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Abstract. In this paper we find that a random sequence is expected to
obey a new interesting distribution, and the coefficient of variation of this
distribution approximates the value of golden section ratio, the dif-
ference between these two numbers is only 0.000797. As this interesting
property, this newfound distribution is derived from Coupon Collector’s
Problem and founded by the uniformity of frequency. Based on this dis-
tribution a new method is proposed to evaluate the randomness of a given
sequence. Through the new method, the binary and decimal expansions
of e, π,

√
2,

√
3 and the bits generated by Matlab are concluded to be

random. These sequences can pass NIST tests and also pass our test. At
the same time, we test some sequences generated by a physical random
number generator WNG8. However, these sequences can pass the NIST
tests but cannot pass our test. In particular, the new test is easy to be
implemented, very fast and thus well suited for practical applications.
We hope this test method could be a supplement of other test methods.

Keywords: Randomness tests · Cryptography · Golden section ratio ·
Coefficient of variation

1 Introduction

The random sequence is very important and it serves two common purposes
[1–4]. One is that most encryption algorithms require a source of random data,
even some symmetric ciphers (where the secret is shared), either to generate
new private/public key pairs, for session keys, for padding, or for other reasons
[5]. For instance, if the random number is not well selected, the secure system
based on RSA is not secure anymore [6]. Another important usage of random
number is that random number generators (“RNGs”) are basic tools of stochastic
modeling. If the bad random is used in simulation, it will ruin a simulation.
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At present there are many test suites to evaluate the randomness of binary
bit sequences, such as Diehard Crypt-XS [7] and NIST test suites [8]. Typically,
the test method usually defines a test statistic whose theoretical distribution
is known, and the randomness property of a given sequence can be evaluated
by hypothesis testing. Because there are so many tests for judging whether a
sequence is random or not, usually the test result is part of the picture of the
randomness [9].

In this paper we construct a new randomness test method based on Coupon
Collector’s Problem. The main inspiration of this paper comes from the martin-
gale betting system [10]. The martingale betting system has a long and interest-
ing history. Suppose that a gambler is betting on red to turn up in roulette, in
which the probability of hitting either red or black is close to 50 %. Every time
the gambler wins, bets 1 dollar next time. Every time the gambler loses, doubles
the previous bet. In this betting system, the gambler will always win, because
the gambler is sure that the red must turn up in some time.

In the old martingale betting system, there are only two states. In this paper,
we define a new martingale betting system, and in the new betting system, there
are ten states. The frequency of each state’s occurrence is the same. In this new
betting system, when the gambler gathers all ten states, he will win the game. We
find an interesting random variable in this new betting system and the coefficient
of variation(CV) [11] of it approximates the value of golden section ratio [12]
and the difference between these two numbers is only 0.000797.

Based on this similar Coupon Collector’s Problem, we construct a new ran-
domness test method, name the newfound test Traversal Sequence Test (TST)
and calculate the theoretical distribution of this random variable, then use the
chi-square test [13] which is of great importance in testing whether observed data
fits a given probability distribution to decide the randomness of the sequences.
At the same time, the proposed test is easy to be implemented, very fast and
thus well suited for practical applications. We hope this test method could be a
supplement of the other test methods.

In order to evaluate our test method, we evaluate the randomness of the
binary and decimal expansions of e, π,

√
2,

√
3, log2 and random binary sequences

from Matlab by our method and NIST test suite respectively. Compared with
the reports of NIST tests, our method can also give right decision. At the same
time, we also test some sequences which can not pass the NIST tests and our test
gives the same decision as NIST does. In particular, we evaluate some sequences
generated by WNG8 which is physical random number generator, and these
sequences can pass NIST tests but can not pass our test. For these reasons, we
hope our method can be a supplement of the present test suites.

The main contributions in our paper:

1. Compared with the existing test statistics, the coefficient of variation of the
newfound test statistic based on Coupon Collector’s Problem approximates
the value of golden section ratio and the difference between these two num-
bers is only 0.000797.

2. Based on our newfound random variable, we proposed a new randomness
test method, which can be a supplement of the present test suites.
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2 The Design of Our Statistical Test

In the old martingale betting system, there are only two states. In our new
martingale betting system, there are ten states, the frequency of each state’s
occurrence is the same. Consider the following situation: there is a long decimal
sequence, such as 349850236674190871239046975306869 · · · · · · , and we define a
new random variable X, X is the number of the elements needed traversing from
‘0’ to ‘9’. In this new betting system, when the gambler gathers all ten numbers,
he will win the game. In the above string of decimal numbers, for the first time
to finish traversing from ‘0’ to ‘9’, it needs this small segment ‘3498502366741’,
so x1 = 13; for the second time to traverse from ‘0’ to ‘9’, it needs the next small
segment ‘90871239046975’, so x2 = 14; and so on, we can get x3, x4, · · ·, xn, · · ·.

Based on the random variable defined above, there comes a question:
What is the probability distribution of the random variable X?
In the old martingale betting system, the distribution of this random vari-

able is obviously Geometric Distribution [14]. The next subsections will give the
process that how to calculate the probability of the new random variable in our
new martingale betting system.

2.1 The Preliminary to Calculate the Probability

There is a question for putting the balls into the boxes. In this question, we have
ten boxes without serial numbers and k balls, and the probability for every ball
into any a box is 1/10. When we put the kth ball into one box, each box at least
has one ball at that moment. In other word, when we put the (k − 1)th ball into
one box, only one of the boxes has no balls. So there is how many kinds of such
combination.

Stirling number [15] can easily give the number of such combination. Stirling
number S(P,K) denotes the number of the combination to put P elements into
K nonempty sets. Therefore, with the help of Stirling number, the number of
the combination for k balls is S(k − 1, 9).

2.2 To Calculate the Probability

If all the ten boxes have serial numbers from ‘0’ to ‘9’, what is the number of
the combination that when the kth ball is put into one box, every box has just
at least one ball at that moment? Because of the Stirling number, the number
of combination is 10! ∗ S(k − 1, 9). Now this question that k balls are put into
ten boxes is similar to the above question that k numbers are traversed from ‘0’
to ‘9’. So, P(X = k) = 10! ∗ S(k − 1, 9)/10k = 9! ∗ S(k − 1, 9)/10k−1. In order
to calculate the probability for k � 10, substitute the Stirling number’s formula
into P(X = k). The Stirling number is calculated by the formula (1):

S(n, k) = (1/k!) ∗ (
k∑

j=0

(−1)k−j(kj )j
n) (1)
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Fig. 1. The probability distribution for the traversal from ‘0’ to ‘9’

Then we can calculate the P(X = k):

P (X = k) = 9! ∗ S(k − 1, 9)/10k−1 (2)

By the formula (1) and (2),

P (X = k) = 9! ∗ 1/9! ∗ (
9∑

j=0

(−1)9−j(9j ) ∗ jk−1)/10k−1 (3)

= (
9∑

j=0

(−1)9−j(9j ) ∗ jk−1)/10k−1 (4)

Suppose i = 9 − j,

P (X = k) =
9∑

i=0

(−1)i(9i ) ∗ ((9 − i)/10)k−1 (5)

Through the formula (5), we can calculate the probability distribution and
Fig. 1 shows the probability distribution for the traversal from ‘0’ to ‘9’.

2.3 The Newfound CV Closes to Golden Section Ratio

The expectation of the random variable X which is the number of the elements
needed traversing from ‘0’ to ‘9’ can be calculated by the formula (6):
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E(X) =
∞∑

k=10

k ∗
9∑

i=0

(−1)i(9i ) ∗ ((9 − i)/10)k−1 (6)

Although we get the probability distribution for the random variable X, we
can not easily calculate the expectation and standard deviation of X. However,
we can divide one traversal from ‘0’ to ‘9’ into ten parts. The first part is the first
time to get one element a0 from ‘0’ to ‘9’, and the probability P0 for this event
is 1. The second part is the first time to get one element a1 which is not equal to
a0, and the probability P1 for this event is 9/10. The same method for the other
parts. The 10th part is the first to get one element a9 which is not equal to any
element among a0, a1, · · · · · · , a8, and the probability P9 for this event is 1/10.
Based on the above description, since these ten parts are independent geomet-
ric distribution, the expectation of each part is Ei = 1/Pi and the variance is
Vari = (1 − Pi)/P 2

i . According to the additivity of independent events’ proba-
bility, we can calculate the E(X) and Var(X) by the formula (7)–(9):

Pi = (10 − i)/10 (7)

E(X) =
9∑

i=0

Ei =
9∑

i=0

1/Pi = 29.2897 (8)

V ar(X) =
9∑

i=0

V ari =
9∑

i=0

(1 − Pi)/P 2
i = 125.6871 (9)

A random variable – the coefficient of variation [11] measures the variability
of a series of numbers independently of the unit of measurement used for these
numbers. The coefficient of variation eliminates the unit of measurement of the
standard deviation of a series of numbers by dividing it by the mean of these
numbers. In the above test for the traversal from ‘0’ to ‘9’, we can calculate the
CV by the formula (10):

CV = σ(X)/E(X) = V ar(X)1/2/E(X) = 0.38276 (10)

The golden section ratio is 0.38196601 and the computed CV of the traversal
test for decimal numbers is 0.38276363. The difference between the golden section
ratio and the computed CV is 0.00079762. It is attractive that the CV of the
random variable is so close to the golden section ratio.

2.4 One Example for Traveral Test

Here we take π as an example and the test traverses from ‘0’ to ‘9’.

π = 3.1415926535897932384626433832795028841971693 · · · · · ·
Begin the test with the part after the decimal point. It needs ‘14159265358979

323846264338327950’ for the first time to finish one traveral from ‘0’ to ‘9’ and
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the number of decimal elements is 32. It needs ‘288419716939937510’ for the sec-
ond time to finish one traveral from ‘0’ to ‘9’ and the number of decimal numbers
is 18. Then we finish 10000 traverals from ‘0’ to ‘9’ and we can get the statisti-
cal histogram for the number of decimal numbers needed to finish one traveral.
Figure 2 shows the comparison of the theoretical probability distribution and the
statistical probability distribution.

Fig. 2. The comparison of the theoretical probability distribution and the statistical
probability distribution

Through the theoretical probability distribution and the statistical proba-
bility distribution, we can calculate the chi-square for the test to evaluate the
randomness of the sequence as follows:

n denotes the number of traverals, ppi denotes the probability that it needs i
elements to finish one traversal and fi denotes the number of times that it needs
i elements to finish one traveral in the n traverals.

if n ∗ ppi < 5, we can calculate one part of the chi-square as follow:

χ2
1 = (

∑

{i|n∗ppi<5}
ppi ∗ n −

∑

{i|n∗ppi<5}
fi)2/(

∑

{i|n∗ppi<5}
ppi ∗ n) = 0.8893 (11)

if n ∗ ppi ≥ 5, we can calculate the other part of the chi-square as follow:

χ2
2 =

∑

{i|n∗ppi≥5}
(ppi ∗ n − fi)2/(ppi ∗ n) = 67.2301 (12)
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Then calculate the chi-square χ2 by adding up χ2
1 and χ2

2.

χ2 = χ2
1 + χ2

2 = 68.1194 (13)

Then compute P value = igamc(N/2, χ2/2) = igamc(64/2, 68.1194/2) =
0.3390. We select the significance level α = 0.01. If the computed P value is less
than 0.01, then conclude that the sequence is non-random. Otherwise, conclude
that the sequence is random.

2.5 Traversal Sequence Test

This section describes the procedure of the proposed test — Traversal Sequence
Test (TST). In [3], A Statistical Test Suite for Random and Pseudorandom Num-
ber Generators for Cryptographic Applications (Revised: April 2010) consists of
15 tests and mentions that there are an infinite number of possible statistical
tests and each of them is applied in a necessary condition for the randomness in
probabilistic terms. Namely, no specific finite set of tests is deemed “complete”.
For example, among the NIST tests, the frequency (monibit) test focuses on the
proportion of zeros and ones for the entire sequence; the frequency test within a
block determines whether the number of ones is approximately m/2 in a m-bit
block. In order to test the randomness of a sequence, these are necessary but
not sufficient.

Here is a sequence n = 10000 as follows:

0, 1, 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1

The sequence has 5000 ones and 5000 zeros. However, the sequence is obvi-
ously non-random, but the frequency test and the frequency within a block test
(in which the length of the test block is even) would accept the sequence.

The focus of the TST is the proportion of the number of the needed element
for one traversal. The purpose of this test is to determine whether the frequency
of the traversal is similar with the theoretical probability distribution. The TST
is suitable for many bases. For a bit sequence, the traversal can be from ‘0’ to
‘2m’ and m can be 1, 2, · · ·, 7, 8, · · ·. The TST also can be applied for the decimal
sequence and the traversal is from ‘0’ to ‘9’. The test process can be summarized
as follows:

• Step 1: For a given bit sequence, the length is n and select the radix 2m for
the traversal from ‘0’ to ‘2m’.

• Step 2: Based on the radix selected in step 1, finish one thousand traversals
and record the value of the random variable X which is the number of the
needed elements for each traversal.

• Step 3: Analyze statistical result from step 2 to get the statistical distribution
for the traversal test.

• Step 4: According to the statistical distribution of the random variable X,
apply the chi-square test to compute P value.

• Step 5: Decide the significance level α to determine whether to accept the
sequence based on the P value.
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3 The Simulation Results

The proposed test (TST) was applied to different series of numbers (π, e,
√

2,√
3, log2, some which are generated by WNG8, some which are generated by the

random function of Matlab2012a, some which are the result of SHA-256, some
other series which are concluded to be random by the NIST tests and some which
are concluded to be non-random).

π, e,
√

2,
√

3, log2 and the sequences are generated by WNG8 are concluded to
be random by the NIST tests. Table 1 shows that the result of the NIST tests for
the binary expansion of π, e,

√
2. Meanwhile, WNG8 and the result of Hash-256 are

also concluded to be random by the NIST tests. Sequence A is a bit sequence with
the probability 48% of ‘0’ and 52% of ‘1’ and sequence B is a periodic sequence.
Seq. A and Seq. B are both concluded to be non-random by the NIST tests.

3.1 The General TST Test

In the TST, based on the binary sequences of the above series, do traversal tests
in different bases. Regard 1000 traversals as one test and do one thousand times
in total for each base. Then record P value which is computed in each test. If in
any radix a sequence is concluded to be non-random, conclude this sequence non-
random. Table 2 records the number of the computed P value which is greater
than 0.01 in 1000 tests for each radix, and it shows that the TST test can
distinguish these random and non-random sequences well.

3.2 The TST Test for Simple Periodic Sequence

The traversal sequence test is based on the normality of the sequence. However,
the TST test can distinguish simple-constructed periodic sequences. Generally, π
is considered to be a random sequence, so construct the simple periodic sequences

Table 1. The result of NIST for the binary expansion of some entities

Statistical test π e
√

2 WNG8 Hash-256 Seq.A Seq.B

Frequency 1.000 0.989 0.989 0.993 0.986 0.000 0.921

BlockFrequency 0.989 1.000 0.989 0.997 0.989 0.000 0.968

CumulativeSums (forward) 0.989 0.989 0.989 0.993 0.985 0.000 0.928

CumulativeSums (backward) 1.000 0.989 1.000 0.990 0.987 0.000 0.928

Runs 0.978 1.000 1.000 0.987 0.987 0.000 0.926

LongestRuns 1.000 0.989 0.989 0.991 0.990 0.000 0.801

Rank 0.978 1.000 0.989 0.989 0.995 0.988 0.993

FFT 0.956 0.967 1.000 0.984 0.985 0.128 0.000

ApproximateEntropy 1.000 0.989 0.989 0.988 0.993 0.000 0.000

Serial (∇1) 1.000 0.989 1.000 0.989 0.992 0.000 0.000

Serial (∇2) 1.000 0.989 0.989 0.989 0.991 0.981 0.000



370 Q. Zhang et al.

Table 2. The number of the computed P value which is greater than 0.01

Statistical test Radix = 21 Radix = 22 Radix = 23 Radix = 24

π 995 996 985 990

e 990 993 990 996√
2 993 992 990 990√
3 989 987 990 991

log2 993 997 995 993

One sequence from WNG8 999 994 991 991

One sequence from WNG8 993 986 992 992

Random sequence from Matlab 990 992 994 991

Random sequence from Matlab 997 994 992 991

One non-random sequence (Seq.A) 970 914 673 201

Table 3. The computed P value of periodic sequences

Statistical test The length of
the sequence

Radix = 21 Radix = 22 Radix = 23 Radix = 24

The constructed
sequence 1 512000

2.2328e-12 1.3609e-20 0.0044 1.4128e-41

Sequence 1 from π
512000

0.6862 0.9936 0.8445 0.9532

The constructed
sequence 2

1024000 1.0888e-25 1.6914e-52 6.7067e-15 1.7901e-127

Sequence 2 from π 1024000 0.7721 0.8013 0.8117 0.8664

The constructed
sequence 3

1536000 8.9484e-42 6.0224e-93 2.3053e-30 5.5521e-235

Sequence 3 from π 1536000 0.8546 0.8652 0.9048 0.2797

based on some segments of π. Consider the constructed sequence 1 consisting
of 102400 random bit string which is one segment of π and repeated 5 times,
the constructed sequence 2 consisting of 102400 random bits which are copied
from π and repeated 10 times and the constructed sequence 3 consisting of
102400 random bit string which is one segment of π and repeated 15 times.
Meanwhile, get three referential sequences from π, then apply the TST test to
these sequences. Table 3 shows the computed P values and the result indicates
that these constructed sequence is non-random and the TST test can discover
the periodicity in sequences.

3.3 The Large Sample TST Test

On the observation of the above TST tests, the sample size for one test is not so
large. Here consider some large sample data and the sample data is 800 million
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Table 4. The result of thest large sample data

Statistical test Radix=21 Radix=22 Radix=23 Radix=24 Radix=25 Radix=26

π 0.5514 0.8637 0.1637 0.329 0.1402 0.9334

e 0.8007 0.5293 0.6132 0.4867 0.2054 0.3358√
2 0.9156 0.2361 0.5448 0.8475 0.5290 0.8608√
3 0.3393 0.7141 0.8947 0.6648 0.4416 0.1803

log2 0.6930 0.2128 0.9143 0.6373 0.3637 0.8688

One sequence
from linear
shift register
generator

0.1928 4.8312e-11 0.1389 0.2490 0.0798 0.0652

Sequence 1 from
WNG8

0.7607 0.5343 0.5387 9.6747e-06 8.7977e-08 0.9162

Sequence 2 from
WNG8

0.1347 0.5297 0.9111 9.4943e-08 1.5921e-04 0.2702

Sequence 3 from
WNG8

0.2674 0.9789 0.0941 0.0767 0.0070 0.8107

Sequence 4 from
WNG8

0.5532 0.9311 0.0116 2.0995e-14 0.2988 4.5243e-04

Sequence 5 from
WNG8

0.3597 0.4902 0.9273 5.5788e-06 0.4842 0.1365

Result 1 of
SHA-256

0.4599 0.5631 0.0133 0.9423 0.5207 0.968

Result 2 of
SHA-256

0.7785 0.3862 0.8919 0.8775 0.4998 0.1264

Sequence 1 from
Matlab

0.5669 0.5542 0.0230 0.2175 0.9939 0.4087

Sequence 2 from
Matlab

0.8980 0.4024 0.8892 0.7337 0.8179 0.7217

Sequence 3 from
Matlab

0.3928 0.7429 0.5018 0.1946 0.8881 0.9147

Sequence 4 from
Matlab

0.2219 0.6064 0.5295 0.8075 0.6041 0.3401

Sequence 5 from
Matlab

0.7840 0.7269 0.6235 0.4041 0.7974 0.2971

bits. In this section, the large samples contain one sequence which is from lin-
ear shift register generator, five sequences which are generated by WNG8, two
sequences which are the results of SHA-256, five sequences that are generated
by the random function of Matlab2012a and other sequences that are from π, e,√

2,
√

3, log 2.
Table 4 records the computed P value of these sequences in each base. From

the result of Table 4, when the sample size is large, π, e,
√

2,
√

3, log 2 are still
concluded to be random, the result of SHA-256 and the sequences generated
by matlab are also concluded to be random. However, to the sequence from
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Table 5. The computed P value for the random variable CV

Name π e
√

2
√

3

P value 0.5952 0.8715 0.8858 0.6784

Name Periodic
sequence 1

Periodic
sequence 2

Periodic sequence 3 Periodic sequence 4

P value 4.3679e-90 4.1967e-20 1.9650e-04 1.9788e-05

WNG8 in some radix the sequence is non-random, so the large sample TST
test can distinguish some non-randomness of the sequences from WNG8. To the
sequence from linear shift register generator, in the radix of 22 it is concluded
to be non-random.

3.4 The Simulation of the Random Variable CV

In the above section, we notice that the theoretical value of random variable CV
for decimal sequences is extremely close to the Golden Section Ratio. Then in
this section, we will apply the T test [16] to distinguish sequences’ randomness.
Here these sequences are decimal and the length of each test block is 90000. For
each sequence, calculate 100 CVs. The calculated CV is conformed to normal
distribution with the mean is the theoretical value of CV. We can assume that
the calculated CVs have the mean which is the theoretical value of CV and the
variance δ2 which is unknown. Then calculate the statistical variable t by the
formula (14), where X is the mean of the calculated CVs, CV0 is the theoretical
value of CV, S is the standard deviation of these CVs and n is the number of
these CVs.

t = (X − CV0)/(S/
√

n) ∼ t(n − 1) (14)

Then through the computed t, make use of the ttest function in Matlab
to get the P value. Table 5 shows that the P value of the decimal sequences
for π, e,

√
2,

√
3 and some periodic sequences whose periods are 48000, 120000,

240000, 480000. The result indicates that the random variable CV can efficiently
distinguish the non-random sequences.

4 Conclusion

In this paper, we propose a new randomness test method. First, we calculate the
probability distribution for the number to traversal the binary sequence from
different bases. Then apply chi-square test to evaluate the randomness of the
binary sequences. An amazing discovery of this paper is that we find that the
Coefficient of Variation of the test statistic defined in this paper approaches
the value of golden section ratio and the difference between these two number is
only about 0.000797. As the test result shown, our new test method can find that
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some physical random number generator is not so good as the pseudorandom,
such as the binary expansions of e, π,

√
2,

√
3 etc. We hope that our new test

method can be a supplement of the existing test suites.
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