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Abstract. Concolic testing is widely regarded as the state-of-the-art
technique in dynamic discovering and analyzing trigger-based behavior
in software programs. It uses symbolic execution and an automatic the-
orem prover to generate new concrete test cases to maximize code cover-
age for scenarios like software verification and malware analysis. While
malicious developers usually try their best to hide malicious executions,
there are also circumstances in which legitimate reasons are presented
for a program to conceal trigger-based conditions and the corresponding
behavior, which leads to the demand of control flow obfuscation tech-
niques. We propose a novel control flow obfuscation design based on the
incomprehensibility of artificial neural networks to fight against reverse
engineering tools including concolic testing. By training neural networks
to simulate conditional behaviors of a program, we manage to precisely
replace essential points of a program’s control flow with neural network
computations. Evaluations show that since the complexity of extracting
rules from trained neural networks easily goes beyond the capability of
program analysis tools, it is infeasible to apply concolic testing on code
obfuscated with our method. Our method also incorporates only basic
integer operations and simple loops, thus can be hard to be distinguished
from regular programs.

Keywords: Software obfuscation · Malware analysis · Reverse
engineering · Concolic testing · Neural network

1 Introduction

In recent years, advances in reverse engineering techniques have made software
verification and malware analysis more and more powerful [1–3]. With the help

This project is partly supported by the National Key Basic Research Program
of China (Grant No.2013CB834204), the National Natural Science Foundation of
China (Grant No.61272423) and the Natural Science Foundation of Tianjin (Grant
No.14JCYBJC15300).

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 287–304, 2015.
DOI: 10.1007/978-3-319-23829-6 21



288 H. Ma et al.

of dynamic code analysis which is able to trace a program’s execution and to
monitor branch information along the trail, an analyzer may explore nearly all
possible paths for software analysis. A representative technique is concolic testing
which helps understanding the control flow structure of program routines [4–9].
It performs symbolic execution along a concrete execution path and generates
new concrete inputs to maximize code coverage of the tested program, thus could
effectively discover trigger-based behavior that leads to malicious execution.

On the other hand, software developers have also realized the fact that envi-
ronments under which software runs must be assumed to be potentially mali-
cious. For example, in man-at-the-end (MATE) attacks [10], a powerful adversary
with full control of the system could thoroughly inspect and analyze the running
program. While concolic testing has been proven powerful in security analysis,
it also provides a sharp scalpel for attacks like software cracking and piracy.

Many works have been done to provide countermeasures against both sta-
tic and dynamic code analysis techniques. Control flow obfuscation, which aims
to confuse the analyzer by complicating programs’ control flow structures, has
been one of the important approaches [11–16]. Previous works have shown effec-
tiveness against automatic analyzers to a certain extent, yet there are well-
documented shortcomings in terms of generality [11,14,15] and performance
[12–14,16].

In this paper, we propose a novel control flow obfuscation design that intro-
duces neural networks to execute conditional control transfers. Our method
obfuscates a candidate conditional operation by replacing it with a neural net-
work trained to simulate its functionality. The powerful computation capability
of neural networks allows our design to work for conditional statements involv-
ing all possible algebraic logic. Meanwhile, the well-known complexity in com-
prehending the rules represented by neural networks [17–19] ensures that the
protected behaviors are turned into an unexplainable form, making it next to
impossible for theorem provers or constraint solvers to find concrete inputs that
lead to the execution paths behind the networks. Hence, our proposed technique
disables concolic testing from exploring control flow structure of the protected
program.

Our obfuscator applies to programs written in C/C++ and is evaluated with
two common concolic testing tools—KLEE [9] and TEMU [20]. The performance
of our design is also tested with selected benchmarks from the SPECint-2006
test suite. Results indicate that our method successfully prevents concolic test-
ing from generating test cases to cover the protected conditional paths while
introducing only negligible overhead.

The rest of the paper is organized as follows. Section 2 discusses related
works on code obfuscation. The main idea as well as some important details are
explained in Sect. 3. The implementation of our obfuscator is given in Sect. 4.
We analyzed the security of our method against possible attacking strategies of
adversaries and show the evaluation results in Sect. 5. Some discussions about
the proposed method are given in Sect. 6. Finally, we give our conclusion in
Sect. 7.
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2 Related Works

2.1 Concolic Testing

Concolic testing is a hybrid software verification technique that combines sym-
bolic execution with concrete testing [4], in which program is tested under a
concrete execution path, and symbolic execution is used in conjunction with
an automated theorem prover (or a constraint solver based on constraint logic
programming) to generate new test cases that cover other concrete paths. Con-
colic testing has been extensively applied in structural exploration and model
checking, and received much attention during the past decade [5–9]. Meanwhile,
concolic testing also provides a powerful tool for program inspecting, which may
lead to further compromise on software integrity.

Nevertheless, several limitations still exist in concolic testing [21], in which we
mainly focus on the capability of underlying theorem prover/constraint solver
that concolic testing depends highly on. When the constraints of a path go
beyond the capability of the solver, concolic testing can no longer perform sym-
bolic execution along it, thus loses the advantage of exploring new behaviors.

2.2 Control Flow Obfuscation

Control flow obfuscation is one of the major methods of code obfuscation, which
aims to make the control flow of a given program difficult to understand [22].
Despite the many efforts made on the subject, existing control flow obfuscation
methods either endure a notable tradeoff on performance, or fit only in limited
scenarios.

Sharif et al. presented a conditional code obfuscation scheme that uses hash
function to protect equal branch conditions [14]. This method is a representative
work of using algorithms that is infeasible to be reversely analyzed in protecting
program’s control logics. Nevertheless, since cryptographic algorithms like hash
function are pseudo-random permutations, they are difficult, if not impossible, to
be applied in obfuscating branches triggered by input from a continuous interval
(e.g., conditions like > or ≤), which significantly limits the application of such
type of methods. Also, encrypting introduces overhead that cannot be neglected.

Tricks or special mechanisms in programming were also exploited in building
control flow obfuscation. There were already attempts to turn control transfers
into signals (traps), then introduce dummy transfers and “junk” code to confuse
static analysis [15], or to achieve control flow obfuscation via code mobility by
computing targets of program’s control transfers remotely on a trusted environ-
ment at runtime [13]. However, the former cannot be used in protecting con-
ditional logics, while the later looks impractical given that it requires frequent
interaction with the remote third-party.

Targeting the drawbacks of specific reverse engineering techniques, such as
exploiting the limitation of symbolic execution in solving unrolling loops in [11],
seems to be a more promising way. Yet a small regret is that the above design
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is not built with a provable theoretic basis. In this paper we try to build control
flow obfuscation on a proven difficulty that is too hard for theorem provers to
solve.

2.3 Neural Network and Rule Extraction

Artificial neural network (ANN) is a connectionist model, consisting of an inter-
connected group of artificial neurons (as demonstrated in Fig. 1). ANN is known
as a highly distributive, fault-tolerant non-linear algorithm with powerful compu-
tational capability. During the 1990s, several researches suggested that a feed-
forward neural network with a single hidden layer (containing finite number
of neurons) is a universal function approximator and should be able to simu-
late arbitrary functions [23,24]. Meanwhile, in artificial intelligence and machine
learning, researchers generally believe that a main weakness of neural network
is the absence of a capability to explain either its process to arrive at a spe-
cific decision/result, or in general, the knowledge embedded in it in human-
comprehensible form [17]. In 1996, Golea [18] studied the intrinsic complexity of
the rule-extraction from neural networks and came out with two key results:

– extracting the minimum Disjunctive Normal Form (DNF) expression from a
trained (feed-forward) neural network; and

– extracting both the best monomial rule and the best M-of-N rule [19] from a
single perceptron within a trained neural network

are both NP-hard problems. We believe, however, that the incomprehensibility
of neural networks, in spite of being treated as a impediment all the time, could
actually become an advantage in control flow obfuscation, where the understand-
ing of knowledge in neural networks can be unwanted.

Input 
Layer

Hidden 
Layer

Output 
Layer

Fig. 1. An example of neural network.

3 Control Flow Obfuscation Using Neural Networks

In programming, conditional logics are used to selectively transfer control to
one of two execution paths, based on whether the value of their inputs satisfy
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given conditions. Yet from another perspective, as shown in Fig. 2, such selective
operations are in some sense equal to a kind of binomial classification tasks
where:

– all possible values of the input space are assigned to 2 groups — true/false,
each corresponds to a determined execution path;

– the input is examined and classified into one of the groups, then the program
is directed to the corresponding path.

This indicates that it is possible to design a control flow obfuscation scheme
based on security properties of certain algorithms (e.g. classification) originally
used in data mining.

Branch 
Condition

Input

Execution
Path A

Execution 
Path B

Category  A Category B

Input space

Fig. 2. An intuitive idea of a potential relation between conditional behaviors and the
classification task.

We choose neural network as a candidate for building our obfuscation design,
not only because it is a well-understood tool in classification, but also due to the
incomprehensible nature of its reasoning procedure. The extreme complexity of
extracting rules embedded inside neural networks could help providing powerful
resistance against reverse engineering techniques that aim to inspect internal
structures of obfuscated program routines.

Neural Network 
Function

Branch 
Condition

Input Value

Neural Network 
Weight Matrix

Fig. 3. The framework of control flow obfuscation with neural networks
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3.1 Design Overview

The general idea of our method is shown in Fig. 3. The obfuscation takes 2 stages:
At the preparation stage, the obfuscator first locates the target conditional

branches in program’s source code, and for each of them selects a series of values
that trigger both paths to form a training set. It then trains neural networks (in
the form of network weight matrixes) which simulate the behavior of the target
conditional logics.

After this preparation, the obfuscator goes to the transforming stage, in
which it inserts a function to the program to compute output of neural networks,
and replaces the target conditional instructions with calls to the neural network
function. The embedded function receives the same inputs as the replaced logics,
along with the weight matrix of corresponding neural networks, and can then
direct execution towards the correct path.

The detailed implementation of our design is a bit more complicated. A few
tricks are involved in order to ensure the correctness of obfuscation, as well as
enhancing the security.

3.2 Indirect Control Transferring

Similar to some previous control flow obfuscation schemes that transform the
subject logics into more complex but semantically equivalent ones [11,14], the
easiest way of replacing a conditional branch with neural network is to attach it
with a new conditional logic that instead determines based on whether the net-
work’s output is “true”. However, considering the capability of neural networks,
we can certainly do better than that.

conditional transfer

branch A

branch B

EIP

EIP+offset

call neural network

branch A

branch B

ret address
manipulation

network
output

(0/offset)

return
address

neural network
function

Fig. 4. A demonstration of obfuscating a conditional branch behavior via indirect
control transferring manipulated by neural network.

As shown in Fig. 4, a conditional branch is basically to decide whether to jump
over a certain code block (or back to a previous one in case of loops) or stay on
the code stream, thus the address of target instruction when a branch is taken is
usually represented by a relative offset to the value of instruction pointer. Given
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that neural networks are powerful enough to “remember” any pre-defined output
value assigned to each group in classification, it is possible to train the networks
to respond with offset of branches, and turn the neural network function into a
conditional dispatcher. Since replacing a conditional instruction with a call to our
dispatcher will automatically push the address of one of the branches into stack
for function returning, the dispatcher could control program’s execution path by
manipulating its return address according to the output of neural networks. This
method could further confuse of analysis tools since it turns conditional logics
into indirect control transfers, such semantic level modification could certainly
enhance the security of the obfuscation.

3.3 Applying Integer Neural Networks

Due to the unusual sigmoid function used as neuron activator and high precision
weight values assigned for network connections, traditional neural networks can
be quite special and easy to recognize. Although it causes no weakening on the
security basis of obfuscation, this does make the embedded networks easy target
to be located or traced. However, with integer neural network, we managed to
make improvements on this aspect.

Fig. 5. The different ways of implementing a step activate function. While (a) is the
most intuitive implantation, a equivalently version can be found in (b) where right
shifting operation is exploited to turn nonnegative integers into 0 and negative ones
into -1, thus gets the same behavior.

Integer neural networks limit their weights to integers only, and apply simple
step function (which outputs 1 if the input is equal or greater than 0, or -1
otherwise) as their neuron activator [25,26]. Although the motivation of the
design was simply for getting better performance and enabling the networks
to work on devices with limited hardware [27,28], the fact that integer neural
networks consist of only simple operations on common operands gives them an
advantage when used in obfuscation, since the simple instruction profile makes
them much less significant to potential adversaries. Meanwhile, it is also easier
to diversify the actual implementation of methods involve in computing integer
neural networks. For example, Fig. 5 demonstrates two different ways of realizing
the step function of neural networks. Beside the most intuitive approach that
simply returns different values for different inputs, we can also use the side effect
of bit-wise shifting to compute the exact same results.
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3.4 Dynamic Network Construction

Obfuscating a program with neural networks requires to store the weight matrix
of networks for computing. However, if the adversary manages to locate such
data, it could directly test the neural networks to reveal what they do, thus
avoid analyzing them via reverse engineering techniques. It is impractical to com-
pletely prevent such kind of attacks, but approaches for mitigation the problem
is certainly possible.

Fig. 6. Basic idea of dynamic constructing and updating the neural networks used in
obfuscation.

It is known that compared to static data, analyzing heap-allocated objects,
especially when pointer aliasing exists, is much difficult [29,30]. Hence in our
design, data of neural networks are created and updated dynamically, as briefly
demonstrated in Fig. 6. Doing this has the following benefits that may signifi-
cantly slow down the adversary’s process:

First, when a memory region is allocated for neural networks, pointers can be
created targeting different positions in the region to establish complex aliasing
effect. Neural network updating can later be carried out using these pointers,
creating complicate dynamic data dependencies and making it hard to determine
the resulting networks statically.

Second, assuming that all neural networks used in obfuscation share the same
topology, they can also share the same memory region. After one network finishes
its task, it can be updated into the next one. Each network is only completed
right before being queried in control transferring, and are overwritten afterward.
Therefore, the neural networks may only be observed correctly when program’s
execution reaches the corresponding conditional branches.
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4 Implementation

We implemented our obfuscator on source code level, using a 3-phase approach.
Program is first compiled into binary executable so that static analysis can obtain
information of its conditional branches; after that, neural networks are trained
for each recorded branch; finally, the obfuscator rewrites program’s source code
and compiles it into an obfuscated executable.

4.1 Static Analysis

To begin with, the obfuscator must know the exact conditional instructions to be
replaced before any transformation actually happens. We do this by compiling
the original program sources and statically analyzing the resulting binaries for
all conditional jump instructions. Unconditional jumps that are:

– targeting backward at a lower address, or
– followed by the target of a conditional jump/backward unconditional jump

are also recorded since they help complete if-else, while or for structures and
thus need to be preserved.

With the help of debug information, these instructions in binaries can be
mapped to commands in the corresponding source code. Meanwhile, operands
of jump instructions either indicate absolute addresses or relative distances to
their targets, both are enough to help determining the offsets for training neural
networks. Since code involved in calling a neural network function is longer
than that of a conditional branch, the offset for each conditional branch will be
adjusted accordingly.

4.2 Neural Network Training

Since integer neural networks sacrifice their precision to some degree due to the
data representation, we choose practical swarm optimization (PSO), a sophisti-
cated algorithm that has been widely applied in neural network training [31,32],
to ensure the correctness of networks generated by the obfuscator.

As mentioned in Sect. 3, conditional branches can be replaced with binomial
classifications on linear input spaces, which do not cause much trouble to the
state-of-the-art training methods. Neural networks’ generalization ability also
allows them to correctly simulate a function without understanding its complete
input-output mapping. Our experience shows that output errors (if any) in the
obfuscator only occur on inputs around the branch conditions where values of
different groups are close. Therefore, our obfuscator builds the training set of
neural networks with all values within the distance of ±1000 to the given branch
conditions, along with discretely pick samples from other parts of the input
spaces. In case that a branch is triggered by only a few inputs, these values are
repeatedly included in the training set to balance the two groups.

Since neural network training starts with a random initial state, the effect
of training differs from time to time. Thus after each training, the obfuscator
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verifies the behavior of the resulting network to see if it matches the conditional
logic to be replaced. In case errors are found, the obfuscator goes back to train
the network again with a new initial state, until the resulting network passes
verification.

4.3 Program Re-Writing

After the neural networks are trained, a function that computes their output is
inserted into the program, and conditional logics to be obfuscated are replaced
by calls to the function. Code for constructing weight matrix of networks are
inserted into selected positions of the program according to its control flow graph,
to make sure that during execution, all networks will be correctly prepared before
being queried. With various arithmetic operations, weight matrix construction
can be designed in different ways for each neural network, in order to improve
the difficulty in locating them.

5 Evaluation

The major goal of our design is to stop analyses on programs’ control flow with
automatic tools, and to slow down the adversaries from figuring out the trigger
condition of certain code sections, thus we mainly consider 2 attack scenarios
against our obfuscation:

1. an adversary could always directly perform concolic testing on an obfuscated
program, hoping to reveal certain part of its control flow with the presence
of a set of neural networks handling its conditional logics;

2. alternatively, the adversary could try to de-obfuscate the program by first
extracting the neural networks via approaches like pattern matching and other
static analyses, figure out the conditional logics they represent and remove
them to recover the program’s original control flow.

We evaluate the effectiveness of our design in both cases, while as another aspect,
performances of the obfuscated programs are also tested to show how much
overhead is introduced by our method.

5.1 Against Concolic Testing

While it is well-known that concolic testing is limited in solving non-linear alge-
braic computations, neural networks (even integer neural networks) are typical
non-linear algorithms due to the activator used in the neurons. Although neural
networks are very different from cryptographic primitives like hash functions
(they are not pseudo-random mappings and do not have problems like collision
etc.), the difficulty of extracting rules from them [17–19] still ensures that solv-
ing a complete set of constraints required to reverse the networks’ computation
is practically infeasible.
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Fig. 7. The relation between the structure of artificial neurons in integer neural net-
works and the algebraic expression of their reverse.

Consider a fully connected feedforward neural network (which is applied in
our implementation), during its computing, output of all neurons in the current
layer of the network (starting form the input layer) are passed to every neuron
of the next layer as inputs. Therefore, given an output value of a neural network,
determining the corresponding input value via automatic analyzer requires to:

1. build the inverse system of the given neural network with all neurons replaced
by their reverse formulas and all network flow turned to the opposite direction;
and

2. solve this inverse system under the given output value.

However, as shown in Fig. 7, an artificial neuron receives it inputs and compute
a weighted sum according to connections defined in the neural network, then
transforms it with the neuron activator and gets the output. Thus when reversing
a neuron that receives its input from multiple other neurons (which is common
in neural networks) at step 1, the analyzer actually gets an underdetermined
linear formula of which the number of potential solution is extremely large.
Additionally, the analyzer is most likely to encounter chains of underdetermined
neurons in neural networks while walking against the direction of network flow,
which rapidly amplifies the potential solution space it has to search (growing
exponentially). As a result, it is impossible to avoid combination explosion in
reversely analyzing neural networks.

To verify our analysis, we performed a simulation to test the effect of our
obfuscation against concolic testing on an extremely simple program:

void main ( )
{

int Var=SomeValue ;
i f ( Condit ion (Var ) )

Var++;
}
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We use such a subject program so that the evaluation can be exclusively focused
on the effectiveness of applying neural networks in control obfuscation (given that
the program does not have other components except the conditional logic to be
obfuscated). For the same purpose, we do not apply indirect control transferring
to the subject program in this evaluation, to rule out the hindrance in concolic
testing caused by indirect branches. For generality, neural networks used in the
test are given a series of different topologies, and the branch in the program is
given a series of equal/unequal branch conditions (as shown in Table 1).

Table 1. Test case settings for evaluating the effectiveness of our obfuscator.

Options of Condition(Var) Network topology

Inputs Hidden nodes (· · · /· · · for multi-layer) Outputs

> 16, = 16, ≤ 29,= 29 1 10 1

> 6, = 6, ≤ 11, = 11 1 15 1

> 4, = 4, ≤ 20, = 20 1 7/8 1

> 2, = 2, ≤ 13, = 13 1 8/8 1

We selected 2 popular analysis tools for the simulation, respectively
KLEE [9], and TEMU of the Bitbalze platform [20]. KLEE provides powerful
path exploration on the source it receives, thus is used to test the effect of our
design in impeding analysis that aims to probe unexecuted paths of the program
and to determine their trigger conditions. Meanwhile, TEMU works directly on
binary executables and performs in-depth concolic testing for execution path
verification. It first uses dynamic taint analysis (DTA) to trace an execution
path of the program, then generates a constraint set for the traced path and
feeds it to the constraint solver, which then solves a test case that is supposed
to trigger the given execution path. Although TEMU doesn’t actually do path
exploration, bringing it into evaluation still provides a convincing demonstration
on how our design works against concolic testing.

Our Method Against KLEE. The analysis from KLEE shows that while
the analyzer can easily explore both paths of the original programs and corre-
spondingly generate test cases for them, it can only detect a single feasible path
on programs obfuscated by our method. This indicates that our obfuscation
successfully hindered concolic testing from understanding the programs’ control
structures.

Unfortunately we can only go this far since KLEE provides no more informa-
tion (e.g. errors occurred or unexpected situations happened) to assist the user
other than its final analysis result1. According to the description in [9], we can

1 The output of KLEE includes only the number of paths it discovered along with 1
test case for each path.
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Table 2. Result of TEMU’s execution verification on binary executable of the test
cases.

Statement (unequal) > 16 > 6 > 4 > 2 ≤ 29 ≤ 11 ≤ 20 ≤ 13

Input value -16

Verification result Original -16

Obfuscated NA

# of constraints Original 733

Obfuscated 13751 18759 28931 31584 12809 18759 28931 31658

Statement (equal) = 16 = 6 = 4 = 2 = 29 = 11 = 20 = 13

Input value 16 6 4 2 29 11 20 13

Verification result Original 16 6 4 2 29 11 20 13

Obfuscated NA

# of constraints Original 2566

Obfuscated 12809 18759 28931 31584 12809 18759 28931 31584

only assume that the observed phenomenon is because when KLEE reaches the
branch point where the output of the neural network replaces original branch
condition, it is unable to determine whether both branches are reachable because
its constraint solver fails to find a different output from the neural network.

Our Method Against TEMU. Good thing is that simulations taken on
TEMU show positive results in consistence with the assumption we made in
the previous section. From Table 2 we can see that for the original programs,
TEMU is able to precisely return the input values that cause the execution
paths it observes, indicating successful verification. For all obfuscated programs,
however, the constraint expressions TEMU generated for the dynamic tainted
traces expanded significantly, and it fails to return a valid input value. This result
provides more solid evidence indicating that our method managed to make the
protected conditional behaviors too complicated for the constraint solvers to
reason about.

It should again be emphasized that these evaluations are taken on programs
consisting of only the obfuscated control structure. It certainly infers that the
complexity of obfuscated control flow would be way beyond existing analysis
tools’ capability, should our method be applied on actual applications.

5.2 Against Pattern Matching and Brute Force Testing

As mentioned in Sect. 4.2, since the training process of neural networks starts
with an arbitrary initial state, even the neural networks representing exactly the
same function may look totally different. To our best knowledge, currently there
seems to be no practical method to tell the actual semantic difference between
neural networks. Existing rule extraction methods [17,19] only generate fuzzy
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and approximate rules to “explain” neural networks, not recovering the exact
ones they represent. Consequently, brutally test the input-output behavior of
neural networks seems to be a better choice in this attack scenario.

Because our obfuscation still has to be semantic preserving, a network’s resis-
tance against brute force testing depends highly on the branches being obfus-
cated. E.g., it is in fact that unequal conditions (e.g. ≤ comparisons) being
obfuscated could still be revealed by testing the input spaces with simple binary
searching, should the corresponding neural networks be successfully located.

However, our obfuscator chooses to use integer neural networks, thus the net-
work computations are implemented with only basic instructions without obvious
signatures. The neural network function may also be merged with other opera-
tions of the program, in which case it could become even harder to be located.

Furthermore, as described in Sect. 3.4, our method constructs neural net-
works dynamically rather than putting them in static data region. It also builds
complex pointer aliasing on the network wight matrix region and reuses the same
matrix in different networks by updating its values. Therefore, even if the adver-
sary manages to locate the function that computes outputs of neural networks,
it is still hard to correctly separate the networks themselves since they are mixed
in complicated dynamic data dependencies. The remaining feasible method for
the adversary is to monitor the program dynamically and determine one network
each time the neural network function is called. It is easy to realize that when
enough conditional branches are obfuscated, this forces the adversary to turn to
a path-by-path dynamic testing and to solve each unknown neural network he
encounters one at a time, thus effectively increasing the complexity of digging
the internal structure of the obfuscated program.

5.3 Overhead

The overhead caused by our obfuscation mainly comes from the extra code for
updating weight matrixes and computing in neural network function. To evaluate
the detail performance of our design, we applied our obfuscator on 5 selected
benchmarks from the SPEC-2006 test suite. We obfuscated as many branches
as possible in the chosen benchmark programs, in order to get a better picture
about the overall performance penalty caused by the obfuscation.

Figure 8 shows that on all benchmarks being tested, execution overhead
caused by obfuscation ranges from around 2 % to 20 %. The results depend
mainly on the number of dynamically taken branches in each execution, rather
than the topology of networks2. An unfortunate fact is, however, that neural
networks (especially when constructed in dynamic way) cause notable memory
occupation, as given in Table 3, which might be a small drawback while being
applied in practice.

Nevertheless, it is necessary to mention that in this evaluation, we didn’t
make any kind of optimizations on the code regarding the obfuscation, or use

2 Since the extra execution required by obfuscating each conditional logic is more or
less fixed.
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Fig. 8. Normalized execution time of chosen benchmark programs when obfuscated
with neural networks of different topologies(against their original version).

advanced method to select target branches. Practically, obfuscating all possi-
ble branches makes the resulting program too suspicious and the neural network
computing too obvious. Selectively obfuscating critical points of a program could
result in much better performance, with little and acceptable sacrifice on protec-
tion strength3. Furthermore, data of different neural networks are totally possible
to be same partially, thus the updating could be done in a more efficient way. In
our future work, we plan to improve our obfuscation system from both aspect, in
order to achieve better trade-off between performance and protection strength.
But generally, our obfuscator is more than possible to make a program hard
enough to be analyzed while causing trivial affect on its performance.

Table 3. Memory cost of different neural network structures required for each obfus-
cated branch.

Neural network topology(input-[hidden]-output)

1–[10]–1 1–[15]–1 1–[7/8]–1 1–[8/8]–1

Memory cost(byte) 622 813 1069 1166

6 Discussion

6.1 Scalability on Obfuscating Compound Conditions

In practice it is common to find conditional branches controlled by compound
conditions that involve multiple input variables. Intuitively, obfuscating a com-
pound conditional statement needs to compute each of its sub-conditions with
3 Our experience shows that hiding some conditional behaviors receives much less

benefit than doing so on others, e.g. a loop structure is still relatively easier to
recognize than a conditional jump, even if obfuscated.



302 H. Ma et al.

a independent neural network, which can be much more expensive. However it
is not hard to understand that algebraic logics of the same type can be equiv-
alently transformed, e.g. x > A ⇔ (5 − x) ≤ (5 − A), or x = B ⇔ x + C =
D, (D = B + C). Therefore, it is possible to “borrow” existing neural networks
used elsewhere to participate in obfuscating compound conditional branches.

Consider a branch with compound condition x==5 && y>0 to be obfuscated.
Assume there are already 2 neural networks used for obfuscation in the program:
NetA representing condition a!=-1, and NetB representing b>10. Also assume
that both networks output 0 when respective condition is matched, or the off-
set of their branch targets otherwise. In such case, we cam simply train a new
network NetC with condition sum==0 and the target offset of the compound
branch, then replace it by computing NetC(NetA(x-6)+NetB(y+10)). This app-
roach allows to keep the memory cost of obfuscating compound branches to the
same amount as on simple ones, although we cannot also reduce the correspond-
ing time cost of invoking extra network computing.

6.2 Compatibility with Address Space Randomization

Nowadays’ operation systems are in general protected by Address Space Layour
Randomization (ASLR) techniques to prevent code injection or other memory
error exploiting. ASLR loads executables and public libraries at different ran-
dom locations for each execution, which affects operations where code pointers
are involved. However, as described in Sect. 3.2, our obfuscator trains its neural
networks to remember the relative offset of branch targets, while at the obfus-
cated branches, calling the neural network function helps to correctly get the
base addresses for computing the corresponding branch targets. Since typically
ASLR does not disturb the internal structure of program’s modules, it will not
cause negative impact to our obfuscation.

7 Conclusion

We proposed a novel method based on the complexity of understanding rules
embedded in trained neural networks. By training neural networks to simu-
late selected conditional logics, we managed to direct program’s execution path
according to the computing of neural networks, while the protected conditional
logics can be hidden. Our evaluations demonstrated that applying neural net-
works in control flow obfuscation significantly increases the difficulty in revealing
the obfuscated conditional logics either with concolic testing or using pattern
matching and brute force attacks. Simulation on the SPEC benchmarks also
indicated that our method is efficient with acceptable memory cost.

We believe that a fresh and interesting view could be opened by this work,
indicating that special properties of some well-developed methods in other areas
of computer science might be surprisingly useful in designing security applica-
tions like control flow obfuscation. Also, our design could be a solid support to
the argument that in some cases it is possible to provide strong protection with
the absence of tools like cryptographic primitives.
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