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Abstract. Byzantine fault tolerant (BFT) protocols enhance system
safety and availability in asynchronous networks, despite the arbitrary
faults at both servers and clients. A practical BFT system should be effi-
cient in both contention-free and contending cases, and fault scalable (i.e.,
efficiently tolerating the increasing number of server faults). However, few
existing BFT systems completely satisfy this robustness requirement of
efficiency. In this paper, we propose EFS, the first BFT solution that
provides good efficiency and fault-scalability, in various cases (i.e. faulty
or not, contending or not). EFS is a hybrid BFT system consisting of an
efficient and fault scalable quorum protocol for the contention-free case
and a fast agreement protocol to resolve contention in a fault-scalable
manner. More importantly, its server-directed mode switch does not rely
on digital signature nor introduce any extra communication overhead.
This lightweight switch counters the vulnerability in the existing hybrid
BFT systems, where faulty clients can simply send contending requests
to degrade the performance significantly. The experiment results on the
EFS prototype demonstrate robust fault tolerance.

Keywords: Byzantine fault tolerance · Efficiency · Robustness · Fault-
scalability

1 Introduction

Distributed services often encounter arbitrary failures (a.k.a. Byzantine failures)
that are typically caused by software bugs, dynamic network delays, malicious
actions of compromised nodes, etc. It is desirable that applications, especially
the ones with high security requirements, are able to tolerate such Byzantine
failures.
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Many Byzantine fault tolerant (BFT) systems [1–6] have been proposed to
provide reliable services using state machine replication (SMR) [7,8] – replicate
the service on n servers starting from the same state and executing the same
deterministic operations requested by clients. A certain number of servers (e.g.,
n = 3f + 1 in PBFT [1] or 5f + 1 in Q/U [2]) cooperate to mask the negative
impact of up to f Byzantine faulty servers. BFT systems shall guarantee safety
and liveness in the presence of faulty servers and clients. For safety, non-faulty
servers are expected to execute the requested operations in the same order.
Liveness requires that a client can eventually receive a correct response through
repeated requests with bounded message delays.

For practical BFT services, efficiency is another important consideration.
BFT systems shall be efficient under the following typical scenarios [1,2,4,9].

– Efficiency without fault or contention. Although servers should agree on the
execution order of concurrent operations in the presence of Byzantine failures,
a BFT system usually runs efficiently for sequential requests without any fault.

– Efficiency with faulty clients. In BFT services for large-scale users, clients are
more likely to be compromised than servers due to weaker protections, and
the number of clients is much larger than that of servers.

– Efficiency with the increasing number of server faults tolerated (i.e., fault-
scalability). For massive-scale services (e.g., Farsite [10] and OceanStore [11])
which are deployed in open environments, the number of faulty servers may
increase dramatically due to network errors and component crashes.

Existing BFT systems cannot completely satisfy the above requirements.
PBFT [1] creatively adopts keyed-hash message authentication codes (HMACs)
to authenticate messages among servers and clients. It avoids digital signatures,
the main performance bottleneck in previous systems [12,13]. Zyzzyva further
improves the performance by using speculation [4]. PBFT and Zyzzyva reach
their peak performance when no faults exist, but the throughput drops to zero
if any faulty client crafts series of requests with partially-correct HMACs [9].

To defend partially-correct HMAC attack, Aardvark uses digital signatures
instead of HMACs for authenticating clients’ requests [9]. However, it offers
poor fault-scalability as PBFT, because their agreement protocols require several
rounds of server-to-server communications, introducing a total communication
overhead of O(n2). Q/U [2] proposed a quorum-based architecture with good
fault-scalability and ideal response time (i.e., only two one-way latencies) when
no fault nor contention exists; however, faulty clients can halt the services [2,9]
by fabricating concurrent requests to a set of servers that intersect with every
other quorum but never form one by themselves.

Hybrid BFT solutions such as HQ [3] and Aliph [6], employ the efficient
quorum-based approach in the case of no faults nor contention, and switch to
agreement-based protocols when there are contending requests. However, the
client-directed switch requires a (non-faulty) client to collect digital signatures
from servers, and push servers into the same mode through extra communicating
steps. In addition, servers do not respond to other clients’ requests until the mode
switch completes. Therefore, a faulty client can sharply reduce the throughput
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by intentionally submitting concurrent requests, forcing the system frequently
switch to the less efficient agreement mode at a heavy switch cost.

In this paper, we propose a BFT system called EFS, to provide fault-scalability
and robust efficiency. EFS designs a server-directed lightweight switch to inte-
grate two BFT approaches. When there is no contending request, the servers
work in the efficient quorum mode. And when contention appears due to con-
current requests, the servers switch to the agreement mode to provide services
with a predictable yet limited performance degradation.

EFS provides better efficiency and fault-scalability at a cost of using more
servers. While some BFT systems require 3f +1 servers (e.g., PBFT, HQ, Aliph
and Aardvark) to tolerate f faulty ones, EFS needs 5f + 1 servers, similar to
Q/U which is proposed for massive-scale distributed services in open clusters or
over the WAN. In such settings, backup servers are sufficient. Moreover, as the
server cost has decreased remarkably with the development of virtualization, we
believe that the implementation cost should not be the main obstacle to affect
the adoption of more efficient and reliable BFT solutions.

EFS achieves its peak performance in the case of no faults nor contention.
Moreover, it offers robust efficiency under the following adversarial scenarios:

– Benign contention from correct clients. In this case, EFS adopts a similar
approach as proposed in the FaB agreement algorithm [14] to reach consensus
on the execution order, which is proved to be optimal to reach asynchronous
Byzantine consensus in the number of communication steps (i.e., two steps).

– Partially-correct HMAC attacks from faulty clients. In EFS, a request is sent
to a quorum of 4f+1 servers to verify the correctness of HMACs and eliminate
these attacks.

– Malicious contention from faulty clients. The switch in EFS is lightweight:
it does not require costly digital signatures nor extra communication steps.
Moreover, the switch is initiated by servers. Therefore, during mode switch,
the servers can automatically collect later contending requests to enable batch
executions, resulting in smaller operation delays.

– The increasing number of server faults. EFS’s two work modes are both fault-
scalable: each server responds to clients directly in the quorum mode, while
in the agreement mode, it avoids expensive server-to-server broadcasting in
FaB.

In particular, EFS adopts the quorum protocol of Q/U in the contention-
free case, and implements the FaB algorithm in a fault-scalable manner in the
agreement mode. Through the integration, the protocol of Q/U is also improved
in EFS: (a) the observation of the system are excluded in each operations’ logic
timestamps to save the communication cost; and (b) the support of multi-object
services is facilitated in terms of update locks and contention resolving. When
contention appears, EFS servers not only implement the FaB algorithm to agree
on the execution order, but also ensure the consistency between two work modes.
A side benefit of the server-directed switch is client-transparency : clients use a
uniform protocol for the two different modes and do not involve in the switch.
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We implement the EFS prototype. Performance is evaluated and compared
with other BFT systems. The evaluation results demonstrate that EFS achieves
efficiency and fault-scalability under various scenarios.

2 Background and Related Works

The idea of using SMR to tolerate arbitrary faults in a subset of servers was
proposed in 1980s [15]. Various BFT protocols [16,17] have been proposed to
reach consensus on the execution order among servers [8,12,18,19]. However,
due to the poor efficiency, the concept was considered impractical until Castro
and Liskov’s work on PBFT [1]. PBFT prototype used four servers to tolerate
one faulty server, and achieved a performance that was only 3 % worse than the
standard unreplicated system when no faults exist. While PBFT appears to be
efficient, there is an ongoing competition on improving the efficiency of BFT
systems. Among these solutions [2–6,9], Q/U [2] firstly proposed a quorum-
based BFT system that provides fault-scalablity. However, Q/U suffers from the
live-lock problem under concurrency workloads [2].

To address the performance limitations, HQ [3] proposed a hybrid approach,
it employs PBFT to resolve contention and thus avoids the live-lock problem
in Q/U. However, the adoption of PBFT makes HQ not fault-scalable in the
contending case. Moreover, when contention exists, HQ needs to firstly achieve a
consensus on the latest valid state, introducing extra rounds of processing. In this
paper, we present EFS which avoids server-to-server broadcast communication
either contention exists or not. EFS is more fault-scalable and efficient than HQ
in both the contention-free and contending cases (see Table 1). Aliph [6] is an
integrated system that combines three BFT approaches. However, Aliph is not
fault-scalable in the presence of contention or failures (see Table 1).

Zyzzyva [4] avoids the server-to-server broadcasting in PBFT. But it depends
on the client to detect inconsistency among servers, and requires three message
delays for a request when no faults exist. It is less efficient than EFS, which only
needs two in the quorum mode. Aardvark [9] improves PBFT by eliminating the
optimization designs that lead to significant decrease of efficiency in the presence
of faulty entities. It offers a stable performance but its peak throughput is much
less than other protocols. The faulty primary is also considered in Aardvark and
Prime [20], countermeasures are designed and verified. EFS pays more attention
to impact from (faulty) clients than that from servers, and shares the same spirit
with Aardvark somehow: the execution path is not determined by clients.

FaB [14] is the first protocol that reaches asynchronous Byzantine consensus
in two communication steps when no faults exist. In FaB, each server only accepts
the first value proposed by the primary and then sends responses directly. EFS
cannot simply adopt FaB in the contending case, as it has to keep consistency
between two work modes. Further, in the presence of faulty servers, the primary
may need to modify the proposal to make it accepted by enough servers (detailed
in Sect. 3.3). Moreover, we apply the theoretical FaB to provide practical BFT
service and improve its fault-scalability.
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CBASE [21] exploits application-specific parallelism for high throughput in
BFT systems. [22] separates the servers executing the agreement protocol from
the ones executing operations to reduce the cost for service replication, and
deploys a firewall matrix to provide BFT confidentiality. These mechanisms can
work compatibly with EFS, and will be included in our future work.

3 The EFS Protocol

3.1 System Model

Objects and Versions. In EFS, objects are replicated across n servers. Clients
issue requests to servers to perform a query (i.e., read-only) or an update (i.e.,
modify) operation on an object, according to the argument in the request. The
operation is completed once at least 4f + 1 different servers having executed it.

Whenever a server executes an update operation on an object, it generates a
new object version and assigns a logical timestamp (LT) to this new version. The
operation is executed conditioned on the current object version with timestamp
LTCO, so the timing of the execution can be identified by the pair of timestamps
(LT,LTCO). LT is in the form of (seq, clientID,method, argument), where seq
initiates from 0 and increases by 1 after executing an operation on the object
(i.e. LT.seq = LTCO.seq + 1), clientID is the identifier of the client who issues
the request, method is the exact method invoked on the object, and argument
contains the argument needed by the method. The comparison between LTs
(i.e., =, < and >) is based on comparing seq, clientID, method (lexigraphy
comparison) and then argument (lexigraphy comparison) in order. For each
object, a server maintains a replica history with ordered timestamp pairs to
represent the execution order of update operations on this object. Initially, for
each object, the first entry of the replica history on every server is set as (0,⊥).

In response to a client’s request, a server replies with its replica history. On
the client side, each client maintains an object history set (OHS), which is an
array of replica histories indexed by server. OHS is also included in the client’s
request to the servers. In the Byzantine faulty environment, not all servers could
complete the requests, therefore, an OHS represents each client’s local view of
the server states. To compare two OHSs (i.e., =, < and >), we compare the
largest LT that appears at least 4f + 1 times in each OHS.

Each server classifies the received OHS and determines the corresponding
work mode. If there are different LTs conditioned-on the same LTCO in the
OHS but none of them appears at least 4f + 1 times, this OHS is considered
incomplete, which makes the server switch to work in the agreement mode (see
Sect. 3.2.1); otherwise the OHS is classified as complete, and the server works in
the quorum mode (see Sect. 3.2.1). To preserve the execution order of completed
operations during the mode switch, each server caches the largest complete OHS
that it has received (denoted as OHSs) and the operation conditioned on OHSs

that it has executed (denoted as Os). At the beginning, both OHSs and Os are
set to null.
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Faulty Entities. EFS builds SMR services using n = 5f+1 independent servers.
Both the servers and clients might be Byzantine faulty and exhibit arbitrary,
potentially malicious behaviors. Faulty entities (servers and clients) might also
collude with each other. EFS can tolerate an arbitrary number of faulty clients
and up to f faulty servers.

Message Authentication. Servers and clients are connected with unreliable,
asynchronous links. As a result, messages may experience dynamic transmission
delay, or be duplicated, reordered or dropped by the attacker. We adopt the
fair link assumption [22] that a message will be received if it is sent sufficiently
often. To prevent forged messages from faulty entities, we employ point-to-point
message authentication using a keyed hash (HMAC). A secret key μij is shared
between the entity i and j to create the HMAC of message m, denoted as [m]μij

.
Each server i holds a private signature key (denoted as σi) and signs a message
m as [m]σi

. We will present digital signature based authentication for replica
history and communication between servers in Sects. 3.2.1 and 3.2.2, and then
discuss how to avoid these signatures in Sect. 3.3.

3.2 The Protocol

3.2.1 Contention-Free Case
In the contention-free case, EFS adopts a quorum-based protocol similar to
Q/U [2]. Clients send requests in the form of [clientID,method, argument,
OHSc] to a set of servers to invoke a method on an object, where OHSc is
the cached OHS. Each server first verifies the request with the HMAC, and
compares its cached replica history with the corresponding one in the received
OHSc. A matched replica history denotes the client’s view of the object state is
consistent with the server’s actual state. Then, the server sanitizes the entries of
OHSc (i.e., replica histories of other servers) by verifying the signature of each
entry and removing invalid ones. The server classifies the sanitized OHSc only
when there are at least 4f + 1 entries remained. If OHSc is complete, the server
works in the quorum mode to execute the requested operation; otherwise, the
server switches to the agreement mode to resolve contention (Sect. 3.2.2).

In the quorum mode, if this is an update operation, a new object version will
be generated at each server independently, and assigned with LTnew. The new
object version is conditioned on the version with the largest LT that appears at
least 4f+1 times in the OHSc, the server adds (LTnew, LT ) to its replica history,
update the cached OHSs and Os. Then, each server returns the execution result
and the signed replica history to the client. If at least 4f +1 servers are working
in the quorum mode, a same LTnew will be generated at different servers and a
quorum of success responses with consistent replica histories will be returned to
the client. The client updates its OHS with the received replica histories.

However, if the corresponding replica history extracted from OHSc is out-
dated, the server will return a failure response with its current replica history
to the client. Moreover, in the sanitization stage, if the sanitized OHSc has less
than 4f + 1 entries, it will be returned to the client in a failure response. If not
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enough (less than 4f +1) success responses are received by the client, the request
fails and the client needs to re-send the request with the updated OHS. Although
the reason of failure varies, the client is not expected to distinguish the cause or
take different actions. Therefore, the complexity at the client is reduced.

In the contention-free case, an operation is finished in two message steps if
the client receives at least 4f + 1 success responses, otherwise, it will take two
additional message steps to update the entries of OHSc. Therefore, EFS quorum
mode is as efficient as Q/U and more efficient than most of the other protocols.

3.2.2 Contending Case
Contention occurs if the OHS contained in the client’s request is incomplete. It
may be caused by multiple operations conditioned on a same version but fail
to complete due to concurrent requests, network failures or faulty entities. To
resolve the inconsistency, the server should switch to the agreement mode.

Each server moves through a succession of configurations, known as views [1].
A view is identified by a consecutively increasing sequence number v, initially
set to 0 and increased by 1 for each view change (see Sect. 3.2.4). Servers store
the current view number locally. In each view, the server with identifier p, where
p ≡ v (mod n), is the primary, and the others are called backups. The primary is
responsible for keeping consistency between the two work modes, proposing an
execution order for contending requests, and coordinating the backups to reach
an agreement in five steps of message exchanges, as shown in Fig. 1:

1. Initiate: whenever a server detects contention in a request from client c, it
switches to the agreement mode. It sends an initiate message, with cached
OHSs and Os, to the primary of the current view.

2. Propose: the primary maintains an array called InitiateArray to store the
initiate messages from the servers. Upon receiving 4f + 1 valid initiate
messages, the primary selects the largest complete OHS (denoted as OHS[p])
from all the received OHSs. Then, the primary proposes an execution order

initiate

X

propose accept commit response

tentatively
execute

Primary (0)

Client

Backup (1)

Backup (2)

Backup (3)

Backup (4)

Backup (5) Faulty

Fig. 1. EFS’s process in the contending case
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(denoted as
−→
O

[p]) for all the contending operations contained in at least f +1
initiate messages. The operation that appears at least 2f + 1 times in the
4f + 1 initiates is selected as the first operation of

−→
O

[p], and the order
of other operations is determined arbitrarily. Finally, the primary includes
OHS[p],

−→
O

[p] and InitiateArray in a propose message to all the backups.
3. Accept: a backup accepts the proposal if (1) InitiateArray contains messages

from at least 4f +1 servers, (2) the proposed OHS[p] matches at least 2f +1
OHSs in InitiateArray, and (3) the operations in

−→
O

[p] are selected and
ordered correctly. For an accepted propose, the backup generates signatures
of OHS[p] and

−→
O

[p] and sends them in an accept message to the primary.
4. Commit: the primary stores the correctly signed accept messages in an

AcceptArray. If at least 4f + 1 servers have accepted the proposal, the pri-
mary will send a commit message with AcceptArray to all servers.

5. Response: finally, each server validates the integrity and consistency of the
OHS[p] and

−→
O

[p] in the commit message. Then the server retrieves the object
version identified by OHS[p] and executes operations in

−→
O

[p] sequentially to
reach a consistent state, and switches back to the quorum mode.

The procedure is illustrated in Fig. 2. In the agreement mode, non-faulty
primary can coordinate an orderly execution of contending operations at all
servers and eventually bring the system back to a consistent state.

To improve efficiency, EFS supports tentative execution, which is also used
in [1,14]. The tentative execution allows the backups to tentatively execute the
operations in

−→
O

[p] if it accepts the propose, and return the tentative results to
the clients before a consensus is reached. The tentative execution is supported
because EFS allows a client to receive multiple responses from a same server
for a given operation, and overwrite an older response with a newer one. With
tentative execution, all servers can reach a consistent state in two message delays
(instead of four delays in the above flow in Fig. 1) with a correct propose.

3.2.3 Mode Switch
Unlike other BFT protocols, no special request from the clients is needed for
mode switch. This avoids purposeful or delayed switch manipulated by a faulty
client. Mode switch is only triggered by messages received at the servers:

To switch from the quorum mode to the agreement mode, a server needs to
receive either a request with an incomplete OHSc from a client, or a correct
propose message from the primary. The primary, to be invoked to coordinate
contention resolution, needs to receive 4f + 1 valid initiate messages.

To switch from the agreement mode to the quorum mode, the primary needs
to receive 4f + 1 correct accept messages. A backup needs to receive either a
correct commit message or a complete OHS that is larger than the cached OHSs.

Due to network failures or faulty servers, a server may fail to receive the
expected messages in time and thus stays in the less efficient agreement mode.
To mitigate the performance degradation, a backup will call the PullCommit
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1: procedure Backup.OnContend(OHSs, Os, i)
2: send [initiate, i, OHSs, Os]σi to p
3: if timeout for valid update-OHS or commit then
4: if (PullCommit() fails) then
5: StartViewChange(v + 1, OHSs, Os, i)
6: end procedure
7:
8: InitiateNum = 0
9: InitiateArray[n]

10: procedure Primary.OnInitiate(void)
11: if signature of [initiate, i, OHSs, Os] error then
12: return
13: OHSp = OHSs cached by primary
14: OHSi = initiate.OHSs

15: if OHSi is not complete || OHSi < OHSp then
16: reply [update-OHS, OHSp]σp

17: return
18: if InitiateArray[i] == null then
19: InitiateNum++
20: InitiateArray[i] = (the signed initiate from server i)
21: if InitiateNum > 4f then
22: ProposeOrder()
23: end procedure
24:
25: procedure Primary.ProposeOrder(void)
26: Set:={OHS: Order(OHS,InitiateArray)>2f}
27: OHS[p] = LatestOHS(Set)
28: if ∃O : Order(O,InitiateArray)> 2f then

29:
−→
O

[p][0] = O

30: define order of other operations in
−→
O

[p]

31: for i ← [0, n − 1] do

32: send i [propose, OHS[p],
−→
O

[p], InitiateArray]σp

33: end procedure
34:
35: procedure Backup.PullCommit(void)
36: send [pull-commit, OHSs, OHSc]σi to all servers
37: if timeout for complete OHS or commit then
38: return true
39: else
40: return false
41: end procedure
42:
43: procedure Order(element, Set)
44: /* Determine order of element in the Set */
45: end procedure

46: procedure Backup.OnPropose(void)
47: if propose is not correctly signed then
48: return
49: if any initiate signed invalidly in InitiateRecord then
50: return
51: if propose message accepted then

52: send [accept, i, p, OHS[p],
−→
O

[p]]σi to p
53: end procedure
54:
55: AcceptNum = 0
56: AcceptArray[n]
57: procedure Primary.OnAccept(void)

58: if signature of [accept, i, p, OHS[p],
−→
O

[p]] error then
59: return
60: if AcceptArray[i] == null then
61: AcceptNum++

62: AcceptArray[i] = [accept, i, p, OHS[p],
−→
O

[p]]σi

63: if AcceptNum ≤ 4f then return
64: for i ← [0, n − 1] do

65: send i [commit, p, OHS[p],
−→
O

[p], AcceptArray]σp

66: end procedure
67:
68: procedure Backup.OnCommit (void)
69: for i ← [0, n − 1] do

70: if Verify(i,[i, OHS[p],
−→
O

[p]],AcceptArray[i]) then
71: CorrectNum++
72: if CorrectNum > 4f then

73: execute in order defined in
−→
O

[p]

74: end procedure
75:
76: procedure Backup.OnPullCommit(i)
77: OHSl = pull-commit.OHSs

78: if OHSs > OHSl then
79: reply [update-OHS, OHSs]σi

80: if has received valid commit message then
81: reply [push-commit, commit message]σi

82: if pull-commit.OHSc is incomplete then
83: OnContend(OHSs, Os, i)
84: end procedure
85:
86: procedure Verify (i,m,sig)
87: /*Return true if sig is signature of m signed by i */
88: end procedure

Fig. 2. Pseudo-code of EFS in contending case

process, if it does not switch to the quorum mode after pre-defined timeouts.
In the PullCommit process, each server probes other servers to “pull” valid
commits from at least 3f + 1 servers, and uses the consistent commit to update
its own status. If the PullCommit process fails, which indicates the primary is
faulty, the backup will select a new primary through view change.

3.2.4 View Change
If the primary is faulty, the view change will be triggered to select a new primary.

1. When a backup fails to receive a valid reply from the primary pv of view v
after the timeout, it notifies pv+1, the primary of view v + 1, with a signed
start-vc message [start-vc, v + 1, OHSs].

2. The new primary pv+1 validates the message and checks if the included OHSs

is the latest. Once pv+1 receives valid start-vc messages from 3f +1 servers,
it sends a new-view message to all the servers. The 3f +1 start-vc messages
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are included so that the new view will be unique at the presence of f faulty
servers. pv+1 keeps sending the new-view message until it receives 4f + 1
valid initiate messages.

3. Any server receiving a valid new-view message will mandatorily switch to
work in the agreement mode. It updates its view number to v + 1, and con-
structs an initiate message to the new primary.

It might be possible that the new primary is still faulty and tampers with
the view change process. So, the backups use another timer to limit the delay
between sending the start-vc and receiving the new-view. Once timeout, the
backup firstly actively probes the new-view from at least 3f + 1 servers. If it
fails, it considers the current view change as unsuccessful, and invokes a new
view change to view v + 2. A backup may receive multiple new-view messages
for different views, it only needs to respond to the primary of greater view.

3.3 Avoiding Signing

One important optimization presented in PBFT is using an HMAC array to
replace the expensive digital signatures for message authentication. Similar ideas
are adopted in the hybrid BFT systems [3,6]. However, since the hybrid systems
rely on the clients to notify the servers about mode switch, they still employ
the expensive digital signatures during mode switch, leaving a vulnerability for
faulty clients frequently switching the work mode. Differently, EFS enables the
servers to initiate mode switch. Therefore, it is possible to authenticate replica
history, initiate, propose, accept, and commit messages with an HMAC array
(denoted as authenticator), eliminating the signatures in the two work modes
and mode switch. Each entry of authenticator is a HMAC for a same message
using different keys shared between the sender and each of the other servers.

The challenge exists in this replacement. A faulty entity may deliberately
generate valid and invalid HMACs for a same message to create inconsistent
observations for different servers. First, a faulty entity may create valid and
invalid HMACs of its replica history. Since OHS entries with invalid HMACs will
be excluded during sanitization, the faulty entity can manipulate the OHS to be
complete or incomplete to push a certain number of servers into the agreement
mode while keeping the others in the quorum mode. If at least 4f + 1 non-
faulty servers consider the OHS incomplete and switch to the agreement mode,
the contention can be resolved among 4f + 1 servers. However, if less than
4f +1 non-faulty servers consider the OHS incomplete, there will not be enough
servers to resolve the contention in the agreement mode. Here, we consider two
different scenarios: (1) more than 3f but less than 4f + 1 non-faulty servers
receive incomplete OHS, and (2) no more than 3f non-faulty servers receive
incomplete OHS. In the first scenario, the primary may never receive 4f + 1
initiate messages needed for the propose stage. To cope with this problem, the
primary is required to send the InitiateArray to the remaining servers that did
not send the initiate, after receiving 3f + 1 initiate messages. A non-faulty
server verifies the 3f + 1 entries of the InitiateArray (using authenticators),
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and replies a dummy initiate (whose operation is set to null) to the primary.
In this way, the primary can actively “pull” initiates to meet the 4f + 1
requirement. In the second scenario, we modify the PullCommit process to
let each server in the agreement mode “pull” either a valid commit or a same
complete OHS which is larger than its own OHSs, from at least 3f + 1 servers.
The latter can trigger a server to switch back to the quorum mode.

Faulty servers may send initiate and accept messages with valid HMACs
for the primary but invalid HMACs for some backups, which in turn will report
the suspicious messages to the primary. A message suspected by at least f + 1
different servers will be excluded from further processing. Furthermore, a faulty
primary may send different InitiateArray to different backups, trying to con-
struct two different AcceptArrays and make them accepted by different backups.
To solve this problem, each propose should have a monotonically increasing pro-
pose number (denoted as pn), initially set to 0 in each view. The backup tracks
the largest pn it has received in pnb, accepts only the propose with a larger pn
and AcceptArray for the propose whose pn is no less than pnb.

During the mode switch, a primary may receive more than 4f +1 initiates.
It is possible that there exist two different operations, each appearing in more
than 2f + 1 initiates. In such a case, we select the operation with the smaller
hash value as the first operation in

−→
O

[p] without loss of generality. However,
as the faulty servers can insert invalid HMACs into the authenticator for
initiate, some non-faulty backups may generate a different observation from
the one of the primary (and others) so that they will suspect and refuse to
accept the propose. As a result, the primary will fail to receive enough (≥4f +
1) accept needed in the commit step. To cope with this problem, we let a
backup accept a latest propose that is also accepted by at least 3f + 1 servers,
considering the faulty server can only tamper with up to f backups in this type
of attacks (otherwise the initiate will be reported suspicious by f +1 backups
and excluded from the processing).

3.4 Optimization

Reducing Communication. Each server can send clients the portion of their
replica histories with LTs no smaller than the largest LT that appears at least
4f +1 times in its cached OHSs, which reduces the size of the OHS transmitted
between clients and servers. Moreover, the size of LT in the replica history can
be reduced by replacing the argument and operation with their hash value
respectively. In the agreement mode, each backup can send its replica history
instead of the entire OHSs to the primary, which will determine OHS[p] using
the latest complete elements of a quorum of replica histories.

Automatic Batching. Servers in the agreement mode can still respond to the
requests from clients, rather than locking the services, which makes the system
more stable and eliminates the waiting time back to the quorum mode. In the
agreement mode, if a request arrives before the propose message, each server
automatically batches it in Os and sends Os to the primary who will propose the



316 Q. Cai et al.

executing order for the batched operations that appear in the Os from at least
f + 1 servers. If an operation in Os is included in

−→
O

[p], each server executes it
in the proposed order and sends the result to the client. For those requests that
arrive after the propose message and are not included in the

−→
O

[p], each server
returns its latest replica history to clients after executing all operations in

−→
O

[p].
Multi-object Services. Multi-object update operation requires to update a set
of objects as a whole. EFS supports multi-object update using lock mechanism.
The server locks local object version only when all the OHS are complete, and
releases the lock after finishing the execution. EFS does not enforce any lock
order to avoid deadlock, as when contending requests exist, EFS will switch to
the agreement mode and let the primary decide the execution order.

4 Correctness Analysis

4.1 Correctness Against Byzantine Faults

In SMR systems, correctness means the system should provide safety and liveness
at the same time. EFS ensures correctness by requiring non-faulty servers to
agree on a same conditioned-on version, before executing any operation O. To
ensure correctness, EFS needs at least n = 5f + 1 servers to tolerate up to
f faulty servers. To prove this, let us denote the latest completed operation
as O′. It should be executed on a quorum of q servers, and observed by the
primary from the initiate messages sent from another quorum of q servers in
the agreement mode. In the worst case, the two quorums merely overlap, with
the intersection of at most 2q −n− f non-faulty servers. Furthermore, to ensure
O′ is the conditioned-on operation of O, O′ should be observed in more than
half of the initiate messages, that is (2q − n − f) > (n − f)/2 ⇐⇒ n > 5f .

Safety. The safety property requires that in any case, different requests condi-
tioned on a same LTCO should never be finished. In EFS, safety is guaranteed
by ensuring that any completed operation O that is conditioned-on LTCO is the
only operation that can be completed on the LTCO. We prove this property for
EFS working in both modes, and in the transient state.

EFS works in the quorum (agreement) mode if at least 3f + 1 non-faulty
servers work in the quorum (agreement) mode; otherwise, EFS works in the
transient state. For an operation O to be completed, at least 3f + 1 non-faulty
servers should execute O conditioned on LTCO, and the client can receive at least
4f + 1 consistent replies. Therefore, in the transient state, no operation can be
completed due to the lack of enough consistent replies. In the quorum mode, an
operation O′′ requested to be conditioned on LTCO (i.e., claiming LTCO as the
latest local timestamp) will receive failure messages with newer replica histories
from at least 2f + 1 non-faulty servers to update the dated OHS.

When EFS works in the agreement mode, at least 2f+1 non-faulty servers will
include O in the initiate messages as Os and O is the only operation appeared
at least 2f + 1 times in InitiateArray. If the primary is non-faulty, O will be
the first operation in

−→
O

[p], and consequently the only operation to be finished
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conditioned on LTCO. On the contrary, if the primary is faulty, its proposal will
not be accepted by at least 2f + 1 non-faulty servers, and thus triggers the view
change protocol. Safety of the view change protocol is ensured by proving the
system cannot be in two different views at the same time – different non-faulty
servers are in different views due to different valid new-view messages. As the
new-view message consists of at least 3f + 1 valid start-vc messages, if there
are more than one valid new-view messages, it means a least one non-faulty
server participated in two view change at the same time, which never happens.

Liveness. Liveness denotes that no matter which mode the system is in, a non-
faulty client can eventually receive 4f + 1 consistent responses by sending its
request repeatedly. Therefore, we prove the liveness of EFS in different cases.

Obviously, when there is no contending request, at least 4f + 1 non-faulty
servers will receive and execute the request if OHSc from the client is latest and
object versions at servers are also the latest. Otherwise, a failure message will
be returned to update OHSc, or object synchronization will be called to obtain
the latest object version from f + 1 different servers. After the extra round of
updating, the requested execution is performed.

When there are two contending requests from clients c and c′, respectively,
at most 4f non-faulty servers receive the request with a latest OHSc, from
client c prior to the request from c′. Otherwise, c can receive 4f + 1 consistent
responses to finish the request. Servers that receive the request from c later
than c′ return their replica histories to c to construct a new OHS′

c indicating
contention. Then, c keeps sending new requests with OHS′

c, which will eventually
trigger at least 4f + 1 non-faulty servers to move into the agreement mode (and
send out 4f + 1 initiate messages). If the primary is non-faulty, liveness of
the agreement protocol is guaranteed by non-faulty backups sending client c the
consistent responses after they having received 4f + 1 valid accept messages
contained in the commit message (given at most f faulty servers).

In cases where the primary is faulty, non-faulty backups may not receive a
valid commit message and thus trigger the view change by timeouts. Liveness of
the view change process is guaranteed by pulling commit messages from others. A
non-faulty server verifies at least 3f +1 non-faulty servers in the contending case
have not received commit messages if it fails to get a larger complete OHS or a
valid commit messages. This guarantees that these 3f+1 non-faulty servers in the
contending case eventually help the new primary to construct a valid new-view
message. Similarly, if any initiating backup fails to receive the new-view message
before timeout, it will pull the new-view messages from others to decide to invoke
further view changes. As the view change protocol will eventually succeed after
a non-faulty primary is agreed, the liveness of EFS under view change is proven.

4.2 Efficiency Against Faulty Clients

Faulty clients may harm the efficiency of the system while the correctness can
still be provided, for example by partially-correct HMAC attack or constructing
malicious contention [9]. However, EFS still provides robust efficiency even when
faulty clients exist.
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Partially-Correct HMAC Attack. To launch this attack, faulty clients send
requests with correct HMACs for some servers while incorrect for others, which
results in contention and makes the system switch to work in the agreement
mode seamlessly. In the agreement mode, faulty clients cannot start this attack,
as the primary proposes

−→
O

[p] according to the initiate messages from servers,
who firstly check the HMACs of the requests from clients.

Malicious Contention. The faulty clients may attempt to degrade the system
performance by triggering the system switch to the agreement mode frequently
using malicious contention. However, due to the lightweight switch and efficient
agreement-based protocol in the agreement mode, the performance degrades
much gracefully under this attack.

5 Performance Analysis and Evaluation

5.1 Efficiency Under Faulty Client Attacks

Most existing BFT protocols suffer from faulty client attacks. Faulty clients
can make the throughput of PBFT, Zyzzyva and Q/U drop to 0 [9]. Aardvark
provides robust efficiency against faulty clients at the cost of degradation of
peak throughput in the case of no faults. Only hybrid protocols can address
such faulty client attacks by switching to a less efficient agreement mode at a
mode switch cost, while keeping efficient when no faults exist. To evaluate the
performance of EFS under the attack, we first compare EFS with two existing
hybrid BFT protocols, HQ [3] and Aliph [6], and analyze the performance at the
quorum mode and the agreement mode, and the cost due to mode switch.

Table 1. Cryptographic operations and messages used in three hybrid BFT protocols.

HQ [3] Aliph [6] EFS
quorum agreement switch quorum chain backup switch quorum agreement switch

MAC 4+4f 2+ 8f+1
b 2f+1 6f+4 1+ f+1

b 2+ 8f+1
b 1 8f+2 1+ 15f+3

b 4f+2
Sign 0 0 5 0 0 0 1 0 0 0
Verify 0 0 5f+4 0 0 0 2f+1 0 0 0

Messages 4 4 6 2 2+3f 4 2 2 4 1

All three protocols work in the quorum mode in the case of no faults nor
contention, and switch to the agreement mode (the chain mode in Aliph) when
receiving contending requests. Aliph further switches to the backup mode even
only one faulty entity exists, while others remain in the agreement mode. We
summarize numbers of cryptographic operations (i.e., generating MAC, digital
signature signing and verification) in the bottleneck server and one-way message
transmits in the critical path required by each protocol for per request in Table 1,
where b refers to the batch size. From Table 1, we see that HQ and Aliphi require
expensive signature operations and more messages for mode switch, and thus
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Table 2. The simulated processing time when f = 2 without batch (in ms).

HQ [3] Aliph [6] EFS
quorum agreement switch quorum chain backup switch quorum agreement switch

MAC 0.072 0.114 0.03 0.096 0.024 0.114 0.006 0.108 0.204 0.06
Sign 0 0 11.685 0 0 0 2.337 0 0 0
Verify 0 0 1.82 0 0 0 0.65 0 0 0
Latency 1.348 1.348 2.022 0.674 2.696 1.348 0.674 0.674 1.348 0.337
Total 1.42 1.462 15.557 0.77 2.72 1.462 3.667 0.782 1.552 0.397

need a much longer duration to complete the switch (as shown in Table 2, 39.18
and 9.24 times of the time needed by EFS, respectively).

To measure the processing time per request, we simulate it by summarizing
the time for cryptographic operations and message transmitting in the critical
path. We adopt the commonly used signature and MAC algorithms implemented
in OpenSSL v1.0.0i. Signing and verification for 1024-bit RSA require 2.337 ms
and 0.13 ms, respectively, while SHA-1 digest of 1 KB blocks only needs 0.006 ms.
Without loss of generality, we set b to 1. Assuming to tolerate 2 faulty servers
(i.e., f = 2), the simulated processing time per request are shown in Table 2.
The result shows that EFS has a similar performance as HQ and Aliph in the
agreement mode, and outperforms HQ in the quorum mode.

5.2 Performance Evaluation

Settings. All the experiments ran with 16 servers and 80 logical clients in an
isolated 1000 Mbps Ethernet. Servers ran on identical workstations with an Intel
S1260 (2.0 GHz) CPU and 4 GB of memory. Logical clients were hosted on two
machines, each with 8 GB of memory and two Intel Xeon E5620 (2.4 GHz) CPU.
Network I/O and CPU process on the clients were not found to be a limiting fac-
tor in any of our experiments. The communication between clients and servers is
implemented via TCP. A SHA-1 based HMAC is used to authenticate messages.
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Fig. 4. Latency vs. throughput (f = 1).

We evaluate the performance of EFS on a counter service for the update
operation in the contention-free case. Then we measure the extra time to resolve
contention needed by EFS using micro-benchmarks [1]. We use 0/0 (i.e. the
client sends a null request and receives a null reply) and 4/0 (i.e. the client
sends a 4KB request and receives a null reply) micro-benchmarks to measure the
overhead due to extra BFT computation and communication. For comparison
purpose, we also evaluate the performance of PBFT, HQ and Q/U when all of
the optimizations are adopted. We adopt an optimized PBFT implementation [3]
which replaces the broadcast communication with point-to-point communication
for better fault-scalability, Q/U version 1.3 [2] and an HQ implementation [3].
Contention-Free Case. In the contention-free case, each client with the latest
OHS keeps issuing requests until it receives responses from at least 4f+1 servers.
As the provided implementions [3] of PBFT and HQ do not support the micro-
benchmarks [1], we measure the throughput and latency using the counter server.

Figure 3(a) plots the throughput of EFS, PBFT, HQ and Q/U, with varying
number of clients when f = 2. We observe that EFS achieves a similar peak
throughput as Q/U (at most 1.3 % difference) and significantly outperforms both
PBFT and HQ. The main reason is that each server in PBFT and HQ need to
send 3f + 1 and 2 messages respectively in responding to a client request, while
the server in EFS only requires to send one message and thus greatly reduces
the overhead due to network latency. Fig. 3(b), the throughput of EFS decreases
sub-linearly with increasing number of tolerated faults.

We also study the response time of the four protocols as a function of the
achieved throughput. As shown in Fig. 4, EFS and Q/U achieve consistently
lower response time than HQ and PBFT. Moreover, EFS achieves lower response
time than Q/U at a higher throughput (larger than 2.5 K requests/s) as OHS is
excluded in LT which reduces the total communication in the system.

Contending Case. In this section, we study the additional time needed for the
whole contention resolution which includes mode switch and making consensus
on the execution order for contending requests. In EFS, when a server detects
contending requests, the system switches to the agreement mode to reach a
consensus coordinated by a primary. EFS supports tentative execution (denoted
as EFS(opt)) in which contention can be resolved once 4f +1 non-faulty servers
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Table 3. Average time to resolve contention (in ms).

Faults tolerated 1 2 3

EFS (opt) 0/0 4.5089 7.5551 10.2612

4/0 5.5036 9.5530 12.196

EFS (full) 0/0 7.4030 13.0764 14.9806

4/0 10.2309 13.5275 16.196

receive the same propose message. However, if a faulty primary is selected by
chance, the contention can only be resolved after a commit is received (denoted
as EFS(full)). We measure the time for the servers to reach a consensus using 4/0
and 0/0 micro-benchmarks. When f = 1, the optimized PBFT requires 4.04 ms
for a single counter service in the case of no faults, while EFS with and without
tentative operation take 4.5089 ms and 7.4030 ms respectively,

To study the fault-scalability of EFS, we measure the time to resolve con-
tention with an increasing number of tolerated faults. Table 3 lists the average
of 100 measurements when the batch size is set 2. With a larger batch size, the
average time for contending requests will be further reduced. Table 3 shows that
EFS is efficient even when contentions occur frequently in a large-scale service.

6 Conclusion

We propose EFS that aims to provide BFT service with robust efficiency in the
presence of faulty clients. EFS uses an efficient quorum-based BFT system when
there are no contending requests, and switches to a fast agreement protocol to
resolve contention. The two modes are integrated using a server-directed and
lightweight switch which avoids the switch becoming the bottleneck. Known
attacks from clients cannot harm the efficiency of EFS. Moreover, EFS has good
fault-scalability in both the contention-free and contending cases which ensures
that EFS has robust efficiency in the large-scale service.
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