this node; otherwise, do not return.

4 Problem Statement

System Model. In the system model of a searchable encryption, we have two
entities, a data owner and the cloud server (which are illustrated in Fig. 2). A
data owner outsources its data (i.e., a large set of data records) to the cloud
server in order to save local storage cost. In addition, this data owner still would
like to use its outsourced data correctly and efficiently. Specifically, in the study
of this paper, that means this data owner should be able to retrieve the correct
results of its data from the cloud server for each multi-dimensional range query.
The cloud server is considered as an honest-but-curious party. It means the cloud
server is believed to be able to provide reliable services, but it may be curious
about the content of data records stored in the cloud and the content of queries
submitted by the data owner. In order to preserve users’ privacy, data and queries
are in an encrypted form in the cloud.

Tree-Based Multi-dimensional Range Search on Encrypted Data 379

Fig. 2. The system model includes a data owner and the cloud server.

Definitions. We first briefly present some basic definitions for data in
multiple dimensions, which will be frequently used in the rest of this paper.

• Lattice: Let Δ = (T1, ..., Tw), where Ti is the upper bound in the i-th dimen-
sion and 1 ≤ i ≤ w. A lattice LΔ is defined as LΔ = [T1] × · · · × [Tw], where
[Ti] = {1, ..., Ti}.

• Point : A point X in LΔ is defined as X = (x1, ..., xw), where xi is a value
in the i-th dimension, xi ∈ [Ti], ∀i ∈ [1, w].

• Hyper-Rectangle: A hyper-rectangle HR in LΔ is defined as HR= (R1, ...,
Rw), where Ri is a range in the i-th dimension, Ri ⊆ [1, Ti], ∀i ∈ [1, w].

Considering the preceding system model, a data record is essentially a point and
a multi-dimensional range query is actually a hyper-rectangle.

We now introduce the formal definition of a symmetric-key Multi-Dimensional
Range Searchable Encryption (MDRSE). In addition, we leverage a tree struc-
ture Γ (more specifically, an R-tree in the design of this paper), which is able
to index data records and improve the search complexity of multi-dimensional
range queries. Compared to the recent work [28], which is also a tree-based
solution supporting multi-dimensional range search, the major difference of our
scheme is that it is a symmetric-key approach while the previous one is a public-
key scheme. This change from a public-key design to a symmetric-key one will
enhance query privacy, which will be further discussed later.

Definition 1(Symmetric-Key Multi-Dimensional Range Searchable
Encryption). A tree-based symmetric-key MDRSE is a tuple of five polynomial-
time algorithms Π = (GenKey, BuildTree, Enc, GenToken, Search) such that:

– SK ← GenKey(1λ,Δ): is a probabilistic key generation algorithm that is run by
the data owner to setup the scheme. It takes as input a security parameter λ
and Δ = (T1, ..., Tw), and outputs a secret key SK.

– Γ ← BuildTree(D): is a deterministic algorithm run by the data owner to
build a multi-dimensional tree to index data records. It takes as input n data
records D = {D1, ...,Dn}, where each data record Di = (di,1, ..., di,w) is essen-
tially a point in LΔ, and outputs a multi-dimensional tree Γ = {D1, ...,Dn,
N1, ..., Nm,P}, where Di is a leaf node, for 1 ≤ i ≤ n, and Nj is a non-leaf

380 B. Wang et al.

node, for 1 ≤ j ≤ m, and P is the set of pointers covering all the parent-child
relations in tree Γ .

– Γ ∗ ← Enc(SK, Γ): is a probabilistic algorithm run by the data owner to encrypt
a multi-dimensional tree. It takes as input a secret key SK, multi-dimensional
tree Γ , and outputs an encrypted multi-dimensional tree Γ ∗ = {C1, ..., Cn,
E1, ..., Em,P}, where Ci is an encrypted leaf node, for 1 ≤ i ≤ n, Ej is an
encrypted non-leaf node, , for 1 ≤ j ≤ m, and P is the set of pointers covering
all the parent-child relations in tree Γ ∗.

– TK ← GenToken(SK, Q): is a probabilistic algorithm run by the data owner to
generate a search token for a given range query. It takes as input a secret key
SK and a range query (i.e., a hyper-rectangle) Q, and outputs a search token
TK.

– I ← Search(Γ ∗, TK): is a deterministic algorithm run by the server to search
over an encrypted multi-dimensional tree. It takes as input an encrypted multi-
dimensional tree Γ ∗ and a search token TK, and outputs a set I of identifiers
(memory locations of data records in the cloud server), where Ii ∈ I, if data
record Di ∈ Q.

D1

D2
D3

D4

N1

N2

N3 N3

N2N1

D1 D2 D3 D4 C1 C2 C3 C4

E1 E2

E3

Data records D = {D1, D2, D3, D4} Tree Γ Tree Γ∗

BuildTree(D) Enc(SK,Γ)

Fig. 3. A set of data records is indexed by a tree Γ , and is further encrypted into an
encrypted tree Γ ∗ where Γ � Γ ∗.

In the above tree-based scheme, we describe a tree (also its encrypted version)
with a set of nodes and a set of pointers covering all the parent-child relations in
the tree. During encryption, the algorithm only encrypts every node (including
every leaf node Di and every non-leaf node Nj) in tree Γ while keeping all
the pointers (i.e., P) unchanged. It means although the nodes are denoted with
ciphertexts in the encrypted tree Γ ∗, the graph structures of the original tree Γ
and its encrypted version Γ ∗ are isomorphic, which is denoted as Γ � Γ ∗. An
example of the encryption on a tree is described in Fig. 3.

Informally, we say that the encryption algorithm in our scheme encrypts
nodes only (in order to protect data privacy), but does not change the tree
structure (so faster-than-linear search can still be functional). The encryption
on nodes will be carried by multiple instances (i.e., one instance for each node)
of predicate encryption (i.e. SSW [22] presented in Sect. 3).

Correctness. We say that the above tree-based symmetric-key MDRSE is correct
if for all λ ∈ N, all SK output by GenKey(1λ,Δ), all Di ∈ LΔ, all Γ output

Tree-Based Multi-dimensional Range Search on Encrypted Data 381

by BuildTree(D), all Γ ∗ output by Enc(SK, Γ), all Q ⊆ LΔ, all TK output by
GenToken(SK, Q), for any i ∈ [1, n]

– If Di ∈ Q, then Search(Γ ∗, TK) = I, where Ii ∈ I;
– If Di /∈ Q, then Pr[Search(Γ ∗, TK) = I, where Ii /∈ I] ≥ 1 − negl(λ);

where negl(λ) denotes a negligible function in λ.
Informally, the correctness of the searchable encryption described above means

that it will definitely return the identifier of a data record if this data record
indeed satisfies a given query; on the other hand, it will return the identifier with
a negligible probability if this data record actually fails to match a given query.

5 Security Definitions

In this section, we first capture all the possible privacy leakage with a leakage
function, and then we formally define the security of a tree-based symmetric-key
MDRSE based on this leakage function.

Leakage Function. A leakage function includes all the privacy leakage in
a searchable encryption. The leakage function in a tree-based symmetric-key
MDRSE introduced by a set of data records D, its tree structure Γ and a query
Q can be described as L(D, Γ,Q), which includes

– Size Pattern : the cloud server learns the number of data records n in the
dataset, the size of each dimension |Ti|, and the number of queries submitted
by the data owner.

– Access Pattern : the cloud server reveals the identifiers of data records that
are returned for each submitted query.

– Search Pattern : the cloud server learns if the same data record is retrieved
by two different queries.

– Path Pattern : the cloud server learns how exactly the search algorithm tra-
verses from the root node to the matched leaf nodes for each given query, i.e.,
the identifiers of all the nodes in the paths traversed by the search of each
given query.

Note that most of the searchable encryption schemes do not protect size pattern,
access pattern or search pattern. Path pattern is recently introduced in [20,28]
and defined specifically for tree-based solutions, because the original definition
of access pattern is not sufficient to capture all the privacy leakage in some tree
structures. Essentially, it is a special type of access pattern in trees [20]. The
leakage of path pattern in a tree-based MDRSE is actually not hard to explain.
Since the encryption algorithm does not modify the structure of a tree (see Fig. 3
again), which makes the cloud server easily reveals path pattern.

Theoretically speaking, the use of Oblivious RAMs [11,25] can preserve access
pattern and search pattern from the cloud server. Unfortunately, compared to
searchable encryption, the efficiency of Oblivious RAMs is still a major concern.
How to particularly preserve the privacy defined in the above leakage function
is out of scope of this paper.

382 B. Wang et al.

Query Privacy. The main security objective of a tree-based symmetric-key
MDRSE in this paper is to achieve query privacy, data privacy and single-
dimensional privacy. Each of these three privacy can be rigorously defined in
a selective manner [22]. We start with query privacy first. Informally, selective
query privacy means by submitting two multi-dimensional range queries Q0 and
Q1, a computationally bounded adversary is able to adaptively issue a number of
ciphertext queries and token queries restricted by Q0, Q1 and leakage function
L. However, it is not able to distinguish this two range queries.

Definition 2 (Selective Query Privacy). Let Π = (GenKey, BuildTree, Enc,
GenToken, Search) be a tree-based symmetric-key MDRSE scheme over lattice
LΔ, λ ∈ N be the security parameter:

– Init: The adversary A submits two range queries Q0 and Q1 to the challenger,
where Q0, Q1 ⊆ LΔ.

– Setup: The challenger runs GenKey(1λ,Δ) to generate a secret key SK, and
it keeps SK private.

– Phase 1: The adversary A adaptively requests a number of queries, where
each query is one of the two following types:
– Ciphertext Query: On the jth ciphertext query, the adversary A outputs

a tree Γj = BuildTree(Dj), where Dj is a set of data records described
as Dj = (Dj,1, ...,Dj,n). The challenger responses with an encrypted tree
Γ ∗

j = Enc(SK, Γj), where Dj is subjected to the two following restrictions:
1. L(Dj , Γj , Q0) = L(Dj , Γj , Q1);
2. And for 1 ≤ i ≤ n, either (Dj,i ∈ Q0) ∧ (Dj,i ∈ Q1), or (Dj,i /∈

Q0) ∧ (Dj,i /∈ Q1).
– Token Query: On the jth token query, the adversary A outputs a range

query Q′
j, where Q′

j ⊆ LΔ. The challenger responds with a search token
TK′

j = GenToken(SK, Q′
j).

– Challenge: With Q0, Q1 selected in Init, the challenger flips a coin b ∈ {0, 1}
and returns TKb = GenToken(SK, Qb) to the adversary.

– Phase 2: The adversary A continues to adaptively request a number of queries,
which are still subjected to the same restrictions in Phase 1.

– Guess: The adversary takes a guess b′ of b.

The advantage of adversary A in the above selective query security game is
defined as AdvSQP

Π,A (1λ,Δ). We say that scheme Π is selectively query secure
if for all polynomial time adversaries have at most negligible advantage

AdvSQP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2| ≤ negl(λ).

where negl(λ) denotes a negligible function in λ.

Since our scheme is symmetric-key-based, the challenger in the security game
is able to response to the adversary with two types of queries, including cipher-
text queries and token queries. While the recent work [28] only needs to consider
token queries in its security game, because it is public-key-based, where the
adversary possesses the encryption key and is allowed to obtain any ciphertexts

Tree-Based Multi-dimensional Range Search on Encrypted Data 383

by itself (i.e., the selection of data records for encryption has no restrictions
compared to the ciphertext queries in Phase 1 of the above security game). In
fact, as indicated in [22], this kind of ability that the adversary is capable of in
the security game makes public-key solutions eventually reveal query privacy.

Data Privacy. Similarly like query privacy, data privacy can also be defined
in a selective security game between the adversary and challenger. Informally,
selective data privacy indicates by submitting two datasets D0 and D1, a compu-
tationally bounded adversary is able to adaptively issue a number of ciphertext
queries and token queries restricted by D0, D1 and leakage function L. However,
it is not able to distinguish this two datasets.

Definition 3 (Selective Data Privacy). Let Π = (GenKey, BuildTree, Enc,
GenToken, Search) be a tree-based symmetric-key MDRSE scheme over lattice
LΔ, λ ∈ N be the security parameter:

– Init: The adversary A submits two data record sets D0 and D1 with the same
length and isomorphic tree structure Γ0 � Γ1, where D0 = {D0,1,,D0,n},
D1 = {D1,1,,D1,n}, D0,i, D1,i ∈ LΔ, for 1 ≤ i ≤ n, Γ0 = BuildTree(D0)
and Γ1 = BuildTree(D1).

– Setup: The challenger runs GenKey(1λ,Δ) to generate a secret key SK, and
it keeps SK private.

– Phase 1: The adversary A adaptively requests a number of queries, where
each query is one of the two following types:
– Ciphertext Query: On the jth ciphertext query, the adversary A outputs

a tree Γ ′
j = BuildTree(D′

j), where D′
j is a set of data records described

as D′
j = (D′

j,1, ...,D
′
j,n). The challenger responses with an encrypted tree

Γ ′
j
∗ = Enc(SK, Γ ′

j).
– Token Query: On the jth token query, the adversary A outputs a range

query Qj, where Qj ⊆ LΔ. The challenger responds with a search token
TKj = GenToken(SK, Qj), where Qj is subjected to the two following
restrictions:
1. L(D0, Γ0, Qj) = L(D1, Γ1, Qj);
2. And for 1 ≤ i ≤ n, either (D0,i ∈ Qj) ∧ (D1,i ∈ Qj), or (D0,i /∈

Qj) ∧ (D1,i /∈ Qj).
– Challenge: With D0, D1 selected in Init, the challenger flips a coin b ∈

{0, 1} and returns Γ ∗
b = Enc(SK, Γb) to the adversary.

– Phase 2: The adversary A continues to adaptively request a number of queries,
which are still subjected to the same restrictions in Phase 1.

– Guess: The adversary takes a guess b′ of b.

The advantage of adversary A in the above selective data privacy game is defined
as AdvSDP

Π,A (1λ,Δ). We say that scheme Π is selectively data secure if for all
polynomial time adversaries have at most negligible advantage

AdvSDP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2| ≤ negl(λ).

where negl(λ) denotes a negligible function in λ.

384 B. Wang et al.

Single-Dimensional Privacy. Now let us define the last piece of privacy (i.e.,
single-dimensional privacy) in our design. Informally, single-dimensional pri-
vacy means given a search token of multi-dimensional range query Q, a com-
putationally bounded adversary is not able to independently obtain the exact
search results for any single-dimensional query Qk, for 1 ≤ k ≤ n, where Qk

denotes the single-dimensional query of Q in the k-th dimension. For instance,
if Q = ([30, 40] ∧ [400, 700]), then Q1 = [30, 40] and Q2 = [400, 700].

In fact, we can actually capture an adversary’s capability for attacking single-
dimensional privacy consistently in the preceding selective security games we
presented. Since we have both selective query security game and selective data
security game, we need to particularly capture single-dimensional privacy for
each of them. For the selective single-dimensional query security game, it is
the same as the selective query security game in Definition 2 except that it has
an additional third restriction for responding ciphertext queries, which can be
rigorously defined as follows:

– Ciphertext Query: the description is the same as in Definition 2 with:
1. L(Dj , Γj , Q0) = L(Dj , Γj , Q1);
2. And for 1 ≤ i ≤ n, either (Dj,i ∈ Q0) ∧ (Dj,i ∈ Q1), or (Dj,i /∈ Q0) ∧

(Dj,i /∈ Q1);
3. And if (Dj,i /∈ Q0)∧(Dj,i /∈ Q1), for some i ∈ [1, n], there exists some k ∈

[1, w], such that (Dj,i ∈ Qk
0) ∧ (Dj,i /∈ Qk

1) or (Dj,i /∈ Qk
0) ∧ (Dj,i ∈ Qk

1).

The advantage of adversary A is AdvSSDQP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2|.

Correspondingly, we can also define the selective single-dimensional data
security game, which has an additional third restriction for responding token
queries compared to Definition 3:

– Token Query: the description is the same as in Definition 3 with :
1. L(D0, Γ0, Qj) = L(D1, Γ1, Qj);
2. And for 1 ≤ i ≤ n, either (D0,i ∈ Qj) ∧ (D1,i ∈ Qj), or (D0,i /∈ Qj) ∧

(D1,i /∈ Qj);
3. And if (D0,i /∈ Qj)∧(D1,i /∈ Qj), for some i ∈ [1, n], there exists some k ∈

[1, w], such that (D0,i ∈ Qk
j) ∧ (D1,i /∈ Qk

j) or (D0,i /∈ Qk
j) ∧ (D1,i ∈ Qk

j).

The advantage of adversary A is AdvSSDDP
Π,A (1λ,Δ) = |Pr[b′ = b] − 1/2|.

We say that scheme Π is selectively single-dimensional secure if the advan-
tages of any polynomial time adversary in both of the two preceding selective
single-dimensional security games are at most negligible:

AdvSSDQP
Π,A (1λ,Δ) ≤ negl(λ), AdvSSDDP

Π,A (1λ,Δ) ≤ negl(λ).

If we compare the additional third restriction with the second one in each cor-
responding game, we can observe that it is actually a redundant one considering
the existence of the second restriction. It indicates that an adversary will not
obtain additional advantages compared to previous security games in Definitions
2 and 3. Therefore, we have

Tree-Based Multi-dimensional Range Search on Encrypted Data 385

Lemma 1. If scheme Π is selectively query secure in Definition 2 and selectively
data secure in Definition 3, it is also selectively single-dimensional secure.

Note that some scheme [18] could also achieve selectively query and data
secure, but with stronger restrictions (e.g., for 1 ≤ i ≤ n and 1 ≤ k ≤ w,
either (D0,i ∈ Qk

j) ∧ (D1,i ∈ Qk
j), or (D0,i /∈ Qk

j) ∧ (D1,i /∈ Qk
j)), which inher-

ently prevent it from achieving single-dimensional privacy [28]. That is why we
emphasized with “in Definition 2” and “in Definition 3” in the above lemma.

6 Tree-Based Symmetric-Key MDRSE

Overview. The essential idea of our design is to utilize predicate encryption
(more specifically, SSW [22]) to verify geometric relations, including whether a
point is inside a hyper-rectangle and whether two hyper-rectangles intersect. As
a result, a data owner can encrypt the nodes (i.e., points or hyper-rectangles)
in an R-tree, then the cloud server can still operate the search algorithm of an
R-tree correctly and privately in the ciphertext domain.

6.1 Geometric Relations on Encrypted Data

A ppoint Is Inside a Hyper-rectangle. Previous work [18] has proved that
by using SSW, a primitive named Range Predicate Encryption can be built to
verify whether a value d is inside a single dimension range R, where the output
will be 1 iff d ∈ R. Specifically,

– RPE.Setup(1λ, T): Given security parameter λ and T , output secret key SK by running
SSW.Setup(1λ, T).

– RPE.Enc(SK, d): Given SK and a value d, where d ∈ [1, T], output ciphertext C by
running SSW.Enc(SK,u), where u = (u1, ..., uT) and

ui = 1, if i = d; ui = 0, otherwise.

– RPE.GenToken(SK, R): Given SK and a range R = [xl, xr], where R ⊆ [1, T], output
token TK by running SSW.GenToken(SK, v), where v = (v1, ..., vT) and

vi = 0, if i ∈ [xl, xr]; vi = 1, otherwise.

– RPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

Based on this range predicate encryption, we can extend it into the multi-
dimension in this paper and construct a Point Predicate Encryption to verify
whether a point D is inside a hyper-rectangle HR, where the output will be 1
iff D ∈ HR. The correctness of this extension from the single dimension into
the multi-dimension follows a simple geometric fact that if a point is inside a
hyper-rectangle, then the value of this point in every dimension will be inside
the range of the corresponding single dimension, and vise versa:

D ∈ HR ⇔ {dk ∈ Rk}, for every k ∈ [1, w],

386 B. Wang et al.

where D = (d1, ..., dw) and HR = (R1, ...,Rw). The details of this point predi-
cate encryption2 are presented as follows with an example in Fig. 4:

– PPE.Setup(1λ, Δ): Given security parameter λ and Δ = {T1, ..., Tw}, output secret
key SK by running SSW.Setup(1λ, wT).

– PPE.Enc(SK, D): Given SK and a point D = (d1, ..., dw), where D ∈ LΔ, output
ciphertext C by running SSW.Enc(SK,u), where u = (u1, ..., uwT) and for 1 ≤ k ≤ w,{

ui = 1, if i = dk + (k − 1)T ;
ui = 0, otherwise.

– PPE.GenToken(SK,HR): Given SK and a hyper-rectangle HR = (R1, ...,Rw), where
HR ⊆ LΔ and Rk = [xk,l, xk,r], for 1 ≤ k ≤ w, output token TK by running
SSW.GenToken(SK, v), where v = (v1, ..., vwT) and for 1 ≤ k ≤ w,{

vi = 0, if i ∈ [xk,l + (k − 1)T, xk,r + (k − 1)T];
vi = 1, otherwise.

– PPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

D1 = (2, 5)

D2 = (4, 3)

Q = [3, 5] ∧ [2, 4]

uuu1 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

uuu2 = (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0)

vvv = (1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1)

wT = 2 × 6 = 12

Fig. 4. An example of point predicate encryption with w = 2 and T = 6, where D1 /∈ Q
due to vvv ◦ uuu1
= 0; D2 ∈ Q due to vvv ◦ uuu2 = 0.

Two Hyper-rectangles Intersect. We can also verify whether two hyper-
rectangles intersect on encrypted data by using SSW. Similar as the preceding
geometric relation, we can first start with the simplest case (i.e., the case in the
single dimension) by deciding whether two ranges intersect. Specifically, we can
build a Range Intersection Predicate Encryption, where the output is 1 iff two
ranges intersect (i.e., R ∩ R′ = ∅). The correctness in testing the intersection
of two ranges is based on the following equivalent geometric relation:

R ∩ R′ = ∅ ⇔
{

xl ∈ [1, x′
r];

xr ∈ [x′
l, T] ⇔

{
xl ∈ [1, x′

r];
(xr + T) ∈ [x′

l + T, 2T]

where R = [xl, xr] and R′ = [x′
l, x

′
r]. The description in the third column above

is trivial from the one in the middle column, but it will help readers follow
the details of the following algorithms more easily. The details of the range
intersection predicate encryption are as below:
2 For the ease of description, we assume each dimension has the same size (i.e., Tk = T ,

for every k ∈ [1, w]) in the following algorithms..

Tree-Based Multi-dimensional Range Search on Encrypted Data 387

– RIPE.Setup(1λ, T): Given security parameter λ and T , output secret key SK by run-
ning SSW.Setup(1λ, 2T).

– RIPE.Enc(SK,R): Given SK and a range R = [xl, xr], where R ⊆ [1, T], output
ciphertext C by running SSW.Enc(SK,u), where u = (u1, ..., u2T) and{

ui = 1, if i = xl or i = xr + T ;
ui = 0, otherwise.

– RIPE.GenToken(SK,R′): Given SK and a range R′ = [x′
l, x

′
r], where R′ ⊆ [1, T],

output token TK by running SSW.GenToken(SK, v), where v = (v1, ..., v2T) and{
vi = 0, if i ∈ [1, x′

r] or i ∈ [x′
l + T, 2T]

vi = 1, otherwise.

– RIPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff uuu ◦ vvv = 0 and output 0 otherwise.

With this range intersection predicate encryption, we can further extend it
into the multi-dimension case to design a Hyper-rectangle Intersection Predicate
Encryption, which can test whether two hyper-rectangles intersect on encrypted
data. The correctness of this extension also follows a simple geometric fact that
if a hyper-rectangle intersects with another hyper-rectangle, then the range of the
first hyper-rectangle in every dimension intersects the corresponding range of
the second hyper-rectangle, and visa versa:

HR ∩ HR′ = ∅ ⇔ {Rk ∩ R′
k = ∅} ⇔

{
xk,l ∈ [1, x′

k,r],
xk,r ∈ [x′

k,l, T]

for every k ∈ [1, n], where HR = (R1, ...,Rn), HR′ = (R′
1, ...,R

′
n), Rk =

[xk,l, xk,r] and R′
k = [x′

k,l, x
′
k,r]. The details of this hyper-rectangle intersection

predicate encryption are presented as below:

– HIPE.Setup(1λ, Δ): Given security parameter λ and Δ = (T1, ..., Tw), output secret
key SK by running SSW.Setup(1λ, 2wT).

– HIPE.Enc(SK,HR): Given SK and a hyper-rectangle HR = (R1, ...,Rw), where
HR ⊆ LΔ and Rk = [xk,l, xk,r], for 1 ≤ k ≤ w, output ciphertext C by running
SSW.Enc(SK,u), where u = (u1, ..., u2wT) and for 1 ≤ k ≤ w,{

ui = 1, if i = xk,l + (2k − 2)T or i = xk,r + (2k − 1)T ;
ui = 0, otherwise.

– HIPE.GenToken(SK,HR′): Given SK and a hyper-rectangle HR′ = (R′
1, ...,R

′
w),

where HR′ ⊆ LΔ and R′
k = [x′

k,l, x
′
k,r], for 1 ≤ k ≤ w, output token TK by running

SSW.GenToken(SK, v), where v = (v1, ..., v2wT) and for 1 ≤ k ≤ w,⎧⎨
⎩

vi = 0, if i ∈ [1 + (2k − 2)T, x′
k,r + (2k − 2)T]

or i ∈ [x′
l + (2k − 1)T, 2kT];

vi = 1, otherwise.

– HIPE.Query(TK, C): Given TK and C, output 1 or 0 by running SSW.Query(TK, C),
where output 1 iff u ◦ v = 0 and output 0 otherwise.

Since these predicate encryptions presented above are the extensions of SSW,
the security of them can be easily proved based on the security of SSW.

388 B. Wang et al.

6.2 Elm: Full Scheme

With R-trees and the preceding predicate encryptions (extended from SSW), we
build Elm, a tree-based symmetric-key MDRSE. Basically, our scheme follows
the definition we described in Sect. 4. A data owner will first generate a secret
key in GenKey and build an R-tree based on its data records in BuildTree. Then,
the data owner encrypts all the nodes in the R-tree in Enc and outsources the
encrypted tree to the cloud. Specifically, each leaf node is encrypted with point
predicate encryption and each non-leaf node is encrypted with hyper-rectangle
intersection predicate encryption.

Given a multi-dimensional range query, the data owner is able to compute
a search token in GenToken. Each search token contains two sub-tokens: one
(i.e., TKleaf) is for testing whether a leaf node is inside the multi-dimensional
range query, and another one (i.e., TKnleaf) is for checking whether a non-leaf
node intersects with the multi-dimensional range query. Finally, the cloud server
returns the identifiers of all the matched results to the data owner by running
Search. The details of Elm are presented as follows.

• GenKey(1λ, Δ): Given a security parameter λ and Δ = (T1, ..., Tw), the data
owner computes a secret key SKSKSK = {SKleaf , SKnleaf}, where

SKleaf ← PPE.Setup(1λ, Δ), SKnleaf ← HIPE.Setup(1λ, Δ).

• BuildTree(D): Given a set of data records D = (D1, ..., Dn), where Di =
(di,1, ..., di,w), for 1 ≤ i ≤ w, the data owners builds an R-tree Γ =
{D1, ..., Dn, N1, ..., Nm,P}, where Di is a leaf node, for 1 ≤ i ≤ n, Nj is a
non-leaf node, for 1 ≤ j ≤ m, and P is a set of pointers covering all the parent-
child relations in tree Γ .

• Enc(SKSKSK, Γ): Given SKSKSK and Γ , the data owner encrypts every leaf node and every
non-leaf node respectively:

Ci ← PPE.Enc(SKleaf , Di), for 1 ≤ i ≤ n;
Ej ← HIPE.Enc(SKnleaf , Nj), for 1 ≤ j ≤ m.

Then, the data owner generates and outsources the encrypted R-tree Γ ∗ =
{C1, ..., Cn, E1, ..., Em,P}, to the cloud server, where Ci is an encrypted leaf
node, for 1 ≤ i ≤ n, Ej is an encrypted non-leaf node, for 1 ≤ j ≤ m.

• GenToken(SKSKSK, Q): Given SKSKSK and a multi-dimensional range query Q, the data
owner computes a token TKTKTK = {TKleaf , TKnleaf}, where

TKleaf ← PPE.GenToken(SKleaf , Q), TKnleaf ← HIPE.GenToken(SKnleaf , Q).

• Search(Γ ∗,TKTKTK): Given Γ ∗ and TKTKTK = (TKleaf , TKnleaf), the cloud server searches
as follows by starting from the root node of tree Γ ∗:

– If it is non-leaf node Ej , Flagnleaf = HIPE.Query(TKnleaf , Ej). If Flagnleaf = 1,
continues to search the child nodes of this non-leaf node based on P; otherwise,
stops searching the child nodes.

– If it is leaf node Ci, Flagleaf = PPE.Query(TKleaf , Ci). If Flagleaf = 1, returns
the identifier Ii of this leaf node; otherwise, does not return the identifier.

Finally, the cloud server returns a set I of identifiers, where Ii ∈ I, if Di ∈ Q.

Tree-Based Multi-dimensional Range Search on Encrypted Data 389

Correctness. Since the search process in an encrypted R-tree is actually several
search paths from the root node to several matched leaf nodes, the correctness of
it depends on the correctness at each node in these paths. Informally, because the
cloud server is able to correctly test the geometric relation at each node based
on the correctness of SSW, which is the building block, the entire search process
in Elm is correct. Due to the space limitation, detailed explanations about the
correctness of Elm are presented in our technical report [29].

Efficiency. Since the search algorithm in Elm exactly follows the original search
algorithm of an R-tree in the plaintext domain, the complexity of the search
algorithm in Elm is faster-than-linear regarding to the number of data records n.
Based on the complexity of SSW in [22], our design introduces O(wT) overhead
in secret key size, O(wT) overhead in encryption time, ciphertext size and search
time at each node, and O(wT) overhead in token size and token generation time
for each given query, where w is the number of dimensions and T is the size of
each dimension.

Security Analysis. We now analyze the security of Elm, including query pri-
vacy, data privacy and single-dimensional privacy.

Theorem 1(Selective Query Privacy). Elm is selectively query secure, if SSW
is selectively query secure.

Proof. From the high-level, the proof of this theorem can be analyzed with two
aspects. First, because Elm is essentially a scheme with multiple instances of
SSW (i.e., one instance per node in the tree) and SSW is a probabilistic encryp-
tion with selective query security, therefore, Elm is selectively query secure
(according to the claim in Chap. 3 in [16] that any probabilistic symmetric-key
encryption scheme that is secure under chosen-plaintext attacks automatically
implies the multiple encryption of it is secure under chosen-plaintext attacks).

Second, the inherent leakage of path pattern in R-trees, which we used in Elm,
do not reveal additional information based on what we defined in Definition 2
(according to recent observation [28], compared to R-trees, the inherent leakage
of path pattern in other similar trees, such as kd-trees and range trees, inevitably
reveal additional information, particularly in single dimensions, which will fail to
satisfy the restrictions in Definition 2). Due to the space limitation, the detailed
proof of this selective query privacy of Elm following Definition 2 can be found
in [29].

Theorem 2(Selective Data Privacy). Elm is selectively data secure, if SSW is
selectively data secure.

Proof. The selective data privacy of Elm can be proved in a similar way as in
Theorem 1. See details in our technical report [29].

Theorem 3(Single-Dimensional Privacy). Elm is selectively single-dimensional
secure, if Elm is selectively query secure in Theorem 1 and selectively data secure
in Theorem 3.

Proof. Based on Lemma 1 in Sect. 5.

390 B. Wang et al.

6.3 Dynamic Data

As we mentioned at the beginning of this paper, another benefit from enhancing
query privacy compared to [28] is that, our scheme is able to support dynamic
data in an encrypted R-tree without revealing updated data records. More specif-
ically, in order to update a data record (either add a new one or delete an existing
one) in an R-tree, the data owner needs to first submit an update query (based
on the content of this updated data record) to locate which part of the tree
should be updated accordingly. Without protecting query privacy in [28], the
cloud server will directly learn the updated data record through this update
query, which is clearly not secure for dynamic data. While with our scheme,
we can still securely decide which part of the tree should be updated without
revealing the updated data record. Basically, we can achieve this objective by still
leveraging an extension of SSW similarly as the preceding use of point predicate
encryption in the design of Elm. Due to space limitations, how to particularly
support dynamic operations, including insert, delete and modify, over encrypted
data are presented in our technical report [29].

Unfortunately, so far, secure update in Elm can only work with some simple
cases, where assuming one update operation only introduces one node update
in the tree. The reason is that the cases with updates at several nodes in an R-
tree could be more complicated and challenging on encrypted data (more details
about update algorithms of R-trees in the plaintext domain can be found in [19]).
For example, in some cases, one update may need to “split” one bounding box (a
non-leaf node) into two new ones while the splitting process requires evaluation
and comparison of distances among data/nodes. Considering our scheme cannot
compute or compare distance on encrypted data, Elm cannot directly support
this splitting process for complicated update. Of course, this type of computation
and comparison of distances on encrypted data can be evaluated with additional
use of other cryptographic approaches, such as Asymmetric Scalar-product Pre-
serving Encryption used in k-nearest neighbor search [32] or Secure Two-Party
Computation with two non-colluding servers [9]. However, the naive combina-
tion of these methods with Elm will make the entire scheme more complicated
and cumbersome. More importantly, computation and comparison of distances,
especially in a tree, will reveal much more additional privacy to the public cloud
compared to the current privacy leakage defined in the leakage function, which
needs to be rigorously defined and studied in the future.

7 Performance

In this section, we evaluate the performance of Elm, especially the search per-
formance. We use Pairing-Based Cryptography (PBC) Library to simulate the
cost on cryptographic operations in the following experiments. We test them in
Ubuntu 12.04 with Intel Core i5 3.30 GHz Processor and 2 GB Memory.

We first evaluate the search time at a leaf node or a non-leaf node in Figs. 5
and 6. As we discussed before, the complexity at each node is O(wT). Clearly,
the search time over encrypted data at a leaf node or a non-leaf node is linearly

Tree-Based Multi-dimensional Range Search on Encrypted Data 391

increasing with the number of dimensions w or the size of each dimension T .
According to the details of SSW [22], the dominating cryptographic operations
at each node in the evaluation are pairing operations. The average time of eval-
uating one pairing operation (tested on super-singular curve y2 = x3 + x with
preprocessing in PBC) in our experiments is around 2.28 milliseconds.

Next, we demonstrate the search efficiency of our scheme is indeed faster-
than-linear regarding to the number of data records n. To do this, we have a basic
scheme, which only encrypts every data record with point predicate encryption
in Sect. 6 (imaging an incomplete version of Elm without any non-leaf nodes),
and compare its search efficiency with Elm. Since there is no non-leaf nodes in
the basic scheme to index data, the search algorithm of this basic scheme has
to check every encrypted data record one-by-one (i.e., linear complexity). To
simulate the performance of Elm, we run the search code of an R-tree in the
plaintext domain with multiple random queries, but we sleep the search process
at each node in the tree for a certain time, which is equivalent to the computation
time for evaluating the corresponding geometric relation on encrypted data.

The comparison of this basic scheme and Elm is tested based on a part of a
real-world dataset (U.S. census 1990 [2]) and is presented in Fig. 7 and Table 2.
We can see from the table and Fig. 7 that Elm is much faster than the basic one
for handing multi-dimensional range queries. Specifically, when n = 100, 000,
the basic solution requires 46, 056 s while Elm only needs 4, 236 s in average to
operate search on encrypted data.

2 3 4 5
w: the number of dimensions

0

500

1000

1500

2000

Se
ar
ch

T
im

e
(m

s) Non-Leaf
Leaf

Fig. 5. Impact of w on search time (millisecond) at each node with T = 50.

0 20 40 60 80 100
T: the size of each dimension

0

500

1000

1500

2000

Se
ar
ch

T
im

e
(m

s) Non-Leaf
Leaf

Fig. 6. Impact of T on search time (millisecond) at each node with w = 2.

We can also see that, in order to protect users’ privacy, the performance of
Elm on encrypted data is around 2× 105 times slower than the one in plaintext.

392 B. Wang et al.

25000 50000
n: the number of data records

0

5

10

15

20

25

Se
ar
ch

T
im

e
(k
s) Elm

Basic

Fig. 7. Impact of n on search time (kilosecond) with w = 2 and T = 50.

Since Elm has the same complexity (regarding to the number of data records n)
as an R-tree in the plaintext domain, this performance gap is mainly introduced
by the O(wT) pairing operations on each node. One of our future work is to
study how to minimize this gap via lightweight primitives without relying on
pairing operations while still preserving a same or similar level of privacy.

Table 2. Average Search Time when w = 2 and T = 50.

n Basic (second) Elm (second) R-tree in Plaintext (millisecond)

1,000 461 71 0.37

10,000 4,606 515 2.34

100,000 46,056 4,236 18.42

8 Conclusion and Future Work

We design a tree-based symmetric-key MDRSE in this paper to achieve faster-
than-linear search, data privacy, query privacy and single-dimensional privacy
for multi-dimensional range queries on encrypted data. We demonstrate the secu-
rity and efficiency of the proposed scheme through rigorous analyses and experi-
ments. For our future work, we will focus on achieving secure fully dynamic data
operations in a tree-based multi-dimensional searchable encryption.

Acknowledgement. We would like to thank the reviewers for providing many useful
comments. This work was supported in part by the US National Science Foundation
under grant CNS-1218085, NSF of China 61272457, National Project 2012ZX03002003-
002, 863 Project 2012AA013102, 111 Project B08038, IRT 1078, FRF K50511010001
and NSF of China 61170251.

References

1. http://www.wuala.com/
2. http://archive.ics.uci.edu/ml/datasets.html

http://www.wuala.com/
http://archive.ics.uci.edu/ml/datasets.html

Tree-Based Multi-dimensional Range Search on Encrypted Data 393

3. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange,
T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revis-
ited: consistency properties, relation to anonymous IBE, and extensions. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

4. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

7. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: data structures and
implementation. In: Proceedings of NDSS 2014 (2014)

8. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

9. Chun, H., Elmehdwi, Y., Li, F., Bhattacharya, P., Jiang, W.: Outsourceable two-
party privacy-preserving biometric authentication. In: Proceedings of ACM ASI-
ACCS 2014 (2014)

10. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Proceedings of
ACM CCS 2006 (2006)

11. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

12. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31–45. Springer, Heidelberg (2004)

13. Guttman, A.: R-Trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of ACM SIGMOD 1984 (1984)

14. Kamara, Seny, Papamanthou, Charalampos: Parallel and dynamic searchable sym-
metric encryption. In: Sadeghi, Ahmad-Reza (ed.) FC 2013. LNCS, vol. 7859, pp.
258–274. Springer, Heidelberg (2013)

15. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proceedings of ACM CCS 2012, pp. 965–976 (2012)

16. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca
Raton (2007)

17. Lai, J., Zhou, X., Deng, R.H., Li, Y., Chen, K.: Expressive search on encrypted
data. In: Proceedings of ACM ASIACCS 2013, pp. 243–251 (2013)

18. Lu, Y.: Privacy-preserving logarithmic-time search on encrypted data in cloud. In:
Proceedings of NDSS 2012 (2012)

19. Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A.N., Theodoridis, Y.: R-
Trees: Theory and Applications. Advanced Information and Knowledge Processing.
Springer, London (2006)

20. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W.,
Keromytis, A., Bellovin, S.: Blind seer: a searchable private DBMS. In: Proceedings
of IEEE S&P 2014 (2014)

21. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE
Internet Comput. 16(1), 69–73 (2012)

394 B. Wang et al.

22. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

23. Shi, E., Bethencourt, J., Chan, T.H.H., Song, D., Perrig, A.: Multi-dimensional
range query over encrypted data. In: Proceedings of IEEE S&P 2007, pp. 350–364
(2007)

24. Song, D., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of IEEE S&P 2000 (2000)

25. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of
ACM CCS 2013 (2013)

26. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: Proceedings of NDSS 2014 (2014)

27. Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving
multi-keyword text search in the cloud supporting similarity-based ranking. In:
Proceedings of ACM AISACCS 2013 (2013)

28. Wang, B., Hou, Y., Li, M., Wang, H., Li, H.: Maple: scalable multi-dimensional
range search over encrypted cloud data with tree-based index. In: Proceedings of
ACM ASIACCS 2014 (2014)

29. Wang, B., Hou, Y., Li, M., Wang, H., Li, H., Li, F.: Tree-based multi-dimensional
range search on encrypted data with enhanced privacy. Technical report, Utah
State University (2014). http://digital.cs.usu.edu/∼mingli/tech/elm14.pdf

30. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: Proceedings of ICDCS 2010 (2010)

31. Wang, P., Ravishankar, C.V.: Secure and efficient range queries on outsourced
databases using R-trees. In: Proceedings of IEEE ICDE 2013 (2013)

32. Wong, W.K., Cheung, D.W., Kao, B., Mamoulis, N.: Secure kNN compuation on
encrypted databases. In: Proceedings of SIGMOD 2009 (2009)

33. Wong, W.K., Kao, B., Cheung, D.W., Li, R., Yiu, S.M.: Secure query processing
with data interoperability in a cloud database environment. In: Proceedings of
ACM SIGMOD 2014 (2014)

http://digital.cs.usu.edu/~mingli/tech/elm14.pdf

	Tree-Based Multi-dimensional Range Search on Encrypted Data with Enhanced Privacy
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Statement
	5 Security Definitions
	6 Tree-Based Symmetric-Key MDRSE
	6.1 Geometric Relations on Encrypted Data
	6.2 Elm: Full Scheme
	6.3 Dynamic Data

	7 Performance
	8 Conclusion and Future Work
	References

