SCADS
Separated Control- and Data-Stacks

Christopher Kugler and Tilo Miiller®

Department of Computer Science,
Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
tilo.mueller@cs.fau.de

Abstract. Despite the fact that protection mechanisms like Stack-
Guard, ASLR and NX are widespread, the development on new defense
strategies against stack-based buffer overflows has not yet come to an
end. In this paper, we present a compiler-level protection called SCADS:
Separated Control- and Data-Stacks. In our approach, we protect return
addresses and saved frame pointers on a separate stack, called the
Control-Stack (CS). In common computer programs, a single user mode
stack is used to store control information next to data buffers. By sep-
arating control information from the Data-Stack (DS), we protect sen-
sitive pointers of a program’s control flow from being overwritten by
buffer overflows. As we make control flow information simply unreach-
able for buffer overflows, many exploits are stopped at an early stage of
progression with only little performance overhead. To substantiate the
practicability of our approach, we provide SCADS as an open source
patch for the LLVM compiler infrastructure for AMDG64 hosts.

Keywords: Stack-based buffer overflows - LLVM - Separate control
stack

1 Introduction

As of 2013, C is still the most frequently used programming language (17.89 %)
closely followed by Java [1]. Unlike Java and many other high-level languages,
C does not check the boundaries of a buffer at runtime or compile time, lead-
ing to the threat of so-called buffer overflow vulnerabilities. With respect to
stack-based buffer overflows, the root of exploits is often the stack design that
stores control information as well as data alternating on the same stack. For
that reason, buffer overflows can be exploited by specially crafted inputs that
manipulate the return address of a subroutine call to affect the program flow in a
controlled manner. This manipulation can be achieved by either redirecting the
return address to previously injected shellcode [2], or by reshaping existing code
of the target process into a new program logic [3]. According to the National Vul-
nerability Database, the number of software flaws classified as buffer overflows is
still growing. In total, 729 CVEs for buffer errors were reported in 2013 [4]. Fur-
thermore, buffer errors are still the most common threat today, namely 14.60 %
of all reported software vulnerabilities were buffer overflows in 2013.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 323-340, 2015.
DOI: 10.1007/978-3-319-23829-6_23

324 C. Kugler and T. Miiller

1.1 Related Work: State-of-the-Art Buffer Overflow Protection

During the last two decades, many protection mechanisms were developed that
limit the consequences of maliciously abused buffer overflows. In 1998, Cowan
et al. proposed a compiler-level extension called StackGuard [5] that guards
return addresses on the stack by so-called canaries. A canary is a random value
on the call stack that is placed between a return address and a buffer. Before
the control flow jumps back to a return address, the integrity of the canary
is checked to test whether a write operation has accessed memory beyond the
buffer boundaries. A drawback of this approach is the additional instruction
sequence, which is executed with each return from a subroutine call, inducing
notable performance overhead. However, StackGuard is frequently in use today
and available as a compiler extension for GCC, LLVM and Visual Studio.

In 2000, the GCC patch StackShield [6] was published, introducing another
compiler-level extension. A so-called shadow stack holds a second copy of each
return address and writes this copy back to the runtime stack whenever a sub-
routine call ends. In 2008, this idea was revisited for the binary rewriting tool
TRUSS (Transparent Runtime Shadow Stack) [7], with the difference that a
return address is compared to its shadow copy rather than enforcing its integrity
by restoring a backup value. Consequently, the TRUSS approach is more inef-
ficient than the StackShield approach because a comparison operation for each
subroutine call is slower than a single copy operation. Note that none of these
solutions, including StackGuard, StackShield, and TRUSS, is entirely secure, as
shown in the literature [8-10].

In 2001, the first widely available version of Address Space Layout Random-
ization (ASLR) was published as part of PaX, a Linux kernel patch for security
enhancements. ASLR randomizes the virtual address space of a process, possi-
bly including the stack, the heap, the data and also the code section (depending
on the OS version and compiler options). Simple buffer overflow exploits are
thwarted by ASLR since correct branch addresses to injected shellcode become
harder to predict for an attacker. In difference to the afore mentioned solutions,
ASLR modifies the environment of a binary and not the binary itself. How-
ever, ASLR alone is not secure against many other exploitation techniques, as
summarized in the literature [10-14].

In 2003, the NX-bit (No eXecute) was introduced as part of the AMD64
architecture and is now available on all modern x86 CPUs. NX is a hardware
extension that prevents the execution of injected shellcode by marking data
pages, e.g., stack pages, as non-executable within the page table. The invention
of NX considerably complicates the creation of buffer overflow exploits as it
becomes impossible to run shellcode on the stack, or any other data page marked
as non-executable. However, more advanced exploitation strategies, known as
return-into-libc [3] and Return-Oriented Programming (ROP) [15], bypass the
protection of NX by running existing code gadgets from executable pages in a
newly composed order. These techniques often succeed in the presence of both
NX and ASLR. Recent research papers generalized ROP to a wider class of
instruction sets [16,17] and to a smaller base of necessary gadgets [18].

SCADS: Separated Control- and Data-Stacks 325

1.2 Contribution: Separated Control- and Data-Stacks

As outlined in the last section, the race between countermeasures and exploita-
tions in the field of buffer overflows is still ongoing today. With several
high-quality publications about Return-Oriented Programming in the last few
years [3,15-19], the attacking side seems to be presently at an advantage over
the defending side. Looking at the way many ROP exploits work today, they
are successful because return addresses can oftentimes still be overwritten. None
of the countermeasures mentioned above prevent return addresses from being
overwritten.

To guarantee the integrity of return addresses in a secure and highly efficient
manner, we propose the compiler-level extension SCADS: Separated Control-
and Data-Stacks. With SCADS, we propose a protection mechanism that pre-
vents return addresses from being overwritten by writing beyond the boundaries
of a buffer. We remove return addresses from the Data-Stack (DS) and place
them on a separate Control-Stack (CS). Unlike StackShield and TRUSS, we do
not introduce a shadow stack holding a copy of control information, but use a
separated stack for control information. As a consequence, SCADS does not have
to deal with comparison operations or backup recoveries, but natively works on
two stacks with mutually exclusive content types.

Using a single stack for data and control information is a de-facto standard
for computer programs of the last decades. But this design is neither required
by the OS nor by the x86 architecture. Therefore, similar to StackGuard and
StackShield, SCADS can be implemented as a compiler-level extension without
support from the OS or hardware. In contrast to previous compiler extensions,
SCADS does not involve an extra sequence of instructions at the end of a sub-
routine call, thus minimizing runtime overhead.

Specifically, our contributions are as follows:

1. Design Concepts of SCADS (Sect.2): We propose concrete design choices
for the implementation of a separated CS and DS on AMDG64 systems. For
example, we explain the relative position of the two stacks within the virtual
address space, discuss whether the stacks grow up- or downward, and reason
which registers are used as a stack or base pointer.

2. Implementation of SCADS (Sect. 3): Based on our design concepts, we present
an open source patch for the LLVM compiler infrastructure, which we make
available under an NCSA Open Source License. We first developed this patch
on Linux and later shifted towards FreeBSD, because the FreeBSD project
announced to move from GCC to LLVM as its default compiler.

3. Ewaluation of SCADS (Sect.4): Based on the practical implementation of
SCADS, we present an evaluation of our approach regarding its security, per-
formance and compatibility. In comparison to other compiler-level extensions,
especially StackGuard, we present improved performance results. However, we
also point to some compatibility issues of SCADS running on current FreeBSD
and Linux hosts.

326 C. Kugler and T. Miiller

2 Design Concepts of SCADS

One of our design goals for SCADS was the creation of a protection mechanism
that modifies the compiling and linking process of a software package without
the need to change underlying operating system or hardware level components.
Consequently, allocating and handling the second stack must be designed in a
way that is compatible with current system environments. From the beginning of
the design phase, we focused on the AMDG64 architecture running UNIX systems
like Linux and FreeBSD as a target platform.

2.1 Separating Control Flow Information from Data

As illustrated in Fig.1, SCADS is based on the idea of separating information
placed on a single call stack into two entities: control information and data.
Control information is placed on the Control-Stack (CS), while data is placed on
the Data-Stack (DS). We classify return addresses and frame pointers as control
information and everything else as data, especially parameters, local variables,
and buffers of any data type. Due to this separation, buffer errors cannot be
directly exploited to overwrite return addresses, and so it becomes hard for an
attacker to redirect a program’s control flow via the manipulation of data entries.

Fmmmmmmmmmmmamaeaoans o RIP #1
! parameters : : SFP #1 :
! RIP #1 : : RIP #2 :
' SFP #1 ! : SEP #2 :
' saved data registers ! R
' local variables and buffers : lalalelalululeiaiululuieiuiuioloiuiuiuiaiuluiuiaiv
1 parameters 1 1 parameters 1
' RIP #2 ' ' saved data registers '
: SEP #2 " ' local variables and buffers ;
: saved data registers ' : parameters :
: local variables and buffers : : saved data registers '
Iemmmmmmmmmmmmmm e ! : local variables and buffers '

1

(a) Single call stack. (b) Separated CS and DS.

Fig. 1. Frames of a single call stack in comparison to separated frames in SCADS. The
CS stores Return Instruction Pointers (RIPs) and Saved Frame Pointers (SEFPs).

Note that, although many buffer overflow vulnerabilities are thwarted with
SCADS, it is impossible to protect the control flow of all imaginable C programs.
The principle of separating control flow information from data is stretched to its
limits when it comes to function pointers. Should we classify function pointers
as control information or as regular data? How do we handle buffers of function
pointers, or even more complex data structures that involve function pointers?

SCADS: Separated Control- and Data-Stacks 327

The laconic answer is that we classify function pointers as data. The reason
is that C is not a type safe language when a programmer uses explicit casts.
Untyped function pointers can be casted to and from any data type, or even
be computed at runtime, such that it is impossible to reliably cover all function
pointers at compile time.

Hence, as it is impossible to cover additional control elements that are ezplic-
itly introduced by the programmer, we decided to position SCADS as a protection
mechanism for control elements that are implicitly introduced by the compiler,
i.e., return addresses and frame pointers. The use of explicit function pointers in
C is rare, at least compared to the number of implicit return addresses, and so
we leave it to the programmer to protect information that is deliberately intro-
duced. Due to this “imperfection”, we designed SCADS in a way that is com-
patible with established protections like ASLR and NX. In this sense, SCADS
is not a replacement for ASLR or NX, but an additional protection mechanism
to thwart the root of many of today’s ROP exploits.

2.2 Stack Alignments in the Virtual Address Space

Inside the virtual address space of an AMDG64 process, there are approximately
128 terabytes of free space between the call stack and the heap of a process. We
make use of this area to place the second stack, which arises from splitting the
common call stack into a CS and a DS, as illustrated in Fig. 2.

high low
CS — DS — <— HEAP DATA | TEXT
TTTEEEE .
CSP DBP DSP

Fig. 2. Virtual address space layout of a user mode process compiled with SCADS.

The position of the CS corresponds to the old unified stack, whereas the DS
is moved to a new position in the area between the CS and the heap. Besides its
position, the CS closely corresponds to the old stack because x86 instructions
like CALL and RET implicitly operate on the stack which is referred by the RSP
register. For the DS, on the other hand, we can use arbitrary CPU registers as
stack and base pointers, as we explain in Sect. 2.4.

From this perspective, the CS is the old stack while the DS is a new stack,
and all data (apart from return addresses and frame pointers) are moved from
the CS to the newly created DS. In practice, the CS, which stores only two
elements per subroutine call, is smaller than the DS, which stores all remaining

328 C. Kugler and T. Miiller

elements. An exception constitute highly recursive subroutine calls that create
only little or no local variables on the DS.

Collisions and interferences of the DS with the CS and the heap are excluded
for several reasons. First, the stack size in modern OS is limited to several
megabytes. For example, the default stack limit in Linux is eight megabytes, and
this limit is applied to both the CS and the DS. Second, the virtual address space
between the CS and the heap spans about 128 terabytes in 64-bit processes. And
third, the empty address space between the stacks and the heap is not mapped
into a running process. If an attacker tries to overwrite buffers in the DS with
gigabytes of data, in order to hit control flow information in the CS, the process
crashes with an access violation error for unmapped memory pages.

To support the compatibility of SCADS with the principles of ASLR, we
let the OS choose a random base address for the CS and additionally compute
a random offset between the CS and the DS at load time. As a consequence,
the relative position of return addresses is not predictable for an attacker, such
that exploits are thwarted that write to arbitrary memory locations, e.g., due
to an uncontrolled format string [20]. We have chosen to randomly select the
least-significant 24 bits of the DS base address, as we explain in Sect. 3.2 in
detail.

2.3 Stack Growth Direction

Talking about stacks, a typical design question is the direction to which a stack
grows, i.e., upwards or downwards. Traditionally, stacks grow downward in the
x86 architecture because back in the days of 16-bit CPUs, the address space
was very limited and having the heap growing upward, while the stack grows
downward, gave the programmer most flexibility. If both the stack and the heap
were growing in the same direction, generally less memory could be used before a
collision. However, on modern 64-bit systems, collisions are not an issue anymore
and therefore, we revisit the decision to let stacks grow downward.

As illustrated in Fig. 2, we have chosen to maintain the growth direction for
both stacks to be downwards, basically due to engineering constraints from the
hardware and the OS. Since CPU instructions like CALL and PUSH reduce the
RSP register, and instructions like RET and POP increase the RSP register, it seems
reasonable to let the CS grow downward to benefit from these x86 instructions.

For the DS, on the other hand, we originally considered to reverse the
growth direction to be upwards. This might involve a minor improvement against
exploits, because if a stack is growing down, a buffer error can overwrite all older
stack elements, whereas if a stack is growing up, a buffer error can only over-
write new stack elements. Assuming that generally more older stack elements
exist around a vulnerable buffer than new ones, reversing the growth direction
of the DS limits the damage caused by a buffer error. However, this is not an
effective protection mechanism on its own, and we eventually chose the DS to be
growing downward due to OS constraints. In Linux, the mmap syscall offers an
option, called MAP_GROWSDOWN, to allocate downward growing stacks, but none
to allocate upward growing stacks. As patching the OS kernel was not an option

SCADS: Separated Control- and Data-Stacks 329

for our design, and since handling an automatically growing stack inside the
user mode induces notable performance overhead, we eventually chose the DS
to grow downward.

2.4 Stack- and Base-Pointer Registers

Each stack must be managed by a separate stack pointer, such that two CPU
registers are occupied as stack pointers in SCADS. We refer to these pointers
as CSP for the CS and DSP for the DS, as illustrated in Fig.2. By design, the
AMDG64 architecture provides only a single stack pointer, namely RSP, and in
addition to it a base pointer, namely RBP. As stated above, we are forced to
assign RSP to CSP because instructions like CALL and RET implicitly operate on
the stack which is referred by RSP. However, there is no need to keep track of
a base pointer for the CS because the frame size of the CS is always constant.
Exactly two pointers, namely the RIP and the SFP, are stored per CS frame
as illustrated in Fig. 1. Hence, the RBP register becomes expendable for the CS,
and since x86 instructions like CALL and RET never change RBP implicitly, we can
freely re-assign it for other purposes. We decided to assign RBP to DSP, meaning
that RBP does not serve as a base pointer anymore but as a stack pointer for
the DS.

If Frame Pointer Omission (FPO) is set, which is a default compiler opti-
mization by LLVM to omit the need for base pointers, DBP is not required. In
that case, using RSP as CSP and RBP as DSP is sufficient for the design of SCADS
and no extra registers must be occupied. However, if FPO is not set, or cannot
be used, we assign R15 to DBP, i.e., we misuse the last general purpose register
of AMD64 as base pointer for the DS. Due to the high number of available GPRs
in AMD64, the occupation of R15 does not really affect the runtime performance
of a compiled program. To the contrary, today’s compilers like GCC and LLVM
leave registers like R14 and R15 largely unused in order to maintain a common
code base with IA-32.

However, there is another problem with our design: We cannot use the x86
instructions PUSH and POP to store regular data on the DS, like parameters for
function calls, since PUSH and POP implicitly refer to the RSP, which points to the
CS. As we want to store parameters on the DS, and not on the CS, PUSH must
be transformed into a SUB/MOV sequence as illustrated in Listing 2. Likewise, POP
must be transformed into a MOV/ADD sequence, as also illustrated in Listing 2.

Note that the performance penalty arising from these instruction sequences
is minimal, if present at all, because compilers like GCC and LLVM rarely use
the PUSH instruction today. To the contrary, they deploy a single SUB instruction
followed by a sequence of MOV instructions to store multiple parameters efficiently
on the stack. The same holds true for a sequence of POP instructions, which
is often replaced by a more efficient ADD instruction. Only frame pointers are
frequently stored and restored with PUSH/POP during function epilogues and
prologues. Frame pointers, however, are stored on the CS and can therefore
benefit from PUSH and POP without restrictions.

330 C. Kugler and T. Miiller

Listing 1. Push and pop instructions Listing 2. Push and pop instructions
on the Control-Stack. on the Data-Stack.
// push instruction // push simulation
push %rbx sub 8, %rbp
mov %rbx, (%rbp)
// pop instruction // pop simulation
pop hrbx mov (%rbp), %rbx
add 8, %rbp

3 Implementation of SCADS

We implemented SCADS, based on the design concepts that were outlined in the
last section, in practice as a compiler-level patch for the LLVM infrastructure.
This patch is publicly available on our webpage, licensed under an NCSA Open
Source License which is similar to BSD and MIT licenses (and typically used
for code in the LLVM project). In the following, we address selected points of
our implementation; please refer to the LLVM patch itself for a comprehensive
technical description.

The patch comprises 14 files that were either extended or newly added to
the LLVM project. We focused on x86-64 as LLVM back end for the AMDG64
architecture and on Clang as an LLVM front end for C. As it turned out, it is
possible to implement SCADS solely in the back end of the LLVM infrastructure,
and therefore we basically support other front ends, like DragonEgg, too. We
were also able to compile other programming languages, like C++ and Objective-
C, with SCADS (although this requires further testing).

The majority of patches were applied to files that are specific for the x86-
64 architecture. For example, the file X86FrameLowering.cpp, which handles
the creation and removal of stack frames as it defines function prologues and
epilogues, involves a major part of the SCADS implementation. Particularly,
the methods emitPrologue and emitEpilogue are modified within our patch
in a way that they redirect control information and data to either the CS or
the DS. Although we had to make several changes to core files of the compiler
infrastructure, we implemented SCADS in a way that LLVM remains fully back-
ward compatible. To this end, we introduced the following new compiler flags
that handle the usage of SCADS in the back end:

-num-stacks [number of stacks]
-enable-legacy-callback-compat
—-enable-legacy-stack-alignment

The flag -num-stacks is the flag that essentially turns SCADS on or off
by defining the number of stacks that are used in the runtime environment.
This number is currently restricted to “1” (SCADS disabled) or “2” (SCADS
enabled), but might be extended in future, e.g., to store explicitly defined func-
tion pointers, as discussed in Sect.2.1, on a third stack. The latter two flags
enable compatibility modes that we had to implement to deal with subroutine
calls into legacy code.

SCADS: Separated Control- and Data-Stacks 331

3.1 The Control-Stack

The CS replaces the plain old call stack of user mode programs and is automati-
cally allocated by the OS at load time. That is, it is not necessary to allocate the
CS manually from within SCADS and the CS base address is directly affected by
the kernel implementation of ASLR. As aforementioned, by using RSP as stack
pointer, the maintenance of return addresses is inherently implemented by CALL
and RET without modifications. Additionally, the PUSH and POP instructions can
be used to store frame pointers on the CS, in contrast to data on the DS.

Note that frame pointers are often omitted in LLVM due to the exten-
sive use of FPO as a default compiler optimization. If no frame pointers are
saved on the CS, we store only an 8-byte return address per stack frame, unless
-enable-legacy-stack-alignment is set. If this flag is set, the return address is
followed by an 8-byte dummy value, i.e., regardless of whether FPO is enabled or
not, we then store 16-byte stack frames on the CS. The reason are compatibility
issues with calls into legacy libraries that require stack frames to be aligned to
16-byte boundaries. Additionally, some machine instructions may operate more
performant on 16-byte aligned stack frames.

3.2 The Data-Stack

Unlike the CS, the DS must be allocated and handled explicitly by SCADS with
further modifications in the build and linking process. To store regular data on
the DS at runtime, the DS must first be allocated (before the main function is
invoked) and then subsequent access to local variables, parameters, and buffers
can be redirected to the DS.

In terms of memory efficiency and performance, an important requirement
for the DS is to grow automatically just as the CS. To implement an automat-
ically growing stack, kernel support is preferable such that erroneous access to
an unmapped page below the stack pointer yields the allocation of that page.
On UNIX based operating systems, the system call mmap usually provides this
possibility: In Linux, the flag MAP_GROWSDOWN can be passed on to mmap to allo-
cate growing stacks, whereas MAP_STACK can be passed on in FreeBSD for that
purpose. Note that stacks are generally not shrinking automatically, neither with
SCADS nor on common computer systems. If a growing stack hits the system-
wide stack limit, e.g., due to recursion with large stack-based buffers, the stack
stays this size until the process is quit. There is no concept for automatic stack
deallocation in modern operating systems.

The code we execute in LLVM to allocate the DS under Linux is illustrated in
Listing 3. As a result of this allocation, we receive an anonymous, non-executable
memory section between the CS and the heap with the initial size of one page,
including read- and write-privileges. The MAP_GROWSDOWN flag allows the DS to
grow in size on a per-page basis, managed by the kernel just like the CS. If
the reallocation encompasses more than one page at once, e.g., due to buffers
greater than 4096 bytes, the reallocation step must be split up into single pages
at compiler-level.

332 C. Kugler and T. Miiller

Listing 3. Allocation of the DS by means of the system call mmap under Linux.

int control_stack_address = 0;

void *data_stack_address = (voidx) (((long
long)&control_stack_address) - ((long long)DATA_STACK_OFFSET));

const int MMAP_PROT = PROT_READ | PROT_WRITE;

const int MMAP_FLAGS = MAP_PRIVATE | MAP_ANONYMOUS | MAP_GROWSDOWN;

const int INITIAL_STACK_SIZE = PAGE_SIZE;

const int fd = -1;

const int offset = 0;

void *data_stack_ptr = invoke_mmap_syscall(data_stack_address,
INITIAL_STACK_SIZE, MMAP_PROT, MMAP_FLAGS, fd, offset);

As the DS is bound to a memory section which is not allocated automatically
by the kernel at load time, ASLR has no influence on the positioning of the DS
base address. As a consequence, although ASLR is enabled, the offset between
the CS and the DS would remain constant without further modifications on
the compiler or linker level. An attacker could in some scenarios misuse this
information to write into the CS, and to eventually modify the control flow.
Therefore, we preset the base address of the DS to lie 8 x StackSizeLimit below
the CS, where StackSizeLimit is usually 8 MB, and then randomize the 24
least-significant bits of the base address, as shown in Eqgs. 1 and 2:

Baseps static = Basecs + 8 * StackSizeLimit (1)
Baseps, finai = Baseps, static + RandomEntropy € [—223, 2% _ 1] (2)

This computation prevents the DS from overlapping with the CS, as well as
from lying immediately below the CS, because with a StackSizeLimit of 8 MB,
Eq. (1) leads to a static base address of the DS which is 64 MB below the CS.
By randomizing the least-significant 24 bits of that address in Eq. (2), the DS is
relocated to at most 48 MB below the CS. Basically, the randomization can be
improved by selecting more than 24 bits randomly in future, but then further
load time checks would be required to ensure that the DS does not collide with
memory sections allocated by the runtime linker for dynamically linked libraries.
By randomizing only the least-significant 24 bits, this circumstance is ruled out
on 64-bit systems. Additionally, we have to align the DS to 16-byte boundaries,
such that only 20 bits of the DS address space are effectively randomized. This
might raise the question whether brute force attacks on the address space layout
can successfully be thwarted. For 32-bit processes, however, the kernel imple-
mentation of ASLR randomizes exactly 20 bits of stack addresses, as well, and
that turned out to be sufficient in many scenarios.

3.3 Build and Linking Process

As outlined in the last section, the DS is not automatically created by the OS
at load time but must be allocated by a process on its own at an early stage
of its runtime. One possibility to achieve this is to hard-code the initialization

SCADS: Separated Control- and Data-Stacks 333

phase of SCADS into the LLVM compiler such that the DS allocation is placed
into each program before the main function is invoked. However, we decided
not to integrate the initialization phase of SCADS into the compiler, as it does
not fall in the area of responsibility of a compiler but of a linker. Therefore, we
encapsulated the initialization phase as a separate object file that is bound to a
program at link time.

Listing 4. Command line for the build and linking process of SCADS.

clang -emit-1llvm -S -o <intermediate_name> <source_name>
1lc -march=x86-64 -num-stacks=2 -o <asm_name> <intermediate_name>
clang -Xlinker --wrap=main -o <binary_name> <asm_name> init_module.o

In Listing 4, an exemplary command line is shown that builds and links
a binary with SCADS. The initialization module init module.o comprises a
function called __wrap main. By passing the flags -Xlinker --wrap=main to
the LLVM linker, every call to the main function is replaced with a call to the
function __wrap_main. To invoke the original entry point, __wrap main calls the
main function after the initialization phase is finished. For the future, we plan
to patch the LLVM linker in a way that it automatically binds the initialization
module to binaries, i.e., without the need to manually pass on all configuration
parameters of SCADS.

Note that when __wrap_main is entered, the runtime environment consists of
only a single stack that was allocated by the OS. The command line arguments
of a program, i.e., the argc and argv parameters for main, are therefore initially
written to the single stack rather than the DS. As a consequence, the argc and
argv parameters must be migrated to the DS during the initialization phase,
because we classify all command-line arguments and parameters as regular data.
Hence, after the allocation of the DS is finished, the command-line arguments
are migrated to the DS and finally the argc variable and the argv pointer are
restored to the registers EDI and RSI to comply with the System V AMDG64
calling convention [21] for main.

4 Evaluation of SCADS

We now present an evaluation of SCADS regarding its security (Sect.4.1), its
performance and efficiency (Sect. 4.2), and finally its compatibility (Sect.4.3).

4.1 Security

Classic binary exploits that write beyond the boundaries of a buffer to manipu-
late the return address are predestinated to fail with SCADS, because buffers are
located on the DS while return addresses are located on the CS. Consequently,
instead of modifying return addresses, buffer errors can only corrupt regular data
on the DS until they reach the unallocated area between the DS and CS, which
leads a program to terminate.

334 C. Kugler and T. Miiller

Although this explains SCADS’ immunity against the most simple type of
buffer overflow exploits, the task of giving a more substantial line of reasoning
for the security of SCADS is difficult. We do not seek to verify the security
of SCADS in a formal manner, but focus on known exploitation techniques and
compare the security of SCADS with that of other protection mechanisms. Recall
that SCADS was not designed as a stand-alone protection mechanism but to
collaborate with established OS- and hardware-level protections like ASLR and
NX. The motivation to deploy SCADS in addition to ASLR and NX is mainly
the known exploitation technique of Return-Oriented Programming (ROP) which
often defeats ASLR and NX in practice today.

Contrary to ASLR and NX, the StackGuard protection is competing with
SCADS, not only because it is a compiler-level extensions, but also because it
is largely incompatible with SCADS. While StackGuard and SCADS can be
combined with ASLR and NX, a combination of both techniques seems rather
pointless. Either a canary is placed in front of a return address (StackGuard), or
the return address is moved to a separated stack (SCADS), but combining both
measures does not add much security.

To understand the security benefit of SCADS, recall that SCADS is the
first protection mechanism that prevents return addresses from being overwrit-
ten. Previous solutions either complicate the launching of shellcode (ASLR and
NX) or verify the integrity of a return address after it has been overwritten
(StackGuard). As indicated in Sect. 2.1, SCADS protects implicit control flow
information, particularly return addresses and frame pointers, but no function
pointers that were explicitly introduced by the programmer. Comparing this
“weakness” of SCADS with StackGuard, however, StackGuard does not place
a canary in front of each function pointer either. Hence, also with StackGuard,
only implicit control information is protected.

In our experiments, we were able to produce examples for both scenarios: C
programs that can be exploited in spite of StackGuard but not with SCADS,
and the other way round. For example, SCADS can be more secure than Stack-
Guard with respect to vulnerabilities that give an attacker random write access
to relative stack addresses. There are many exploits in combination with such
vulnerabilities, which are also entitled as indirect pointer overwrites [22]. On the
other hand, StackGuard can be more secure than SCADS when explicit function
pointers get overwritten which are lying in older stack frames than the vulnera-
ble buffer. With SCADS, the control flow could be redirected to point to another
predefined function, whereas with StackGuard, the canary of the current stack
frame would be violated, leading to a termination of the program.

The strength of SCADS is that it prevents exploits relying on a chain of ROP
gadgets placed at the top of the stack which is referred by RSP. With SCADS, it
is not easily possible to place a chain of ROP gadgets near to the RSP, but only
near to the RBP, i.e., on the DS. The RSP is implicitly used by RET instructions
and hence, the position of the RSP is one of the essential parts of ROP exploits.
To bypass this obstacle, an attacker would have to redirect the RSP to the DS,

SCADS: Separated Control- and Data-Stacks 335

or any other data page that holds user input, in a controlled manner. This is,
however, assumed to be difficult for practical vulnerabilities.

4.2 Performance and Memory Efficiency

As seen in the last section, the security of SCADS is on par with that of Stack-
Guard. The advantages of SCADS in comparison to StackGuard only turn out
when it comes to performance. We can say that the performance overhead of
SCADS is mainly static, due to the extended initialization phase, while Stack-
Guard shows a dynamic runtime overhead, due to extended function epilogues.
More precisely, StackGuard involves extra operations to verify the integrity of
a canary at the end of each subroutine call, while SCADS involves a constant
number of additional operations during its initialization phase.

In the following, we present detailed performance results for a recursive imple-
mentation of the Fibonacci sequence. The Fibonacci programs, which are similar
to the implementations in Listing 5 and 6 in the appendix, were compiled with
four different compiler settings: Clang, Clang/SCADS, GCC, and GCC/Stack-
Guard, each with FPO enabled. An analysis of the number of assembler instruc-
tions yields that both Clang and GCC generate 24 instructions per recursive
subroutine call. Interestingly, the Clang/SCADS configuration generates exactly
24 instructions, too, whereas the GCC/StackGuard configuration generates 30
instructions. In other words, the number of instructions that are executed per

subroutine call increases by 20 % for Fibonacci when comparing StackGuard and
SCADS.

135000 T T
Clang —+— y
130000 Clang (SCADS) /]
GCC —¥—
125000 GCC (StackGuard) —=/ |
120000
%]
5
£ 115000 -
2
@ 110000
k=
* 105000
100000

2 4 6 8 10 12 14

x for evaluation of fib(x)

Fig. 3. Number of instructions for the recursive computation of a Fibonacci number.

336 C. Kugler and T. Miiller

This effect is illustrated in Fig. 3, showing the overall number of executed
instructions per Fibonacci number. As we expected, SCADS initially executes
more instructions than the other variants because of the initial allocation of
the DS. Later on, approximately at the tenth Fibonacci number, the impact of
StackGuard’s canary management outruns SCADS in terms of executed machine
instructions. From there on, the slope of the StackGuard curve rises significantly
faster in comparison to the SCADS curve, which stays close to the plain GCC
and Clang curves.

Of course, the number of executed instructions is closely related to the exe-
cution time of a program, as shown in Fig. 4. It can also be seen that the Stack-
Guard curve departs significantly from the curves that represent SCADS, GCC
and Clang. For the 52nd Fibonacci number, for example, the program compiled
with StackGuard is up to 80s slower than the other variants. In contrast to this,
the static overhead caused by the initialization phase of SCADS is not visible
in Fig.4 as it lies in the range of microseconds (that cannot even be measured
reliably due to noise issues).

350 T T
Clang —+— [}l
Clang (SCADS)
300 - GCC —*—/ 1
GCC (StackGuard) —+/
250
%]
©
C
S 200 -
(O]
)]
k=
o 150 |
£
100
50
0 — =4
40 42

x for evaluation of fib(x)

Fig. 4. Execution times of a program that computes the Fibonacci sequence recursively.

With respect to memory efficiency, StackGuard adds an additional canary to
each stack frame, whereas SCADS does not add extra values on the CS or DS.
However, talking about memory efficiency we must differentiate between allo-
cated memory and actually used memory. As both the CS and the DS are initially
allocated with the size of one page, SCADS “wastes” at most one page compared
to StackGuard.

SCADS: Separated Control- and Data-Stacks 337

4.3 Compatibility

Another important topic that must be discussed when talking about a new pro-
tection measure is its compatibility to legacy code. First of all, software packages
must be recompiled to gain security from SCADS, and inline assembly state-
ments must possibly be adapted manually, especially if they make use of the
stack or base pointer. However, StackGuard suffers from the exactly same limi-
tations, i.e., StackGuard also requires the recompilation of software packages and
is not fully compatible with all inline assembly statements. For both SCADS and
StackGuard, functions that were written entirely in assembly language cannot
be protected by an automated recompilation.

It is not unlikely that solutions like StackGuard and StackShield were favored
over the separation of control flow information from data due to compatibility
concerns in the past. As modern software generally has a high amount of depen-
dencies on various libraries, which are possibly closed source, it is a desirable
property for a compiler extension to preserve binary compatibility with existing
code.

The compatibility with existing binary code was one of the most critical chal-
lenges during the development phase of SCADS. Basically, we focused on three
types of incompatibilities: First, SCADS was incompatible to legacy functions
that require a 16-byte alignment of the CS. We solved this issue by introducing
the Clang flag -enable-legacy-stack-alignment that aligns the CS to a 16-
byte boundary. Second, SCADS was incompatible to legacy functions that take
a SCADS function as a call-back parameter. We solved this issue by introduc-
ing the Clang flag —enable-legacy-callback-compat that stores a backup of
the RBP before SCADS functions are called from legacy code. When a SCADS
function returns, the RBP is recovered and then the legacy function can proceed.

Table 1. The System V AMD64 ABI in comparison to the SCADS calling convention.
If FPO is used, parameters are referenced by RSP and RBP rather than RBP and R15.

AMDG6/4 RDI RSI|RDX|RCX|R8|R9 | RBP+16 | RBP+24
SCADS RDI RSI|RDX|RCX|R8 R9| R15 R15+8

Third, SCADS is not compatible with legacy functions that take more than
six parameters, because the new memory layout and register occupation of
SCADS alters the calling convention. Legacy functions which are consistent with
the System V AMDG64 ABI [21] store the first six parameters in registers, and
all remaining parameters are placed onto the stack and referenced by the base
pointer RBP, as shown in Table 1. But within the runtime environment of SCADS,
RBP is not a base pointer but a stack pointer to the DS and parameters are ref-
erenced by R15, as shown in Table 1. This causes the offsets of parameters to be
different in SCADS and legacy code and eventually results in undefined behavior
of combined programs.

338 C. Kugler and T. Miiller

This restriction can be counteracted in several ways. First of all, functions
with more than six parameters are rarely used in C and for the remaining func-
tions, wrapper functions can be implemented. To this end, we could loosen the
security definition of SCADS and pass on parameters to legacy code via the
CS rather than the DS. Another way is to provide as many libraries natively in
SCADS as possible. We successfully compiled the entire BSD LibC with SCADS
under FreeBSD and plan to port other libraries soon. Note that this is a practi-
cal way under FreeBSD but not under Linux, because FreeBSD is moving from
GCC to LLVM as its default compiler, such that FreeBSD packages can eas-
ily be recompiled with LLVM/Clang. Under Linux, however, most packages are
written in a GCC-specific C dialect that fails to compile with LLVM/Clang.

5 Conclusions and Future Work

Buffer overflows are binary vulnerabilities, which are caused by missing range
checks on buffer boundaries, and are still an inherent problem of widely used pro-
gramming languages like C. In the recent past, exploitation techniques like ROP
have impressively shown that OS- and hardware-level protections like ASLR and
NX are often insufficient and must be combined with further protections. In this
paper, we have presented SCADS (Separated Control- and Data-Stacks), which
introduces the separation of regular data from implicit control flow data on two
stacks. Return addresses and frame pointers are stored on the Control-Stack
(CS), while regular data, including buffers, are stored on the Data-Stack (DS).

In comparison to other compiler-level extensions, especially StackGuard,
SCADS shows effectively no runtime overhead but introduces only a short ini-
tialization phase. Both SCADS and StackGuard protect return addresses as well
as saved frame pointers without support from the OS or hardware, but require C
programs to be recompiled to benefit from this protection. The level of security
reached by SCADS is on par with that of StackGuard. The most severe limi-
tation of SCADS is currently its compatibility to legacy code libraries. As we
changed the AMDG64 calling conventions from the seventh parameter onwards,
legacy functions with more than six parameters cannot be called. This could
be solved either by passing parameters on the CS rather than the DS, or by
recompiling an entire UNIX distribution like FreeBSD with SCADS.

Today, SCADS is compatible with the latest x86 architecture, namely
AMDG64, as well as UNIX based OSes like Linux and FreeBSD. However, support
from the OS- and hardware-level could assist the approach of SCADS in future,
e.g., by letting the OS loader automatically allocate two stacks per process at
load time, possibly growing downward. Furthermore, any store to and retrieval
from the DS is currently implemented by SUB/MOV and MOV/ADD, because using
PUSH/POP results in an access to the CS. Although this does not involve a perfor-
mance drawback with today’s compilers, future hardware could be extended to
support a second stack natively, e.g., by a second RSP with dedicated PUSH/POP
instructions.

SCADS: Separated Control- and Data-Stacks

A Appendix

Listing 5. Recursive Fibonacci com-
piled with plain Clang (FPO disabled).

339

Listing 6. Fibonacci implementation

compiled with SCADS (FPO disabled).

<fib>: <fib>:
0: push Yrbp 0: push Y%rib
1: mov %rsp,’%rbp 2: mov %rbp,%rib
4: sub $0x20, %rsp 5: sub $0x20,%rbp
8: mov %edi,-Oxc(%rbp) 9: mov %edi,-0x14(%r15)
b: cmpl $0x0,-0xc(%rbp) d: cmpl $0x0,-0x14(%r15)
f: Jjne <fib+0x1b> 12: jne <fib+0x1le>
11: movq $0x0,-0x8(%rbp) 14: movq $0x0,-0x10(%r15)
19: jmp <fib+0x52> lc: jmp <fib+0x58>
1b: cmpl $0x1,-0xc(%rbp) le: cmpl $0x1,-0x14(%r15)
1f: jne <fib+0x2b> 23: jne <fib+0x2f>
21: movqg $0x1,-0x8(%rbp) 25: movqg $0x1,-0x10(%r15)
29: jmp <fib+0x52> 2d: jmp <fib+0x58>
2b: mov -0xc (%rbp) ,%heax 2f: mov -0x14 (%r15) ,%eax
2e: sub $0x1, %eax 33: sub $0x1, %eax
31: mov %heax,hedi 36: mov Yeax,hedi
33: callq <fib> 38: callg <fib>
38: mov -0xc (%rbp) ,hedi 3d: mov -0x14 (%r15) ,%edi
3b: sub $0x2,%edi 41: sub $0x2, hedi
3e: mov Yrax,-0x18(Y%rbp) 44: mov Y%rax,-0x20(%r15)
42: callq <fib> 48: callqg <fib>
47: mov -0x18(%rbp) , hrex 4d: mov -0x20(%r15) ,%rcx
4b: add Yrax,hrcx 51: add Yrax,hrcx
4e: mov %rcx,-0x8 (%rbp) 54: mov Y%rcx,-0x10(%r15)
52: mov -0x8(%rbp) ,%rax 58: mov -0x10(%r15) ,%rax
56: add $0x20,%rsp 5c: add $0x20,%rbp
ba: pop %rbp 60: pop %rib
5b: retq 62: retq
References
1. TIOBE Software.: TIOBE Programming Community Index, December 2013.

http://www.tiobe.com/index.php/content /paperinfo/tpci/index.html

Aleph One.: Smashing the Stack for Fun and Profit. Phrack Magazine (1996)

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls on the x86. In: Proceedings of the 14th ACM Conference on Com-
puter and Communications Security (CCS), Alexandria, VA, US, pp. 552-561.
University of California, ACM Press. San Diego, October 2007
National Cyber Security Division.: National Vulnerability Database: Automation
of Vulnerability Management, December 2013. http://nvd.nist.gov/
Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A.,
Wagle, P., Zhang, Q.: StackGuard: automatic adaptive detection and prevention of
buffer-overflow attacks. In: Proceedings of the 7th USENIX Security Symposium
(USENIX 1998), San Antonio, Texas, US. Oregon Graduate Institute of Science
and Technology, January 1998

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://nvd.nist.gov/

340

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Kugler and T. Miiller

StackShield: A Stack Smashing Technique Protection Tool for Linux, January 2000
Saravanan, S., Qin, Z., Wong, W.-F.: Protection against Malicious Return Address
Modifications, Transparent Runtime Shadow Stack (2008)

Bulba Kil3r.: Bypassing StackGuard and StackShield. Phrack Magazine, May 2000
Richarte, G.: Four Different Tricks to Bypass StackShield and StackGuard Protec-
tion. Technical report, Core Security Technologies (2002)

Silberman, P., Johnson, R.: A comparison of buffer overflow prevention implemen-
tations and weaknesses. In: Black Hat Briefings, Las Vegas (2004)

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, pp. 298-307.
ACM, New York (2004)

Tyler Durden. Bypassing PaX ASLR protection. Phrack Magazine, July 2002
Miiller, T, Piminedis, L.: ASLR smack & laugh reference. In: Seminar on Advanced
Exploitation Techniques. RWTH Aachen University, Germany (2008)

Hund, R., Willems, C., Holz, T.: Space, practical timing side channel attacks
against kernel, ASLR. In: IEEE Symposium on Security and Privacy, for IT Secu-
rity. San Francisco, California: Horst-Goertz Institute. Ruhr-University Bochum,
IEEE Computer Society (2013)

Buchanan, E., Roemer, R., Savage, S.: Return-oriented programming: exploits
without code injection. In: Black Hat USA Briefings 2008, Las Vegas, NV, US.
University of California, San Diego, July 2008

Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to RISC. In: Proceedings of the
15th ACM Conference on Computer and Communications Security (CCS), pp.
27-38, Alexandria, VA, US. University of San Diego, October 2008

Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS), pp. 559—
572. ACM, Chicago, October 2010

Schwartz, E., Avgerinos, T., Brumley, D.: Q: exploit hardening made easy. In: Pro-
ceedings of the 20th USENIX Security Symposium (USENIX 2011), San Francisco,
CA. Carnegie Mellon University, Pittsburgh, August 2011

Roemer, R., Buchanan, E., Shacham, H., Savage, S.: Return-oriented program-
ming: systems, languages, and applications. ACM Trans. Inf. Syst. Secur.(TISSEC)
15(1), 2:1-2:34 (2012)

Team Teso Scut.: Exploiting Format String Vulnerabilities. http://crypto.stanford.
edu/cs155/papers/formatstring-1.2.pdf, September 2001

System V Application Binary Interface - AMD64 Architecture Processor Supple-
ment. www.86--64.org/documentation/abi.pdf, October 2013

Younan, Y., Joosen, W., Piessens, F.: Code Injection in C and C++: A Survey
of Vulnerabilities and Countermeasures. Technical report, Katholieke Universiteit
Leuven, Department of Computer Science, Belgium, July 2004

http://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
http://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
www.86--64.org/documentation/abi.pdf

	SCADS
	1 Introduction
	1.1 Related Work: State-of-the-Art Buffer Overflow Protection
	1.2 Contribution: Separated Control- and Data-Stacks

	2 Design Concepts of SCADS
	2.1 Separating Control Flow Information from Data
	2.2 Stack Alignments in the Virtual Address Space
	2.3 Stack Growth Direction
	2.4 Stack- and Base-Pointer Registers

	3 Implementation of SCADS
	3.1 The Control-Stack
	3.2 The Data-Stack
	3.3 Build and Linking Process

	4 Evaluation of SCADS
	4.1 Security
	4.2 Performance and Memory Efficiency
	4.3 Compatibility

	5 Conclusions and Future Work
	A Appendix
	References

