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Abstract. The full Perfect Forward Secrecy (PFS) is an important secu-
rity property for Authenticated Key Exchange (AKE) protocols. Unfor-
tunately, Krawczyk has claimed that any one-round implicitly authenti-
cated key exchange protocol could not achieve full PFS but only weak
PFS. Although some solutions are proposed in the literature, their pro-
tocols maintain secure only in the cases of additional authentication and
a constrained adversary. In this paper, we investigate the question of
whether tamper-proof hardware can circumvent the full PFS deficiency
of one-round implicitly authenticated key exchange protocols. We answer
this question in the affirmative by formally proving that the most effi-
cient one-round implicitly authenticated key exchange protocol, HMQV,
achieves full PFS under the physical assumption of regarding the exis-
tence of tamper-proof hardware.

Keywords: Authenticated Key Exchange · Full PFS · Tamper-Proof
hardware · Physical assumption · HMQV · CK model

1 Introduction

Diffie and Hellman gave the first key exchange protocol in their seminal paper
[9]. Key exchange protocols allow two entities to establish a shared secret session
key via public communication. In order to provide the authentication of enti-
ties’ identities, authenticated key exchange (AKE) was proposed. AKE not only
allows two entities to compute a shared session key but also ensures the authen-
ticity of the entities. In this paper, we focus on a kind of AKE protocol put
forth by Matsumoto [23] which needs only the basic Diffie-Hellman exchanges,
yet it provides authentication by combining the ephemeral keys and long-term
keys in the derivation of the session key. As this kind of protocol achieves high
performance both in communication (only the basic Diffie-Hellman exchanges
are needed) and computation (needs no explicit signature authentication), it is
widely studied and many protocols are proposed [16,19–22,25,29,32–34].

The full PFS is a desirable property for AKE protocols. It ensures that the
expired session keys established before the compromise of the long-term key
cannot be recovered even if the adversary is active during the session estab-
lishment. However, Krawczyk showed in his well-known protocol HMQV [19]
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that any one-round (or two-message) implicitly authenticated key exchange pro-
tocol could not achieve the full PFS property, and gave an explicit attack on
such protocols. He claimed that implicitly authenticated protocols could only
achieve weak PFS: “any session key established without the active intervention
of the attacker (except for eavesdropping the communication) is guaranteed to
be irrecoverable by the attacker once the session key is erased from memory”.
Boyd and Gonzalez [2] further proved that if the adversary is allowed to reveal
the ephemeral keys then no one-round AKE protocols can achieve full PFS.
In the following we show the reason why one-round implicitly authenticated
key exchange protocols cannot achieve full PFS by analyzing the HMQV [19]
protocol.

HMQV originates from the MQV protocol [22], and is one of the most efficient
one-round implicitly authenticated key exchange protocols. It achieves almost
the strongest security requirements for AKE, i.e., provable security in the CK
model, resistance to the key-compromise impersonation attacks and weak PFS
property. Krawczyk formally proves its security in the CK model [3]. However,
in scenarios where the ephemeral keys are not protected, the validation of the
ephemeral public key must be performed explicitly, which costs one exponenti-
ation, or the protocol would be vulnerable to small subgroup attacks [24].

The HMQV protocol is depicted in Fig. 1. It involves two entities Â and B̂,
with respective secret keys a and b and public keys A = ga and B = gb. First,
entities Â and B̂ randomly select ephemeral private keys x and y and exchange
the ephemeral public keys X and Y . Then both entities compute a session key
K as H(g(x+da)(y+eb)) where d = H1(X, B̂), e = H1(Y, Â) and H, H1 are hash
functions.

We review the attack on full PFS of HMQV in the following. An adversary
M randomly chooses a secret key x and sends the public key X = gx to B̂
masquerading as Â. Then B̂ will choose a random secret key y, send Y = gy to Â
which is captured by M, and compute the session key K = H((XAd)y+eb). Once
the session key expires at B̂, and is removed from memory, M corrupts Â and
obtains the private key a. M now can compute the session key K by computing
H((Y Be)x+da) which contradicts the full PFS property. The above attack on
HMQV can be easily applied to all the one-round implicitly authenticated key
exchange protocols. So it seems impossible to achieve full PFS for such protocols.

Â B̂

X = gx
X−−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−− Y = gy

K =
H((Y Be)x+da)

K =
H((XAd)y+eb)

MQV: d = 2l + (Xmod2l), e = 2l + (Y mod2l), l = |q|/2
HMQV: d = H1(X, B̂), e = H1(Y, Â)

Fig. 1. The MQV and HMQV protocol
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1.1 Related Work and Contributions

Related Work. The tamper-proof hardware token stores sensitive data such as
cryptographic keys and protected objects in its shielded memory and provides
users of the token its cryptographic functionalities through secure API such
as PKCS#11 [28]. The tamper-proof feature of the token and the secure API
protect sensitive data in the hardware from being revealed in plaintext off the
token. Moreover, tamper-proof hardware associates every protected object with
an authorization, and only users possessing the correct authorization can make
use of the functionality of the object. So even if the adversary corrupts some
object by compromising the authorization, it only gets the black-box access to
the object through the secure API but not the plaintext.

The idea of using secure hardware to achieve stronger security properties is
not entirely new, and a number of works based on tamper-proof hardware have
been proposed. Katz [17] first formalizes tamper-proof hardware in the univer-
sal composability (UC) framework and proves that such physical assumptions
suffice to circumvent the impossibility result of secure computation of general
functionalities without an honest majority. Some following papers [4,8,26] give
further investigation. Goldwasser et al. [11] introduce the concept of one-time
programs, in which they make use of very simple hardware tokens to ensure that
a program is used only once. Goyal et al. [13] consider the general question of
basing secure computation on hardware tokens, and show some impossible cryp-
tographic tasks in the “plain” model become feasible if the entities are allowed to
generate and exchange tamper-proof hardware tokens. Dagdelen et al. [7] present
an efficient protocol for password-based authenticated key exchange based on the
weak model of one-time memory tokens [11]. Kolesnikov [18] proposes a truly
efficient String Oblivious Transfer (OT) technique relying on resettable (actu-
ally, stateless) tamper-proof tokens. [12,15] focus on the possibilities of efficient
Zero-Knowledge PCPs and unconditional two-prover Zero-Knowledge proofs for
NP on stateless tamper-proof hardware tokens respectively.

Our Contributions. In this paper we extend the idea of improving the security
of cryptography protocols using tamper-proof hardware to modern AKE proto-
cols. We first design the API of tamper-proof hardware for the HMQV protocol,
then in our formal analysis we model the black-box manner of the tamper-proof
hardware API as an oracle, i.e., instead of getting the plaintext of the private
key, the adversary gets an API oracle after compromising the long-term key.
Under the assumption of the existence of tamper-proof hardware, we formally
prove that the HMQV protocol achieves the full PFS property in the CK model.
Although it seems a bit trivial by using a tamper-proof hardware to achieve full
PFS. Evidently it is not such a trivial task and a challenging work, given the
state-of-the-art nature and highly intensive study of HMQV.

Another advantage of our design of the tamper-proof hardware API is that
our HMQV design can resist small subgroup attacks even if entities don’t perform
the validation of ephemeral public keys. So the total computation cost of our
HMQV per entity is only 2.5 exponentiations.



346 Q. Zhang et al.

1.2 Organization

Section 2 gives a brief description of the CK model. Section 3 summarizes the
current one-round AKE protocols achieving full PFS, presents their limitations,
and gives a detailed comparison with our HMQV protocol. Section 4 designs the
API of tamper-proof hardware for HMQV, explains why our design resists small
group attacks even if ephemeral public keys are not validated, and gives a formal
description of HMQV. Section 5 formally proves the security of HMQV in the
CK model and shows that it achieves full PFS with the help of tamper-proof
hardware. Section 6 concludes our work and gives our future work.

2 Security Model for AKE

We outline the CK model for key exchange protocols on which all the analysis
work in this paper is based. In the CK model, AKE runs in a network of inter-
connected entities and each entity has a long-term key and a certificate (issued
by a certification authority (CA)) that binds the public key with the identity
of that entity. An entity can be activated to run an instance of the protocol
called a session. Within a session an entity can be activated to initiate the ses-
sion or to respond to an incoming message. As a result of these activations, the
entity creates and maintains a session state, generates outgoing messages, and
eventually completes the session by outputting a session key and erasing the
session state. A session can be associated with its holder or owner (the entity
at which the session exists), a peer (the entity with which the session key is
intended to be established), and a session identifier. The session identifier is a
4-tuple (Â, B̂, out, in) where Â is the identity of the owner of the session, B̂ the
peer, out the outgoing messages from Â in the session, and in the incoming mes-
sages from B̂. In the case of the one-round implicitly authenticated key exchange
protocols, this results in an identifier of the form (Â, B̂,X, Y ) where X is the
outgoing DH value and Y the incoming DH value. The session (B̂, Â, Y,X) (if
it exists) is said to be matching to session (Â, B̂,X, Y ).

2.1 Attack Model

The AKE experiment involves multiple honest entities and an adversary M
connected via an unauthenticated network. The adversary is modeled as a prob-
abilistic Turing machine and has full control of the communications between
entities. M can intercept and modify messages sent over the network. M also
schedules all session activations and session-message delivery. In addition, in
order to model potential disclosure of secret information, the adversary is allowed
to access secret information via the following queries:

– SessionStateReveal(s): M queries directly at session s while still incom-
plete and learns the session state for s. This query allows the adversary to
obtain all states stored on the untrusted host, such as the values returned
by the API of tamper-proof hardware and all the information computed on
the host.



Improving the Security of the HMQV Protocol 347

– SessionKeyReveal(s): M obtains the session key for the session s.
– Corruption(P̂ ): In the “plain” CK model (In this paper we use the term

“plain model” to denote the model that has no tamper-proof hardware
assumption), this query allows M to learn the plaintext of the long-term
private key of entity P̂ . In the tamper-proof hardware model, M cannot learn
anything about the plaintext of the private key but gets the black-box access
to the private key as the hardware is completely tamper-proof. In other words,
this query allows M to obtain an API oracle of the private key.

– Expiry(s): This query deletes the session key and any related session state
of session s. While it has no output, expiry is of major importance in defining
full PFS.

– Test(s): Pick b
R←− 0, 1. If b = 1, provide M the session key; otherwise provide

M with a value r randomly chosen from the probability distribution of session
keys. This query can only be issued to a session that is “clean”. We say that a
completed session is “clean” if this session as well as its matching session (if it
exists) is not subject to any of the first 3 queries above (SessionStateReveal,
SessionKeyReveal, Corruption). A session is called exposed if M performs any
one of the first 3 queries to this session.

The security is defined based on a game played by M, in which M is allowed
to activate sessions and perform Corruption, SessionStateReveal, SessionKeyRe-
veal and Expiry queries. At some time, M performs the Test query to a clean
session of its choice and gets the value returned by Test. After that, M con-
tinues the experiment, but is not allowed to expose the test session nor any
entities involved in the test session. However, in order to model full PFS we
allow the adversary to corrupt the owner of the test session and the peer entity
after the session has expired. Eventually M outputs a bit b′ as its guess, then
halts. M wins the game if b′ = b. The adversary with above capabilities is called
a KE-adversary. We give the formal definition of security in the following.

Definition 1. An AKE protocol Π is called secure if the following properties
hold for any KE-adversary M defined above:

1. When two uncorrupted entities complete matching sessions, they output the
same session key, and

2. The probability that M guesses the bit b (i.e., outputs b′ = b) from the Test
query correctly is no more than 1/2 plus a negligible fraction.

3 Current Limitations and Comparisons

In this section, we summarize all the one-round AKE protocols achieving full
PFS as far as we know, and present their limitations. At last we compare these
protocols with our HMQV protocol with hardware assumption.

3.1 Current AKE Achieving Full PFS and Their Limitations

Many one-round protocols with full PFS [2,5,6,10,14,16,35] have been proposed
especially after Krawczyk pointed out the full PFS deficiency of one-round pro-
tocols, although many of them are not implicitly authenticated as they need to
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Â(A = ga) B̂(B = gb)

X = gx
X, Y←−−−−−−−−−−−→ Y = gy

sid = X||Y
sk=H(Â||B̂||sid||gxy||gab)

Fig. 2. The T S2 protocol

explicitly authenticate the transmitted messages to prevent the adversary from
injecting self-constructed messages.

The protocol T S2 of Jeong, Katz and Lee [16] and the mOT protocol of
Gennaro et al. [10] are typical efficient one-round authenticated key exchange
protocols. Take T S2 for example, any two parties willing to establish a shared
session key between them first exchange their ephemeral values, and then derive
the session key by combing the ephemeral values and the long-term keys. Figure 2
illustrates the generic protocol messages and session key computation of T S2.
However, models used in the security proofs of T S2 and mOT do not allow any
ephemeral values and intermediate information to be revealed. We can see that
if the adversary is allowed to reveal the ephemeral keys then T S2 can’t achieve
full PFS as Boyd and Gonzalez have analyzed in [2]. What’s worse, we find
that if the adversary is allowed to reveal the intermediate information gab then
the T S2 protocol is completely insecure: the adversary transmits an ephemeral
key X ′ = gx

′
generated by himself to entity Â or B̂ and then computes the

session key K ′ = H(Â||B̂||sid||Y x′ ||gab), in another word, the adversary is able
to impersonate Â (or B̂) to B̂ (or Â) indefinitely. Authors of the mOT protocol
[10] point out that mOT “is not resistant to the disclosure of the ephemeral
Diffie-Hellman values or the unhashed session key”: if the adversary is allowed
to reveal the ephemeral keys the adversary can immediately obtain the sender’s
long-term private key, and if the adversary is allowed to reveal the unhashed
session key the adversary can carry a malleability attack. As no state information
is allowed to disclose, the security models used in T S2 and mOT are similar to
the Bellare-Rogaway model [1], which is weaker than the popular CK or eCK
model. At a practical level, the ephemeral key must be protected with the same
security as the long-term private keys and all the intermediate computation must
be performed in tamper-proof device. Thus, such protocols are not efficient for
tamper-proof hardware whose physical resources might be very limited.

After the proposal of T S2 and mOT protocols, many one-round protocols
with full PFS and proved secure in strong models (such as CK and eCK models)
are proposed [2,5,6,14,35]. Here we only give a detail analysis of the limitations
of the protocol presented by Cremers [6]1, and our analysis can be applied to
other protocols easily as their mechanisms used to provide full PFS are similar.
1 Actually [2,6] give compilers that transmit a one-round protocol into a protocol with

full PFS property, and here we analyze the transformations of the NAXOS protocol
which are presented as typical examples in their papers.
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Protocol [6] is a variant of the NAXOS protocol [20], and is showed in Fig. 3.
The first limitation is that the security model used in the analysis disallows
the adversary to reveal the ephemeral keys of all the sessions whose output
messages are the same as the input messages of the test session, i.e. the session
under attack. Such limitation exists in the models of other protocols: [2] disallows
the adversary to get any state information of the peer to the test session, and
[14] disallows the adversary of the eCK model to reveal any ephemeral keys,
and [35] disallows the adversary to reveal any session state information between
the owner and the peer of the test session. These constraints indeed help the
above protocols achieve full PFS in their security models, but they prevent their
models from capturing the attacks launched by a “clever” active adversary who
would always replay messages of such sessions whose ephemeral keys or state
information he has already obtained, i.e., such adversary would first corrupt the
ephemeral key or the session state of some session and then replay the corrupted
messages to some entities. The second limitation of protocol [6] is that each
entity needs to authenticate the exchanged messages (such as the signatures in
Fig. 3) using an extra signature key (such as (skÂ, pkÂ) of Â in Fig. 3), which
adds a signature computation to each entity. Boyd and Gonzalez claimed [2] is
more efficient as they use a MAC instead of a signature, but the computation of
the secret key used in the MAC costs an exponentiation. Huang’s protocol [14]
doesn’t use an additional signature key, but the authentication of the ephemeral
key is performed by the long-term key and it doesn’t work over arbitrary groups
as it requires a decisional Diffie-Helleman (DDH) oracle.

Â B̂

(a,A), (skÂ, pkÂ) (b,B), (skB̂ , pkB̂)

rÂ, X = gH1(rÂ,a)

X,Signsk
Â

(X[,B̂])

−−−−−−−−−−−−→
rB̂ , Y = gH1(rB̂ ,b)

Y,Signsk
B̂

(Y [,Â])

←−−−−−−−−−−−−
KÂ = H2(Y

a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂)

KB̂ = H2(A
H1(rB̂ ,b), Xb, XH1(rB̂ ,b), Â, B̂)

Fig. 3. The variant of NAXOS

From above we conclude that current solutions on the full PFS deficiency of
one-round AKE protocols are not perfect: they maintain protocol security and
full PFS only in weak security models or in strong models while the capabili-
ties of the adversary is constrained and the exchanged messages are explicitly
authenticated by signature or MAC.

3.2 Comparisons

Our HMQV protocol with hardware assumption only disallows the adversary
to reveal the sensitive information stored and computed in the tamper-proof
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Table 1. Protocol Comparisons

Protocol Efficiency Validation Communication Assumption

T S2 [16] 3 Y 2|P| CDH, RO

T S3 [16] 3 Y 2|P| + 2 |MAC| CDH

mOT [10] 2 Y 2|N| RSA, KEA1, RO

Boyd11 [2] 5 Y 2|P| + 2 |MAC| GDH, RO

Cremers11 [5] 3 + 1 Sign Y 2|P| + 2 |Sign| GDH, RO

Cremers12 [6] 4 + 1 Sign Y 2|P| + 2 |Sign| GDH, RO

Huang11 [14] 3 + 1 DDH Y 4|P| GDH, RO

Yoneyama12 [35] 8 + 2 Pair N 10|P| DDH, DBDH, q-SDH

Our HMQV 2.5 N 2|P| GDH, Physical, RO

In the Efficiency column, the numbers denote the exponentiations, and Sign
denotes the computation of a signature, and DDH denotes the computation of
querying a DDH oracle, and Pair denotes the paring computation. In the Commu-
nication column, |P| denotes the size of a group element, and |N| denotes the size of
an RSA key, and |MAC| denotes the size of a MAC, and |Sign| denotes the size of
a signature. The CDH, RSA, KEA1, DDH, GDH, DBDH and q-SDH stand for the
Computational Diffie-Hellman, RSA, Knowledge of Exponent, Decisional Diffie-
Hellman, Gap-DDH, Decisional Bilinear Diffie-Hellman, q-strong Diffie-Hellman
assumptions respectively, and RO is short for the random oracle model.

hardware, and other information such as results returned by the hardware API,
is allowed to be revealed to the adversary in our security analysis. In Table 1
we compare our HMQV with other one-round AKE protocols achieving full
PFS in terms of the efficiency, necessity of validation of the ephemeral public
keys, communication, and the underlying hardness assumptions. Table 1 shows
that our HMQV protocol is almost the most efficient both in computation and
communication (except for the mOT protocol in the efficiency, but mOT only
works for RSA groups whose exponentiation computation is more expensive).

4 API Design and Protocol Description

In this section, we introduce the design of tamper-proof hardware API for the
HMQV protocol, explain why no adversaries can mount small group attacks even
if the validation of ephemeral public keys is eliminated, and then give a formal
description of the protocol.

4.1 API Design and the Resistance to Small Group Attacks

Tamper-proof hardware stores the long-term private key of its owner, and pro-
vides its owner two functionalities through the API: (1) generating an ephemeral
key, and (2) generating the unhashed shared secret based on the long-term keys
and the ephemeral keys. Figure 4 depicts the API, and we now give a detailed
description:
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TPH:(A = ga)

Entity Â
x,X = gx

X−−−→
d = H1(X, B̂), e = H1(Y, Â)

B̂,Y←−−−
Z = (Y Be)x+da, delete x

Z−−−→

Fig. 4. The API of Tamper-Proof hardware

1. When entity Â wishes to establish a session key with entity B̂, it first calls
the API of its tamper-proof hardware to get an ephemeral public key X = gx.
The ephemeral private key x is stored in the hardware, and the public key X
will be used to exchange with B̂.

2. After receiving the ephemeral key Y from entity B̂, Â transmits (B̂, Y ) to its
tamper-proof hardware through the API, and the hardware will perform the
following steps:
(a) Compute d = H1(X, B̂) and e = H1(Y, Â) where H1 is a hash function.

d and e are of length |p|/2 where |p| is the bit length of the group order.
(b) Compute the unhashed shared secret Z = (Y Be)x+da, delete x, then

return Z to Â.

After receiving Z from its tamper-proof hardware, Â can compute the session
key shared with B̂ by hashing Z. The details will be introduced in Sect. 4.2.

Resistance to Small Group Attacks. As Menezes [24] has shown that if the
ephemeral private key is allowed to be exposed to the adversary in the session
state query, key exchange protocols are vulnerable to small subgroup attacks,
which allow the adversary to recover long-term private keys. For the details of
small subgroup attacks, please refer to [24]. So in our design of tamper-proof
hardware API for HMQV, ephemeral keys are generated by the tamper-proof
hardware and ephemeral private keys are physically protected. As the generation
of ephemeral keys doesn’t require any information of the peer entity, ephemeral
keys can be generated off-line (when tamper-proof hardware is ideal). Thus,
putting the generation of ephemeral keys into tamper-proof hardware doesn’t
affect the efficiency of HMQV in practice. To demonstrate that our design is
practical, we study ephemeral key generation of the Trusted Platform Module
(TPM) version 2.0 [30] (although TPM 2.0 is not a tamper-proof hardware, it is
a popular hardware security token). We find that TPM 2.0 designs an efficient
way to generate ephemeral keys with the following features:

– have the number of bits equal to the security strength of the signing key;
– not be known outside of the TPM; and
– only be used once.

Users can invoke the TPM2 EC Ephemeral() [31] command to generate an
ephemeral key. So we claim that protecting ephemeral private keys by tamper-
proof hardware is practical.
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4.2 Formal Description of HMQV

Figure 5 gives an informal description of HMQV, and the computation performed
by tamper-proof hardware is boxed by rectangles. We formally describe HMQV
by giving the following three session activations.

Â : (A = ga) B̂ : (B = gb)

x,X = gx
X,Y→−−← y, Y = gy

d = H1(X, B̂) e = H1(Y, Â)

Z1 = (Y Be)x+da, delete x Z2 = (XAd)y+eb, delete y

K1 = H(Z1) K2 = H(Z2)

Fig. 5. The HMQV protocol

1. Initiate(Â, B̂): Â calls the API of its tamper-proof hardware to generate an
ephemeral key X, creates a local session of the protocol which it identifies as
(the incomplete) session (Â, B̂,X), and outputs X as its outgoing message.

2. Respond(B̂, Â,X): After receiving X, B̂ performs the following steps:
(a) Call the API of its tamper-proof hardware to get an ephemeral key Y ,

output Y as its outgoing message.
(b) Transmit (Â,X) to its tamper-proof hardware and get Z2 = (XAd)y+eb

through the API where y is the private part of Y and d = H1(X, B̂),
e = H1(Y, Â).

(c) Compute the session key K2 = H(Z2) and complete the session with
identifier (B̂, Â, Y,X).

3. Complete(Â, B̂,X, Y ): Â checks that it has an open session with identifier
(Â, B̂,X), then performs the following steps:
(a) Transmit (B̂, Y ) to its tamper-proof hardware and get Z1 = (Y Be)x+da

through the API where x is the private part of X and d = H1(X, B̂),
e = H1(Y, Â).

(b) Compute the session key K1 = H(Z1) and complete the session with
identifier (Â, B̂,X, Y ).

It is straightforward to verify that the two entities compute the same shared
secret Z = Z1 = Z2 and the same session key K = K1 = K2.

5 Security Proof of HMQV with Tamper-Proof Hardware

We first describe the GDH (Gap Diffie-Hellman) assumption, then prove our
HMQV protocol is secure and achieves the full PFS property in the CK model
under the GDH assumption.
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Definition 2 (GDH Assumption). Let G be a cyclic group generated by
an element g whose order is p. We say that a decision algorithm DDH is a
Decisional Diffie-Hellman (DDH) Oracle for a group G and generator g if on
input a triple (X,Y,Z), for X,Y ∈ G, oracle DDH outputs 1 if and only if
Z=CDH(X,Y ). We say that G satisfies the GDH assumption if no feasible algo-
rithm exists to solve the CDH problem, even when the algorithm is provided with
a DDH-oracle for G.

API Oracle. We treat the API of tamper-proof hardware as an oracle O who
generates ephemeral keys and unhashed shared secrets. The adversary would be
given the black-box access to O if it performs the Corruption query to the entity.

Session State. In order to simulate the tamper-proof feature of the hardware,
we specify that a session state stores the results returned by the API, i.e., the
unhashed shared secret Z. Information stored in the hardware is not included in
the session state, for example, ephemeral private keys.

Theorem 1. Under the GDH assumption, the HMQV protocol, with hash func-
tions H and H1 modeled as random oracles, is a secure key exchange protocol in
the CK model described in Sect. 2.

The proof of the above theorem follows from the definition of secure key
exchange protocols outlined in Sect. 2 and the following two lemmas.

Lemma 1. If two entities Â, B̂ complete matching sessions, then their session
keys are the same.

Lemma 2. Under the GDH assumption, there is no feasible adversary that suc-
ceeds in distinguishing the session key of an unexposed session with non-negligible
probability.

Lemma 1 follows immediately from the definition of matching sessions. That
is, if Â completes session (Â, B̂,X, Y ) and B̂ completes the matching session
(B̂, Â, Y,X) then Â computes its session key as H(Z1) while B̂ computes the
same key as H(Z2) where Z1 = Z2.

The rest section proves Lemma 2. Let M be any adversary against our
HMQV protocol. We observe that since the session key of the test session is
computed as K = H(Z) for Z, the adversary M has only two ways to distin-
guish K from a random value:

1. Forging attack. At some point M queries H on the same Z as the unhashed
shared secret of the test session.

2. Key-replication attack. M succeeds in forcing the establishment of another
session that has the same session key as the test session.

For simplicity of analysis we will consider the above two forms of attacks
separately. We will show that if either of the attacks succeeds with non-negligible
probability then there exists an efficient solver S against the GDH problem.
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5.1 Infeasibility of Forging Attacks

Consider a successful run of M, and let (Â, B̂,X0, Y0) denote the test session
for which M outputs a correct guess for the Z value of the test session. By the
convention on session identifiers, we know that the test session is held by Â, and
its peer is B̂, X0 was output by Â, and Y0 was the incoming message to Â. The
generation of the Y0 can fall under one of the following three cases:

1. Y0 was generated by B̂ in a session matching the test session, i.e., in session
(B̂, Â, Y0,X0).

2. Y0 was never output by B̂ as its outgoing value in any of the sessions activated
at B̂, or B̂ did output Y0 as its outgoing value for some session s but it
never completed the session key of s (B̂ was invoked to execute the Initiate
activation of s but was never activated with Complete activation).

3. Y0 was generated at B̂ during a non-matching session (B̂, Â∗, Y0,X
∗) with

Â∗ �= Â or X∗ �= X0.

Since we assume that M succeeds in the forging attack with non-negligible
probability then there at least one of the cases that happens with non-negligible
probability in the successful run of M. For each of the cases we build a solver S
against the GDH problem. We assume that M operates in an environment that
involves at most n entities and each entity participates in at most k sessions.

Solver S for case 1. In this case S takes as input a pair (X0, Y0) ∈ G2, creates
an AKE experiment which includes n entities, and is given access to a DDH
oracle DDH. S assigns the n entities random static key pairs, then randomly
selects two integers i, j ∈ [1, ..., k] and two honest entities Â and B̂. S runs
HMQV under the control of M who schedules all session activations and makes
queries as follows:

1. Initiate(P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. However,
if the session being created is the i-th session at Â (or the j-th session at B̂),
S checks whether P̂2 is B̂ (or Â). If so, S sets the ephemeral public key to be
X0 (or Y0) from the input of S. Otherwise, S aborts.

2. Respond(P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol.
However, if the session being created is the i-th session at Â (or the j-th
session at B̂), S checks whether Y = Y0 (or Y = X0). If so, S sets the
ephemeral public key to be X0 (or Y0), and completes the session without
computing a session key. Otherwise, S aborts.

3. Complete(P̂1, P̂2,X, Y ): P̂1 executes the Complete() activation of the pro-
tocol. However, if the session being created is the i-th session at Â (or the
j-th session at B̂), S checks whether it has an open session with identifier
(Â, B̂,X0) (or (B̂, Â, Y0)) and Y = Y0 (or Y = X0). If so, S completes the
session without computing a session key. Otherwise, S aborts.

4. SessionStateReveal(s): S returns to M the unhashed shared secrete Z. How-
ever, if s is the i-th session at Â (or the j-th session at B̂), S aborts.

5. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th
session at Â (or the j-th session at B̂), S aborts.
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6. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information for
current sessions and session keys at P̂ . From the moment of corruption M
takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â (or B̂)
when the i-th session at Â (or the j-th session at B̂) is not expired, S aborts.

7. Expiry(s): S deletes the session key and any related session state of s.
8. H1(·): S simulates a random oracle in the usual way.
9. H(Z) for some Z proceeds as follows:

– If DDH(X0A
d, Y0B

e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),
then S aborts M and is successful by outputting:

CDH(X0, Y0) = ZX−eb
0 Y −da

0 g−deab.

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the j-th session
of B̂ as the test session and its matching session is at least 2

(nk)2 . Suppose that

this is indeed the case, M is not allowed to corrupt Â before its i-th session is
expired and B̂ before its j-th session is expired, make SessionStateReveal and
SessionKeyReveal queries to the two special sessions, so S doesn’t abort in Step
1, 2, 3, 4, 5, 6. So S perfectly simulates M’s environment except with negligible
probability. Therefore if M wins the forging attack, then the success probability
of S is bounded by:

Pr(S) ≥ 2
(ns)2

Pr(M).��

Solver S for Case 2. In this case S takes input a pair (X0, B) ∈ G2, randomly
selects one entity B̂ from the honest entities and sets the public key of B̂ to be
B. All the other entities compute their keys normally. Furthermore, S randomly
selects an integer i ∈ [1, ..., k]. The simulation for M’s environment proceeds as
follows:

1. Initiate(P̂1, P̂2): With the exception of B̂ (whose behavior we explain below)
P̂1 executes the Initiate() activation of the protocol. However, if the session
being created is the i-th session at Â, S checks whether P̂2 is B̂. If so, S sets
the ephemeral public key to be X0 from the input of S. Otherwise, S aborts.

2. Respond(P̂1, P̂2, Y ): With the exception of B̂ (whose behavior we explain
below) P̂1 executes the Respond() activation of the protocol. However, if the
session being created is the i-th session at Â, S checks whether P̂2 is B̂. If
so, S sets the ephemeral key to be X0 and doesn’t compute the session key.
Else, S aborts.

3. Complete(P̂1, P̂2,X, Y ): With the exception of B̂ (whose behavior we explain
below) P̂1 executes the Complete() activation of the protocol. However, if
the session is the i-th session at Â, S checks whether it has an open session
with identifier (Â, B̂,X0) and Y = Y0. If so, S completes the session without
computing a session key. Otherwise, S aborts.

4. S creates an API oracle OB̂ for B̂ as follows:



356 Q. Zhang et al.

(a) When invoked to generate an ephemeral key for a session with P̂ , OB̂

chooses s, e ∈ Zq randomly, let Y = gs/Be, define H1(Y, P̂ ) = e, and
returns Y as the ephemeral public key.

(b) When invoked to compute the unhashed shared secret based on the input
(P̂ ,X), OB̂ returns Z = (XP d)s where d = H1(X, B̂).

S simulates all the session activations at B̂ for M with the help of OB̂ .
5. SessionStateReveal(s): S returns to M the unhashed shared secret Z

returned by the API oracle. However, if s is the i-th session at Â, S aborts.
6. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th

session at Â, S aborts.
7. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information

for current sessions and session keys at P̂ . From the moment of corruption
M takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â or
B̂ when the i-th session at Â is not expired, S aborts.

8. Expiry(s): S deletes the session key and any related session state of s.
9. H1(·): S simulates a random oracle in the usual way.

10. H(Z) for some Z proceeds as follows:
– If DDH(X0A

d, Y0B
e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),

then S aborts M and is successful by outputting:

Z(Y0B
e)−da = gx0y0gex0b

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the peer of
the test session is B̂ is at least 1

n2k . Suppose that this is indeed the case, M
is not allowed to corrupt Â and B̂ before Â’s i-th session is expired, make
SessionStateReveal and SessionKeyReveal queries to the i-th session of Â, so S
doesn’t abort in Step 1, 2, 3, 5, 6, 7. So S simulates M’s environment perfectly
except with negligible probability.

If M wins the forging attack, it computes the unhashed shared secret Z of
the test session (Â, B̂,X0, Y0). Note that without the knowledge of the private
key y0 of Y0, S is unable to compute CDH(X0, B). Following the Forking Lemma
[27] approach, S runs M on the same input and the same coin flips but with
carefully modified answers to the H1 queries. Note that M must have queried
H1(Y0, Â) in its first run, because otherwise M would be unable to compute Z
of the test session. For the second run of M, S responds to H1(Y0, Â) with a
value e′ �= e selected uniformly at random. If M succeeds in the second run, S
computes

Z ′(Y0B
e′

)−da = gx0y0ge
′x0b

and thereafter obtains

CDH(X0, B) = (
Z

Z ′ )
1

e−e′ B−da.
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The forking is at the expense of introducing a wider gap in the reduction. The
success probability of S, excluding negligible terms, is

Pr(S) ≥ C

n2k
Pr(M)

where C is a constant arising from the use of the Forking Lemma. ��

Solver S for case 3. In this case S takes input a pair (X0, Y0) ∈ G2. All
the entities compute their keys normally. Furthermore, S randomly selects two
integers i, j ∈ [1, ..., k]. The simulation for M’s environment proceeds as follows:

1. Initiate(P̂1, P̂2): P̂1 executes the Initiate() activation of the protocol. If the
session being created is the i-th session at Â, S checks whether P̂2 is B̂. If
so, S sets the ephemeral public key to be X0 from the input of S. Otherwise,
S aborts. If the session being created is the j-th session at B̂, S sets the
ephemeral public key to be Y0 from the input of S.

2. Respond(P̂1, P̂2, Y ): P̂1 executes the Respond() activation of the protocol. If
the session being created is the i-th session at Â, S checks whether P̂2 is B̂ and
Y = Y0. If so, S sets the ephemeral public key to be X0, and completes the
session without computing a session key. Otherwise, S aborts. If the session
being created is the j-th session at B̂, S sets the ephemeral public key to be
Y0, then checks whether Y is generated by an oracle OP̂ :
(a) If so, then OP̂ must compute y and Y = gy during its run. S computes

s = y + dp2 where d = H1(Y, B̂), and returns Z = (Y0B
e)s where e =

H1(Y0, P̂2) as the return of OB̂ , computes the session key K = H(Z), and
completes the session with identifier (B̂, P̂2, Y0, Y ).

(b) Else, then OP̂ randomly chooses an value Z as the return of OB̂ , computes
the session key K = H(Z), and completes the session with identifier
(B̂, P̂2, Y0, Y ).

3. Complete(P̂1, P̂2,X, Y ): P̂1 executes the Complete() activation of the proto-
col. However, if the session being created is the i-th session at Â, S checks
whether it has an open session with identifier (Â, B̂,X0) and Y = Y0. If so, S
completes the session without computing a session key. Otherwise, S aborts.
If the session is the j-th session at B̂, S checks whether it has an open session
with identifier (B̂, P̂2, Y ) and X = Y0. If fails, S aborts, else S checks whether
Y is generated by some oracle OP̂ :
(a) If so, then OP̂ must compute y and Y = gy during its run. S computes

s = y + ep2 where e = H1(Y, B̂), and returns Z = (Y0B
d)s where d =

H1(Y0, P̂2) as the return of OB̂ , computes the session key K = H(Z), and
completes the session with identifier (B̂, P̂2, Y0, Y ).

(b) Else, then OP̂ randomly chooses an value Z as the return of OB̂ , computes
the session key K = H(Z), and completes the session with identifier
(B̂, P̂2, Y0, Y ).

4. SessionStateReveal(s): S returns to M the unhashed shared secrete Z. How-
ever, if s is the i-th session at Â, S aborts.
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5. SessionKeyReveal(s): S returns to M the session key of s. If s is the i-th
session at Â, S aborts.

6. Corruption(P̂ ): S gives M the API oracle OP̂ of P̂ and state information for
current sessions and session keys at P̂ . From the moment of corruption M
takes full control over P̂ with the help of OP̂ . If M tries to corrupt Â or B̂

when the i-th session at Â is not expired, S aborts.
7. Expiry(s): S deletes the session key and any related session state of s.
8. H1(·): S simulates a random oracle in the usual way.
9. H(Z) for some Z proceeds as follows:

– If DDH(X0A
d, Y0B

e) = 1 for Z where d = H1(X0, B̂) and e = H1(Y0, Â),
then S aborts M and is successful by outputting:

CDH(X0, Y0) = ZX−eb
0 Y −da

0 g−deab.

– S simulates a random oracle in the usual way.

Proof. The probability that M selects the i-th session of Â and the peer of the
test session is B̂ and Y0 is generated at the j-th session at B̂ is at least 1

n2k2 . Sup-
pose that this is indeed the case, M is not allowed to corrupt Â and B̂ before Â’s
i-th session is expired, make SessionStateReveal and SessionKeyReveal queries
to the i-th session of Â, so S doesn’t abort in Step 1, 2, 3, 4, 5, 6. So S simulates
M’s environment perfectly except with negligible probability. Therefore if M
wins the forging attack, then the success probability of S is bounded by:

Pr(S) ≥ 1
n2s2

Pr(M). ��

5.2 Infeasibility of Key-Replication Attacks

By using the GDH solver S above, we prove that the key-replication attacks
are infeasible against HMQV by showing that such a successful adversary would
break the GDH assumption.

Proof. Assume that M is successful in a key-replication attack against the test
session s = (Â, B̂,X0, Y0). Namely, M succeeds in establishing a session s′ =
(Â′, B̂′,X ′, Y ′) which has the same key as the test session, and this session is
different than (Â, B̂,X0, Y0) and (B̂, Â, Y0,X0). This means the unhashed shared
secret of s and s′ are same (except of a negligible probability of collision in H).

Consider the GDH solver S built above for the three cases. In all the three
cases, S provides M (except the test session and its matching session) with
the Z values of all exposed sessions. Therefore, if M is able to succeed in a
key-replication attack then it can query the session s′ (which M is allowed to
expose) and obtains the Z of s′ which equals Z of s. But this means that M
is able to find the Z of s without exposing s or its matching session, namely,
M can launch the forging attacks. But as we showed, in this case S succeeds in
breaking the GDH assumption. ��

This completes the proof of Lemma 2. Together with Lemma 1, we complete
the proof of Theorem 1.
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6 Conclusion and Future Work

We discuss the full PFS property for one-round implicitly authenticated key
exchange protocols in this paper. Many works have showed that no one-round
implicitly authenticated protocols can achieve full PFS, and neither the HMQV
protocol. Although many solutions are proposed, they lose high performance
both in communication and computation as they need to explicitly authenti-
cate the exchanged messages. These solutions also have some limitations in the
capabilities of the adversary.

We propose the idea of using tamper-proof hardware to improve the secu-
rity of AKE protocols, and show that it is possible to achieve full PFS for the
one-round implicitly authenticated key exchange protocols under the tamper-
proof hardware assumption by formally analyzing the HMQV protocol in the
CK model. Another advantage of our design of the tamper-proof hardware API
for HMQV is that HMQV implemented by our design resists small group attacks
even if entities don’t perform the validation of ephemeral public keys.

It’s interesting to investigate whether the tamper-proof hardware assumption
can improve the security of other implicitly authenticated key exchange proto-
cols. Moreover, we see that all exponentiation computations of HMQV must
be performed in the hardware token, so an investigation of designing protocols
requiring less computation in the hardware token could be done in the future.
Another interesting work is to analyze the key exchange protocols (SM2 key
exchange and MQV) in the TPM 2.0 by taking into account the protection pro-
vided by the TPM hardware. Zhao et al. [36] analyze the SM2 key exchange, and
the security analysis of MQV considering the physical assumption of the TPM
can be done in the future.
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