
A Simple and Novel Technique for
Counteracting Exploit Kits

Byungho Min(B) and Vijay Varadharajan

Advanced Cyber Security Research Centre, Department of Computing,
Macquarie University, Sydney, Australia

{byungho.min,vijay.varadharajan}@mq.edu.au

Abstract. Exploit kits have become a major cyber threat over the last
few years. They are widely used in both massive and highly targeted
cyber attack operations. The exploit kits make use of multiple exploits
for major web browsers like Internet Explorer and popular browser plug-
ins such as Adobe Flash and Reader. In this paper, a proactive approach
to preventing this prevalent cyber threat from triggering their exploits is
proposed. The suggested new technique called AFFAF proactively protects
vulnerable systems using a fundamental characteristic of the exploit kits.
Specifically, it utilises version information of web browsers and browser
plugins. AFFAF is a zero-configuration solution, which means that users
do not need to configure anything after installing it. In addition, it is
an easy-to-employ methodology from the perspective of plugin develop-
ers. We have implemented a lightweight prototype and have shown that
AFFAF enabled vulnerable systems can counteract 50 real-world and one
locally deployed exploit kit URLs. Tested exploit kits include popular
and well-maintained ones such as Blackhole 2.0, Redkit, Sakura, Cool
and Bleeding Life 2. We have also demonstrated that the false positive
rate of AFFAF is virtually zero, and it is robust enough to be effective
against real web browser plugin scanners.

Keywords: Exploit kit · Malware · Web browser security

1 Introduction

In recent years, attacks targeting web browsers and browser plugins have become
one of the most prevalent threats [1,2]. These attacks exploit vulnerabilities in
the web browsers, their plugins and operating systems in order to download and
execute malicious software on the victim system. This kind of attack is called
“drive-by download”, and attacks known as “exploit kits” (or exploit pack).
An exploit kit contains several exploits that can compromise diverse systems
from old Windows XP to recent Windows 7. Typically the range of the exploits
included in a single exploit kit usually covers all the popular web browsers and
plugins such as Flash, Adobe Reader and Java so as to maximise the possibility of
successful compromise [3–5]. Also, exploit kits are used in various cyber attacks
from massive spamming to highly sophisticated APT like Aurora operation [6].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 259–277, 2015.
DOI: 10.1007/978-3-319-23829-6 19

260 B. Min and V. Varadharajan

As the number of drive-by download attacks and that of exploit kits increase,
several techniques to detect or prevent them have been proposed [6–12]. These
techniques use one or more static and dynamic features such as characteristics
and behaviours of malicious web pages. Another approach in the industry is
giving users an option to block (or allow) web browser plugins entirely or selec-
tively based on blacklisted (or whitelisted) web sites [13]. Major browsers like the
Internet Explorer, Chrome, Firefox and Safari have basic features for enabling
or disabling plugins, while a few web browser plugins like ClickToPlugin1 and
FlashBlock2 provide more controls over the plugins such as whitelist. In some
cases, operating system blocks outdated plugins [14].

In this paper, we propose a new approach to the exploit kit problem. Rather
than reactively detecting and blocking exploit kits, our approach proactively mod-
ifies certain behaviour of the web browser plugins in order to prevent exploit kits
from triggering their exploits. We have analysed multiple exploit kits and discov-
ered a fundamental difference between benign software developers and malicious
exploit kit developers; they both detect and check the version of to-be used plu-
gin, but the way they check it is completely opposite to each other; we describe
this difference in approach in Sect. 3. This observation led us to the proposed
defensive methodology, AFFAF (A Fake for a Fake), which leverages the dif-
ference to limit exploit kits’ activities, while allowing normal web sites to function
as intended. From a security perspective, AFFAF has several advantages. AFFAF is
more fine grained than the allow/block-based solutions in the sense that it uses
version information of the browser plugins. Next, it protects vulnerable systems
as well as fully updated ones by thwarting exploit kits at the very early stage of
an attack. In addition, it is hard for attackers to bypass AFFAF even after they
know this methodology, since it makes use of an essential feature of exploit kits.
Furthermore, AFFAF is a zero-configuration solution, hence users do not need to
make decisions on whether to enable a specific browser plugin or not every time
they visit a new web site. Finally, AFFAF is easy to apply and adopt as a practical
technique.

We have implemented a prototype based on our methodology. Our prototype
implementation uses JavaScript and web browser extension techniques to inter-
cept communications between the web browser and web pages, and to modify
the behaviour of web browser plugins. Because checking browser plugin versions
using JavaScript is the de-facto standard among web developers and attack-
ers, our prototype successfully blocks multiple real-world exploit kits including
Blackhole 2.0, Redkit, Sakura, Cool and Bleeding Life 2, which proves the effi-
cacy of the proposed methodology. Our evaluation involved Alexa top 100 web
sites with Flash and/or PDF contents as well as ten fully Flash-based sites. In
all theses cases, deployment of our prototype worked very well, suggesting the
false positive rate of zero in these cases.

1 http://hoyois.github.io/safariextensions/clicktoplugin/.
2 https://chrome.google.com/webstore/detail/flashblock/

gofhjkjmkpinhpoiabjplobcaignabnl.

http://hoyois.github.io/safariextensions/clicktoplugin/
https://chrome.google.com/webstore/detail/flashblock/gofhjkjmkpinhpoiabjplobcaignabnl
https://chrome.google.com/webstore/detail/flashblock/gofhjkjmkpinhpoiabjplobcaignabnl

A Simple and Novel Technique for Counteracting Exploit Kits 261

The remainder of this paper is organised as follows. In Sect. 2, an overview
on exploit kits is given. Our defensive methodology, AFFAF, is explained in
Sect. 3 along with our observations on exploit kits. Prototype implementation
is described in Sect. 4. Three types of evaluation and their results are described
in Sect. 5. We discuss related work in Sect. 6, and then conclude this paper with
some final remarks in Sect. 7.

2 Background

Discussion on exploit kits and detection techniques is given in this section pro-
viding the background knowledge for the problems addressed in this paper. We
also present our observations on the exploitation strategy being used in many
exploit kits.

Implementation of Exploit Kits: Exploit kits consist of two parts: malicious pages
(client-side) and a control panel (server-side). When a victim visits a malicious
link contained in a web site or a spam whose server has been compromised and
poisoned with malicious contents, the user is redirected to the landing page of the
exploit kit (after passing through several intermediary servers). Then the exploit
kit profiles the victim environment using client-side script such as JavaScript.
Based on the information gathered, it determines, delivers and launches one or
more exploits amongst many available exploits for web browsers and their plu-
gins. If the exploitation is successful, a malware is downloaded and executed on
the victim system. This process is called “drive-by download” attack because it
happens without any user consent [3]. The malware starts communicating with
its control panel/administration interface that provides control functionalities
such as remote access and various statistics on the compromised systems. Mali-
cious pages delivered to victims are constructed using HTML and JavaScript,
while control panel used by attackers is written using server-side scripting lan-
guages like PHP and backend software such as MySQL and Apache.

Defensive Techniques: As exploit kits have become a major cyber threat [1,2],
several techniques to detect them have been proposed. One of the initial efforts
was to detect malicious domains/URLs [8,10,15–18] and to build blacklists of
these domains using techniques such as Google Safe Browsing, Malware Domain
List and URL Query. To counteract the efficacy of such defence, attackers began
to use fast-flux DNS and obfuscated code. Fast-flux DNS makes blacklists hard
to be kept up-to-date, and obfuscated and evasive code enables the attackers (1)
to avoid signature or other static feature-based detection techniques and (2) to
protect the code from being analysed [19]. As a consequence, dynamic feature-
based and behaviour-based detection techniques have been proposed in [6,7],
and the arms race continues. These trends in attacks and defence mechanisms
are exactly same as malware history that began with normal binaries and then
evolved into obfuscation bypassing signature-based anti-virus.

262 B. Min and V. Varadharajan

Table 1. CVEs exploited in the tested exploit kits and corresponding vulnerable prod-
ucts with version information

CVE Vulnerable versions CVE Vulnerable versions

CVE-2007-5659/

2008-0655

Adobe Reader≤ 8.1.1 CVE-2011-1255 IE 6-8

CVE-2009-2477 Firefox≤ 3.5.1 CVE-2011-2110 Flash≤ 10.3.181.26

CVE-2008-2992 Adobe Reader≤ 8.1.2 CVE-2011-2140 Flash≤ 10.3.183.5

CVE-2008-5353 Java≤ 6u10 CVE-2011-2371 Firefox≤ 4.0.1

CVE-2009-0927 Adobe Reader≤ 9.1 CVE-2011-2462 Adobe Reader≤ 10.1.1

CVE-2009-3867 Java≤ 6u17 CVE-2011-3106 Chrome≤ 19.0.1084.52

CVE-2009-4324 Adobe Reader≤ 9.3 CVE-2011-3659 Firefox≤ 3.6.26, 4.9

CVE-2010-0188 Adobe Reader≤ 9.3.1 Firefox social engineering Firefox≤ 4

CVE-2010-0094 Java≤ 6u18 CVE-2012-0754 Flash≤ 10.3.183.15, 11.1.102.62

CVE-2010-0840 Java≤ 6u18 CVE-2012-0775 Adobe Reader≤ 10.1.3,≤ 9.5.1

CVE-2010-0842 Java≤ 6u18 CVE-2012-0779 Flash≤ 10.3.183.19, 11.2.202.235

CVE-2010-0886 Java≤ 6u19 Unknown CVE Flash≤ 10.3.183.23, 11.4.402.265

CVE-2010-1240 Adobe Reader≤ 9.3.3 CVE-2012-3683 Safari≤ 6

CVE-2010-1297 Flash≤ 10.1.53.64 CVE-2012-4681 IE 6-9

CVE-2010-1885 Windows XP-2003 CVE-2012-4792 IE 6-8

CVE-2010-0248 IE 6-8 CVE-2012-4969 IE 6-9

CVE-2010-2883 Adobe Reader≤ 9.4 CVE-2012-5076 Java≤ 7u8

CVE-2010-2884 Flash≤ 10.1.82.76 CVE-2012-1880 IE 6-9

CVE-2010-3552 Java≤ 6u21 CVE-2012-1876 IE 6-10

CVE-2010-3654 Flash≤ 10.1.102.64 CVE-2012-1889 Windows XP-7, Server 2003-2008

CVE-2010-4452 Java≤ 6u23 CVE-2013-0422 Java≤ 7u11

CVE-2011-0558 Flash≤ 10.2.152.26 CVE-2013-0634 Flash≤ 10.3.183.51

CVE-2011-0559 Flash≤ 10.2.152.26 CVE-2013-1493 Java≤ 7u15 - 6u41

CVE-2011-0611 Flash≤ 10.2.154.27 CVE-2013-2423 Java≤ 7u17

3 AFFAF: Proposed Methodology

In this section, we give our observations on the exploitation strategy of exploit
kits’, and then propose a novel defensive methodology to counteract it. As a
proactive solution, our technique can be combined with any reactive defensive
technique from blacklists to malicious page/code detection mentioned earlier.

Observations on Exploitation Strategy of Exploit Kits: In addition to evasion
techniques, there is another important commonality that exploit kits share to
install silently malware without user’s notice; they profile the victim system
before launching exploits. After analysing major exploit kits, such as Blackhole
2.0 and Bleeding Life 2, we observed that they all use similar exploit deter-
mination process like the one shown in Fig. 1. It is a flow chart representation
of Blackhole 2.0’s JavaScript code for its Flash exploits. Not only Flash, but
also browser type and other conditions are tested in the diagram. This kind of
version detection is confirmed in many exploit kits [2,3,5,20–24]. In a couple
of ways, profiling is a crucial strategy of exploit kits that enables reliable and
secret compromise. First, it is well-known that unsuccessful software exploita-
tion may make the target web browser or plugin be unresponsive or crash, which

A Simple and Novel Technique for Counteracting Exploit Kits 263

Fig. 1. Control flow for Flash exploitation (Blackhole 2.0)

will cause suspicions. We have experimented with several exploits and analysed
exploit kits (Table 1), which confirmed this behaviour. In the worst case, such
a crash can lead to the detection of an entire attack operation in which the
exploit kit is involved in. Obviously, the attackers do not want this to happen.
What the attackers usually want is to compromise as many victims as possible
and remain undetected as long as possible. Therefore, attacking only vulnerable
targets and avoiding highly secured (not vulnerable) targets is acceptable for
them. As a result, they avoid non-vulnerable versions where their exploitation
attempts will not succeed. This is why exploit kits exquisitely pinpoint the vul-
nerable web browsers and plugins as given in Fig. 1, prior to downloading and
launching an exploit. Even penetration testing tools like Metasploit3 and SET
(Social Engineering Toolkit)4 check the target version before trying exploits in
order to reliably and secretly compromise target machines. Second, exploit kits
contain more than one exploit. In other words, it can try other exploits (e.g.
Internet Explorer browser exploit) even if a vulnerable version of one plugin
(e.g. old Java) is not installed on the target. This strategy raises the possibil-
ity of successful exploitation as well as reducing the risk of exposure. Third, by
delivering only the required exploit, only a portion of a complete exploit kit is
exposed to victims and security experts, thus making the analysis difficult.

Developers vs. Attackers: After observing the profiling behaviour of exploit kits,
we discovered a fundamental difference between attackers and web developers.
Even though they both use web browser plugins, the attackers exploit them
in a way to compromise victim machines, whereas the developers utilise their
functionalities in order to implement rich web applications. And before actu-
ally using a plugin, both the attackers and the developers check the existence
and/or version of the plugin. However, the way they check the version num-
ber is totally different. Benign developers normally check the existence or the
minimum version number required for their web applications (Java 1.5.XX or
higher, for example); it is a commonly accepted development practice to require
a specific or higher version of software. The developers perform this check for
compatibility. If the required plugin is not installed, or its version is too low

3 http://www.metasploit.com.
4 http://www.social-engineer.org.

http://www.metasploit.com
http://www.social-engineer.org

264 B. Min and V. Varadharajan

and some required functionalities are not provided in the old version, the web
application cannot run on the system. In addition, thanks to backward compat-
ibility practice that is universally deployed in the software industry, developers
normally don’t have to check the upper limit for compatibility. For instance, the
following code from Adobe’s Flash development help page5 shows how a Flash
content is embedded in HTML. It only checks the existence of Flash plugin, and
displays “Get Adobe Flash player” link if Flash is not available on the client
system:
<object class id=” c l s i d : d27cdb6e . . . ” \

width=”550” height=”400” \
id=”movie name” align=”middle ”>

<param name=”movie” value=”movie name . swf ”/>
< !−−[i f ! IE]>−−>
<object type=” app l i c a t i on /x−shockwave−f l a s h ” \

data=”movie name . swf ” width=”550” . . .>
<param name=”movie” value=”movie name . swf ”/>

< !−−< ! [e nd i f]−−>

<img src=”http ://www. adobe . com/ images / \
. . . / g e t f l a s h p l a y e r . g i f ” \
alt=”Get Adobe Flash p layer ”/>

< !−−[i f ! IE]>−−>
</object>
< !−−< ! [e nd i f]−−>

</object>

In contrast, the maximum version number required for successful exploita-
tion (for instance, Java 7u11 or lower) is probed by the attackers. This equal to
or less than tendency is evident in Table 1. This table shows CVEs exploited by
the exploit kits that we have analysed and tested.6 The reason for this tendency
is clear. The attackers need to profile victim systems for the reasons discussed
earlier, and the profiling code checks equal to or less than relation because a
vulnerability is applied to a specific version or below, as discussed earlier. For
instance, if a zero-day vulnerability is disclosed for Flash and version 10.2.158
was the latest at that time, the exploit code for the vulnerability is applicable
to 10.2.158 or below. As a concrete example, a notorious exploit kit, Blackhole
2.0, checks an exact version range before trying its Flash exploits as given below
(see Fig. 1 for more detail):
f unc t i on sp l5 () {

var ver1 = f l a s h v e r [0] ;
var ver2 = f l a s h v e r [1] ;
var ver3 = f l a s h v e r [2] ;
i f (((ver1 == 10 && ver2 == 0 && ver3 > 40) \

| | ((ver1 == 10 && ver2 > 0) && \
(ver1 == 10 && ver2 < 2))) \

| | ((ver1 == 10 && ver2 == 2 && ver3 < 159) \
| | (ver1 == 10 && ver2 < 2))) {
// Embed Flash Exp lo i t (s)

}
5 http://helpx.adobe.com/flash/kb/object-tag-syntax-flash-professional.html.
6 In order to give correct information, all the data of this table is veri-

fied using the official CVE web site and ExploitPack Table 2013 that are
available at http://cve.mitre.org and https://docs.google.com/spreadsheet/ccc?
key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE respectively.

http://helpx.adobe.com/flash/kb/object-tag-syntax-flash-professional.html
http://cve.mitre.org
https://docs.google.com/spreadsheet/ccc?key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE
https://docs.google.com/spreadsheet/ccc?key=0AjvsQV3iSLa1dE9EVGhjeUhvQTNReko3c2xhTmphLUE

A Simple and Novel Technique for Counteracting Exploit Kits 265

Fig. 2. Proposed mitigation against exploit kits for browser plugins: separate (upper)
or integrated (lower)

The JavaScript code above meticulously pinpoints the target Flash versions
such as 10.2.{0-158} and 10.{0 or 1}.{XXX}, and loads malicious Flash contents
only if one of the conditions is satisfied. Then, action script inside the Flash
contents executes the actual exploit code. Even though JavaScript is the most
popular place where exploit kits perform their version detection (given in Sect. 5),
a few exploit kits check target software version from their malicious payload. For
instance, Redkit exploit kit conducts version detection inside its PDF payload.

Leveraging the Difference: The current situation that developers check the min-
imum required version, while attackers tend to check the maximum vulnera-
ble version can be utilised to protect systems from exploit kits. In most cases,
exploits included in exploit kits are not triggered if the version of the target
browser plugin is higher than the maximum vulnerable version (which means
patched). Therefore, by altering outdated plugins to be the latest (or even a
non-existent future version), we can make all the conditions probed by exploit
kits (such as those of Fig. 1) fail; hence helping to prevent the launch of exploits.
Suppose that a plugin (e.g. Java) advertises its version number to be higher than
its actual version (e.g. the latest or even higher one), it prevents exploit kits from
trying Java exploits that target some old versions or the latest version in the
case of zero-day. More importantly, users can still enjoy Java applets on benign
web sites, since those web sites check either the existence of Java or minimum
required version, which is definitely lower than the fake version. As a result, we
can block plugin exploits contained in exploit kits, while leaving browser plugins
usable to normal web applications. We call this defensive methodology AFFAF
(a fake for a fake), meaning that it uses fake version numbers to thwart exploit
kits and drive-by download attacks. With regard to false positive (the case when
benign web application is blocked as well as exploit kits), it is expected to be low

266 B. Min and V. Varadharajan

because security fixes are normally minor version updates and no new features
are introduced.

This methodology can be implemented as either a separate solution (this
paper’s prototype) or an integrated part of each plugin. Each case is depicted in
Fig. 2. In the former case, AFFAF intercepts version enquires and returns a fake
one, whereas in the latter case, each plugin is responsible for such manipulation.
In both cases, a web browser plugin or AFFAF (1) responds with the requested
plugin object to the web page, and (2) reports the real version information to
relevant vendor so that update is possible, while reporting fake versions to any
other web sites.

3.1 Merits of AFFAF

AFFAF is a fine-grained defence using version numbers of plugins that helps to
counteract attacks. As a consequence, several benefits including the following
major ones are obtained:

1. AFFAF is a zero-configuration solution. Users do not need to disable their
plugins nor blacklist (or whitelist) them; in other words, users need to do
nothing for AFFAF. This means simple convenience. The users can use old
and vulnerable browser plugins without worrying about being exploited by
exploit kits. This is crucial in web user protection, because many users (93 %
of Java and 60 % of Adobe Reader users) do not update their plugins and use
outdated (thus vulnerable) ones [25,26]. Even worse, less than one per cent of
enterprises run the latest version of Java [27]. Some users even want to disable
security warnings for outdated browser plugins provided by browsers [28]. Our
methodology protects these old versions as well as the latest ones without
disabling them.

2. Even after attackers know AFFAF methodology, it is still hard for them to
bypass it. Attackers cannot try an arbitrary exploit, since they do not know
the real versions of browser plugins. For instance, suppose an exploit kit has
an exploit for CVE-2012-0779. It works against Flash up to 10.3.183.19 for
version 10 and up to 11.2.202.235 for version 11 (Table 1). Even after the
attackers guess Flash version obtained from the victim is a fake, they cannot
try this exploit because it may crash the browser or make it unresponsive,
which makes the user suspect an attack. As a result, the attackers hardly
use exploits against seemingly not vulnerable environment as shown earlier.
Until they find a way to obtain the real version number, promiscuously trying
exploits is too risky for the attackers.

3. AFFAF thwarts attacks at the very early stage. Without using their exploits,
exploit kits cannot use any further exploits such as Windows privilege esca-
lation that are supposed to be triggered by the first web browser exploits,
nor can install malware. Therefore, even vulnerable environments such as
unpatched Windows XP can be protected without being exploited by both
zero-day and known exploits. This is especially beneficial to critical infrastruc-
ture and SCADA sites whose systems are usually not patched mainly due to
the 24/7 operation requirement.

A Simple and Novel Technique for Counteracting Exploit Kits 267

4. AFFAF is a proactive method (i.e. before any actual exploitation happens) that
modifies the behaviour of web browser plugins in order to block triggering of
exploits embedded in the exploit kits. Therefore, unlike reactive detection
techniques, it works well no matter how much exploit kits’ JavaScript code is
obfuscated.

5. AFFAF is more fine grained than blocking web browser plugins or blacklisting
them. This is especially useful to systems where disabling a specific plugin
is impossible. For example, some enterprise-wide software solutions require
Java [27].

6. Employing AFFAF does not require significant workload for plugin vendors.
First, modern browser plugins already provide automatic version check func-
tionality that is reusable in AFFAF that needs the latest version number. Those
plugins automatically check the latest version and pop up an update window
to users, even though many users do not update them. Second, reporting gen-
uine version number only to the vendor is also simple to implement; browser
plugins can use digital certificates or other authentication schemes to verify
the subject who is checking their version.

7. The proposed AFFAF technique can be used in conjunction with other tech-
niques that are already in place.

4 Implementation

We have implemented a prototype as a separate system between the two imple-
mentation methods discussed in the previous section (Fig. 2). Unlike a browser
plugin vendor who can apply AFFAF to its product by updating its source code,
we had to patch individual plugin’s binary if we were to implement AFFAF in
the integrated way. Furthermore, having a separate system provides a more
efficient way to support more than one web browser plugin as an independent
(non-vendor) developer.

Overview and Scope: The current implementation uses two techniques: Internet
Explorer extension that enables JavaScript injection and object override feature
of JavaScript. It demonstrates most merits of AFFAF including defence against
browser exploit kits, zero-configuration, and reporting real version numbers only
to corresponding vendors. Lastly, it does not affect update procedure of web
browser plugins.

The prototype is capable of modifying version numbers of Flash, Adobe
Reader, and Internet Explorer. Support for other browsers and plugins like Java
can be added in the future. It consists of two parts, a browser extension and
JavaScript code, as given in Fig. 3. The former enables the prototype to inject
(i.e. pre-load) JavaScript code in every web page before it is rendered, and the
latter intercepts and modifies version numbers.

Pre-loading JavaScript in Web Pages: We have tested two platforms for
JavaScript injection purpose: IE7Pro and Crossrider. IE7Pro is a browser exten-
sion for Internet Explorer 6, 7, and 8 that aims to enhance the feature set

268 B. Min and V. Varadharajan

Fig. 3. Prototype implementation of AFFAF

provided by the browser. Even though IE 9 is not officially supported, IE7Pro
is compatible with it as well. IE7Pro adds features such as tab enhancement,
advertisement and flash blocker, mouse gestures, inline search, privacy enhance-
ments, online bookmark service, and user script support. We tested the user
script functionality to pre-load JavaScript code, and verified its operation. Sec-
ond option is Crossrider. It is a cloud-based development framework that lets
developers quickly and easily create cross browser extensions. When the develop-
ers write code using Crossrider APIs and JavaScript, Crossrider builds a multi-
browser extension for the code. It supports Internet Explorer, Chrome, Firefox,
and Safari. Among various APIs it provides, includeJS() and addInlineJS add
the contents of the specified JavaScript resource to web pages. We used this API
to pre-load our AFFAF JavaScript, and confirmed it satisfied our requirements.
The features such as user script of IE7Pro and API includeJS() of Crossrider
are mainly intended for page view optimisation such as social media site de-
cluttering. Even though both IE7Pro and Crossrider are viable options, we have
selected Crossrider as our JavaScript injector for a couple of reasons. First, Cross-
rider is actively being developed and supported, while IE7Pro is abandoned and
has not been updated since June 2010. Second, building multi-browser exten-
sion has more potential than making an IE-only one, even though our current
prototype mainly targets IE just like major exploit kits do.

Our Crossrider extension is a shell for AFFAF, hence simple as below. Once a
user installs this extension, a file (affaf.js) is pre-loaded each time a page is
viewed, and the included JavaScript code performs AFFAF’s functionalities.

Modifying Version Numbers: The main body of our implementation is the
JavaScript code injected into every web page the browser loads. First, it uses a
JavaScript’s inheritance feature to override original ActiveXObject that is used
by developers and attackers when checking plugin version:
var f = ActiveXObject ;

// Override ActiveXObject
var ActiveXObject = func t i on (prog id) {

var ax = new f (prog id) ;
this . prototype = ax . prototype ;
. . .

The overridden object has two functions, one for Flash and the other for
Adobe Reader. In the case of Flash, GetVariable() is overridden in order to

A Simple and Novel Technique for Counteracting Exploit Kits 269

return fake or real version number depending on the subject that requests the
version. The overridden function first gets the actual version of the active Flash
plugin, adds some random numbers to its major and minor version numbers, and
returns the newly created version number to its caller. It returns the original ver-
sion number only to “adobe.com”. Essentially identical operations are performed
for Adobe Reader as well. Only version parsing routine, progid string that is
compared and the overridden function are different. This implementation also
does not affect updates of Flash and Adobe Reader, since each of these two plug-
ins use a separate process to check and update themselves, which is independent
of the Internet Explorer. If we modified the actual version number embedded
inside plugins, update procedure would have also been affected.

Lastly, in order to modify the version number of Internet Explorer,
navigator object is redefined using the following JavaScript code7, because IE
(unlike other browsers like Chrome and Firefox) does not allow to override getter
functions of navigator’s properties. In the redefined navigator object, proper-
ties related to browser version like userAgent and appName are replaced with fake
strings. And all other properties, such as systemLanguage and cookieEnabled,
are defined as corresponding original values so as to make the new object a
complete replacement of the original navigator.
// navigator rede f ined
var nav igator=new Object ;

// userAgent and other proper t i e s rede f ined
nav igator . userAgent=’ Moz i l l a /5 .0 (compatible ; . . .) ’ ;
nav igator . p lat form=’Win32 ’ ;
nav igator . appCodeName=’ Moz i l l a ’ ;
nav igator . appName=’ Microso f t I n t e rn e t Explorer ’ ;
nav igator . appVersion=’ 5 .0 (compatible ; MSIE . . .) ’ ;

Even though this prototype is not a full implementation of AFFAF, it achieves
its major aspects. First, as a browser extension, it intercepts communications
between the web browser and web pages, and injects JavaScript code that mod-
ifies version number of Flash and Adobe Reader. Second, it does not affect the
update procedures of Flash and Adobe Reader. Third, it checks the hostname
of version requesting subject, and returns the real version number only to the
vendor (Adobe in this case). We have verified this code using Adobe’s Flash ver-
sion check page8. It is also a zero-configuration extension. A user simply needs
to install this on their system. In addition, it is a lightweight implementation
without any kernel module and dedicated user process.

Limitations: Some exploits (in exploit kits) can be promiscuously triggered if
they are harmless from the perspective of attackers. For example, an exploit for
Internet Explorer (CVE-2006-003) is unconditionally triggered in Blackhole 2.0.
Therefore, it is very important to combine AFFAF with a reactive detection and
prevention solution in order to provide the maximum protection.

7 This is a simplified representation. For instance, many variables have been omitted
whereas some others have been replaced with static strings.

8 http://helpx.adobe.com/flash-player/kb/find-version-flash-player.html.

http://www.adobe.com
http://helpx.adobe.com/flash-player/kb/find-version-flash-player.html

270 B. Min and V. Varadharajan

There is more than one way of checking versions of Flash and Adobe Reader.
For instance, action script inside a Flash object can check the version number
of a currently active Flash object. Since our implementation uses JavaScript, it
cannot intercept this kind of version checking. It can only hook version checking
methods that make use of JavaScript. However, this is an implementation issue
and only applies to our prototype, not to the concept of AFFAF. When plugin ven-
dors like Adobe and Oracle employ AFFAF, it would work in all version checking
situations. In addition, as our evaluation results (Sect. 5) suggest, this prototype
is enough to invalidate many of currently available exploit kits. We suppose this
is because using JavaScript for version checking is the de-facto standard among
developers and attackers.

Finally, the current prototype implementation does not work for other web
browsers like Chrome and plugins such as Java and Microsoft Office. Again, this
limitation is applied only to the current version of the prototype, not to the
proposed methodology.

5 Evaluation

Evaluation of the prototype implementation has been performed from three dif-
ferent aspects. First, AFFAF was tested against live or locally deployed exploit
kits in order to verify its effectiveness. This evaluation demonstrates the efficacy
of the protection that AFFAF provides against real exploit kits. Next, we visited a
wide range of benign web sites that contained Flash and/or PDF contents, and
ascertained whether those sites worked well without any issue. This evaluation
is a test for false positive; for the prototype, a failure of Flash or PDF content
with its deployment is a false positive. Lastly, we tested the implementation with
dedicated browser plugin scanning services to test its robustness.

Configured Vulnerable Environment: Our evaluation environment is composed
of two VMware virtual machines running on a dedicated PC with a 3.4 GHz Intel
Core i7 and 16 GB RAM. One VM runs Windows XP Professional SP3 and the
other runs 32-bit Windows 7 Ultimate. Both are equipped with various vulner-
able versions of Flash (10.0.45.2 and 11.0.1.152) and Adobe Reader (8.1.0, 9.0.0
and 10.0.1). Versions for each software were decided based on the CVE informa-
tion available from Table 1 so that they are vulnerable to exploit kits. In total,
twelve (2 × 2 × 3) software configurations were set up. For each configuration,
two snapshots are saved: one with the prototype and the other without, resulting
in 24 separate snapshots. System utilities like Procmon (Process Monitor) and
tcpdump are also deployed in each VM so as to scrutinise any triggered exploita-
tion. Lastly, no web browser plugins other than Flash and Adobe Reader are
installed on the VMs so they are not compromised by other exploits such as
targeting Java and Microsoft Office.

5.1 Defence Against Exploit Kits

The best way to test AFFAF’s effectiveness is to visit real-world exploit kit URLs
with vulnerable browser plugin configurations. We have collected exploit kit

A Simple and Novel Technique for Counteracting Exploit Kits 271

Table 2. Examples of tested live exploit kits

Exploit kit URL Blocked by AFFAF

Blackhole 2.0 ilianorkin.ru:8080/forum/links/column.php YES

Blackhole 2.0 actsforcharged.com/closest/209tuj2dsljdglsgjwrigslgkjskga.php YES

Blackhole 2.0 juhajuhaa.ru:8080/forum/links/column.php YES

Blackhole 2.0 ighjaooru.ru:8080/forum/links/public version.php YES

Blackhole 2.0 http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-

repo-stats/wps.php?c002

YES

Blackhole 2.0 www.quickcraft.com.br/infourl.htm YES

Blackhole 2.0 hillaryklinton.ru:8080/forum/links/column.php YES

Redkit senreibehn.narod.ru/ YES

Redkit actionpreventive.com/mhas.htm?j=1335200 YES

Sakura oto-drukarnia.pl/wp-content/themes/twentyten/amaz.html YES

Cool www.appvenue.dk/seoadvertbb.html YES

Bleeding Life 2 localhost (set up with leaked version) YES

URLs from multiple security mailing lists and sites including Malware Domain
List9, URL Query10, and ZScaler URL Risk Analyzer11. In addition to these live
URLs, we downloaded a popular exploit kit (Bleeding Life 2), and configured it
in our own testbed.

Evaluation Method: The evaluation has been conducted in four steps. First, we
collected malicious URLs from multiple sources and input them to our 24 VM
snapshots. Second, each URL was visited by each snapshot. This process was
automated using VMware’s script support. Next, we analysed twelve snapshots
that do not have AFFAF installed in order to check whether all the components of
an exploit kit, such as JavaScript libraries and exploit code, are live and active.
This was important since many collected landing pages were linked to non-
existent exploit code even one day after the pages were disclosed. Through this
step, we verified (1) that twelve plugin configurations were actually exploitable
by exploit kits and (2) that the exploits for Flash and Adobe Reader included
in the exploit kits were active and working. Landing URLs with broken exploit
links were excluded in this step for accurate evaluation. As a result, we tested
50 live URLs of working exploit kits. Table 2 shows 11 of them, which are still
online and active at the time of August 2013. In the last step, we compared two
snapshots of each software configuration in order to check if AFFAF prevented
exploit kits from triggering their exploits.

On the Modification of Version Number: For each snapshot, we made AFFAF
advertise various versions for Flash and Adobe Reader, and examined if it suc-
cessfully blocked exploit kits. When modifying version numbers, AFFAF only adds
(never subtracts) a random number to the actual version number. And the ran-
dom number was selected in a way that the resultant fake version is same or

9 http://www.malwaredomainlist.com.
10 http://urlquery.net.
11 http://zulu.zscaler.com/.

http://ilianorkin.ru:8080/forum/links/column.php
http://actsforcharged.com/closest/209tuj2dsljdglsgjwrigslgkjskga.php
http://juhajuhaa.ru:8080/forum/links/column.php
http://www.ighjaooru.ru:8080/forum/links/public_version.php
http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-repo-stats/wps.php?c002
http://eveningwiththeeditors.com/wp-content/plugins/wp-plugin-repo-stats/wps.php?c002
http://www.quickcraft.com.br/infourl.htm
http://hillaryklinton.ru:8080/forum/links/column.php
http://senreibehn.narod.ru/
http://actionpreventive.com/mhas.htm?j=1335200
http://oto-drukarnia.pl/wp-content/themes/twentyten/amaz.html
http://www.appvenue.dk/seoadvertbb.html
http://www.malwaredomainlist.com
http://urlquery.net
http://zulu.zscaler.com/

272 B. Min and V. Varadharajan

higher than the latest version. Therefore, at least two is added in the case of
Adobe Reader 8 to make it look like 10, and one in the case of Flash 10 to make
it seem to be 11. For the versions whose major version number is same as the
latest one (e.g. Flash 11), only minor version numbers are modified.

Results and Discussion: As shown in Table 2, AFFAF successfully blocked all the
exploit kits (50 live URLs and one locally deployed exploit kits) evaluated with
twelve different software configurations. In other words, 612 cases (12 config-
urations× 51 links) that would have been exploited were protected by AFFAF.
Validation was conducted in two ways. First, we recorded exploit URLs, such
as malicious Flash and PDF files, when visiting malicious URLs without AFFAF.
Then, we analysed packet dumps and verified no such file was downloaded dur-
ing AFFAF test. Because exploit kits download and execute a particular exploit
after it decides to use the exploit [3,5,20–22,24,29], the fact that exploit kits did
not download actual exploits proves no exploit was triggered. Second, we also
examined Procmon log files in order to double-check that there was no evidence
of exploitation.

All the five exploit kits tested in this evaluation (Blackhole 2.0, Redkit,
Sakura, Cool and Bleeding Life 2) are actively updated and maintained at the
time of mid 2013 [4]; three of them (Blackhole, Sakura and Bleeding Life) are
included in the most popular exploit kits [1]. This implies that (1) AFFAF is
effective in blocking major exploit kits, and (2) most exploit kits use JavaScript
for version detection, as the current prototype implementation is only capable of
intercepting JavaScript-based version checking methods. Indeed, we found that
all of them use a same public library called PluginDetect12 for browser plugin
detection. PluginDetect is a JavaScript library that detects browser plugins.
It is intended to work with all the major browsers such as Internet Explorer,
Firefox, Mozilla, Netscape, Chrome, Safari, Opera, SeaMonkey and Flock. We
further investigated this interesting aspect, and it turned out that PluginDetect
is also used in other exploit kits such as Neutrino 2.0, Nuclear [30] and White-
hole [29]. It seems that there are a couple of plain advantages for exploit kit
developers to use publicly available library: higher anonymity and better ver-
sion detection. For example, custom version detection code can be used as a
signature/feature for a particular exploit kit. More importantly, it may contain
bugs inside its custom version checking routine. Lastly, defensive solutions like
anti-virus and IPS cannot detect PluginDetect since benign web sites also use
it for compatibility check purpose.

It should be noted that many of the exploits in Table 1 were zero-days when
they were first employed in exploit kits. This was achieved in our testbed VMs
using outdated plugins. This demonstrated that AFFAF is effective in blocking
zero-day exploits as well as known ones.

12 http://www.pinlady.net/PluginDetect/.

http://www.pinlady.net/PluginDetect/

A Simple and Novel Technique for Counteracting Exploit Kits 273

5.2 Benign Web Sites

We also evaluated AFFAF on benign web sites in order to measure its false positive
rate. For AFFAF, a false positive means that a legitimate web site does not work
properly under the deployment of AFFAF.

Alexa Top 100 Web Sites and Embedded PDF Contents: First, Alexa top 100
web sites including Flash-centric ones such as YouTube, Dailymotion, youku,
LiveJasmin, ESPN, CNN, and CNET.com were tested. In order to verify that
Flash contents actually work, not only the first pages but also specific pages con-
taining Flash-based contents were visited. We confirmed all the Flash contents
on those web sites worked correctly, which implies AFFAF’s false positive rate
is virtually zero. For PDF contents, we searched PDF files and PDF-embedded
web pages on Google, visited them, and checked if PDFs are displayed cor-
rectly. Adobe Reader plugin worked well in all the test cases. This is obvious
since actual content-embedding code (e.g. <object> tag) is not affected by the
prototype implementation. Only version checking APIs like GetVariable() and
GetVersions() are intercepted and overridden.

Top 10 Flash-based Web Sites: Most of the Flash contents tested with Alexa
top 100 web sites are video and advertisement. Even though Flash is basically
a video container, it can also be used for developing an entire web application
such as online game and graphic editor. In order to compensate for this potential
limitation, we performed a second evaluation with the top ten Flash web sites
selected by eBiz13. These ten sites include a variety of Flash-based web sites from
a driving game and to a museum virtual tour. Again, we verified that all the
Flash-based sites worked without any error. This experiment reaffirms AFFAF’s
false positive rate is zero.

5.3 Browser Scan Services

As exploit kits are one of the major cyber threats, security companies like Rapid7
(well-known for Metasploit) and Qualys provide web service, which checks ver-
sions of web browser plugins and warns users of outdated ones. We have tested
AFFAF with two browser scanning services, one from Rapid714 and the other
from Qualys15. The purpose of this evaluation is to check AFFAF’s robustness.
We verified that both services reported fake version numbers returned by AFFAF
for Flash and Adobe Reader, while correct versions were detected for other plu-
gins like Silverlight. This means AFFAF works well even against dedicated plugin
scanning services.

13 http://www.ebizmba.com/articles/best-flash-sites.
14 http://browserscan.rapid7.com/scanme.
15 https://browsercheck.qualys.com.

http://www.ebizmba.com/articles/best-flash-sites
http://browserscan.rapid7.com/scanme
https://browsercheck.qualys.com

274 B. Min and V. Varadharajan

6 Related Work

There have been many research efforts to detect and prevent drive-by download
attacks and exploit kits. Some are focused on malicious host detection, whereas
others are on language-specific detection.

Malicious Host/Download Detection: Lu et al. [6] proposed a browser indepen-
dent operating system kernel extension designed to eliminate drive-by malware
installation performed by exploit kits. Li et al. [15] developed a topology-based
malicious host detection technique based on the unique feature they found by
studying a set of topologically dedicated hosts discovered from malicious web
infrastructures. Invernizzi et al. [10] suggested an approach to search the web
more efficiently for pages that are likely to be malicious. Their system leverages
the crawling infrastructure of search engines to retrieve URLs that are much
more likely to be malicious than a random page on the web by starting from an
initial seed of known malicious web pages. Canali et al. [8] suggested a filter that
quickly discards benign web pages and detects malicious content using static
analysis techniques. Wang et al. [17] developed an automated web patrol sys-
tem to automatically identify and monitor these malicious sites. Nappa et al. [18]
studied drive-by download operations and proposed a technique to detect exploit
servers managed by the same organisation.

Language-specific Detection: On detection of malicious JavaScript code, Kaprav-
elos et al. [7] presented an automatic detection technique for evasive JavaScript
code. It used the observation that two scripts that are similar should be clas-
sified in the same way by web malware detectors. Curtsinger et al. [11] used
Bayesian classification of hierarchical features of the JavaScript abstract syn-
tax tree to identify syntax elements that are highly predictive of malware. Cova
et al. [12] combined anomaly detection with emulation to identify automatically
malicious JavaScript code and to support its analysis. Kolbitsch et al. [9] proposed
a JavaScript multi-execution virtual machine as a way to explore multiple execu-
tion paths within a single execution so that environment-specific malware reveals
itself. Rieck et al. [31] embedded an automatic drive-by download detection and
prevention system inside a web proxy, and blocked delivery of malicious JavaScript
code using static and dynamic code features. Nikiforakis et al. [32] performed a
large-scale crawl on the Internet and suggested a set of metrics that can be used
for JavaScript provider assessment. Through this process, they detected four new
types of vulnerabilities. Regarding Java-based malware, Schlumberger et al. [33]
proposed a detection system for malicious Java applet based on static code
analysis.

7 Concluding Remarks

In this paper, we introduced AFFAF, which is a new approach to protecting
vulnerable systems from a prevalent cyber threat, namely the exploit kits. It is a

A Simple and Novel Technique for Counteracting Exploit Kits 275

proactive methodology that blocks the execution of exploit kits using the version
information of the browser plugins. It is a zero-configuration solution from user’s
perspective, and is an easy-to-employ method from developer’s view. We have
implemented a lightweight prototype, and demonstrated that AFFAF provided
protection to vulnerable environments with outdated plugins by validating it
against 50 real-world and one locally deployed exploit kit URLs. Tested exploit
kits included popular and well-maintained ones such as Blackhole 2.0, Redkit,
Sakura, Cool and Bleeding Life 2. Also, we showed that the false positive rate
of AFFAF is virtually zero, and the technique is robust enough to be effective
against real web browser plugin scanners.

Currently we are continuing to test AFFAF against new coming and live exploit
kits that will be armed with new zero-day exploits, and confirming that AFFAF
is still effective on those future threats. Support for other browsers and plugins
like Java can be added in the future version of our AFFAF prototype. In addition,
the concept of AFFAF can be extended to any type of software, thus applying
it to other categories of software such as operating system can be part of our
future work.

References

1. Grier, C., Ballard, L., Caballero, J., Chachra, N., Dietrich, C.J., Levchenko, K.,
Mavrommatis, P., McCoy, D., Nappa, A., Pitsillidis, A.: Manufacturing compro-
mise: the emergence of exploit-as-a-service. In: CCS 2012, Raleigh, North Carolina,
USA (2012)

2. Fossi, M., Egan, G., Johnson, E., Mack, T., Adams, T., Blackbird, J., Graveland,
B., McKinney, D.: Symantec report on attack kits and malicious websites. Technical
report (2011)

3. Cannell, J.: Tools of the Trade: Exploit Kits, February 2013. http://blog.
malwarebytes.org/intelligence/2013/02/tools-of-the-trade-exploit-kits/

4. contagio: An Overview of Exploit Packs (Update 19.1), April 2013. http://
contagiodump.blogspot.com

5. Jones, J.: The State of Web Exploit Kits. Black Hat USA, Las Vegas, Nevada,
USA (2012)

6. Lu, L., Yegneswaran, V., Porras, P., Lee, W.: Blade: an attack-agnostic approach
for preventing drive-by malware infections. In: CCS 2010, Chicago, Illinois, USA
(2010)

7. Kapravelos, A., Shoshitaishvili, Y., Cova, M., Kruegel, C., Vigna, G.: Revolver:
an automated approach to the detection of evasive web-based malware. In: 22nd
USENIX Security Symposium, Washington, D.C., USA, August 2013

8. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-
scale detection of malicious web pages. In: WWW 2011, Hyderabad, India (2011)

9. Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking Internet mal-
ware. In: IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA
(2012)

10. Invernizzi, L., Comparetti, P.M., Benvenuti, S., Kruegel, C., Cova, M., Vigna, G.:
EVILSEED: a guided approach to finding malicious web pages. In: IEEE Security
and Privacy, San Francisco, CA, USA (2012)

http://blog.malwarebytes.org/intelligence/2013/02/tools-of-the-trade-exploit-kits/
http://blog.malwarebytes.org/intelligence/2013/02/tools-of-the-trade-exploit-kits/
http://contagiodump.blogspot.com
http://contagiodump.blogspot.com

276 B. Min and V. Varadharajan

11. Curtsinger, C., Livshits, B., Zorn, B.G., Seifert, C.: ZOZZLE: fast and precise in-
browser javascript malware detection. In: USENIX Security 2011, San Francisco,
CA, USA (2011)

12. Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download
attacks and malicious JavaScript code. In: WWW 2010, Raleigh, North Carolina,
USA (2010)

13. Richards, J.: Dangerous Drive-by Downloads: Protecting yourself with NoScript,
September 2012. http://cmu95752.wordpress.com/2012/09/27/dangerous-drive-
by-downloads-protecting-yourself-with-noscript/

14. Ducklin, P.: Apple bans outdated Adobe Flash plugins from Safari,
March 2013. http://nakedsecurity.sophos.com/2013/03/04/apple-bans-oudated-
adobe-flash-plugins-from-safari/

15. Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the linchpins of the dark
web: a study on topologically dedicated hosts on malicious web infrastructures. In:
IEEE Symposium on Security and Privacy (S&P) 2013, Berkeley, CA, USA (2013)

16. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a
dynamic reputation system for DNS. In: USENIX Security 2010: Proceedings of
the 19th USENIX Conference on Security, August 2010

17. Wang, Y.M., Beck, D., Jiang, X., Roussev, R., Verbowski, C., Chen, S., King,
S.: Automated web patrol with strider honeymonkeys. In: Network & Distributed
System Security Symposium (NDSS), San Diego, CA, USA (2006)

18. Nappa, A., Rafique, M.Z., Caballero, J.: Driving in the cloud: an analysis of drive-
by download operations and abuse reporting. In: Rieck, K., Stewin, P., Seifert,
J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967, pp. 1–20. Springer, Heidelberg (2013)

19. Rajab, M., Ballard, L., Jagpal, N., Mavrommatis, P., Nojiri, D., Provos, N.,
Schmidt, L.: Trends in circumventing web-malware detection. Technical report
(2011)

20. Oliver, J., Cheng, S., Manly, L., Zhu, J., Dela Paz, R., Sioting, S., Leopando, J.:
Blackhole exploit kit: a spam campaign. Not a Series of Individual Spam Runs,
Technical report (2012)

21. Desai, D., Haq, T.: Blackhole exploit kit: rise & evolution. Technical report, Sep-
tember 2012

22. Mieres, J.: Phoenix exploit’s kit from the mythology to a criminal business. Tech-
nical report, August 2010

23. Kotov, V., Massacci, F.: Anatomy of exploit kits: preliminary analysis of exploit
kits as software artefacts. In: Jürjens, J., Livshits, B., Scandariato, R. (eds.) ESSoS
2013. LNCS, vol. 7781, pp. 181–196. Springer, Heidelberg (2013)

24. Sood, A.K., Enbody, R.J.: Browser exploit packs - exploitation tactics. In: Virus
Bulletin Conference, Barcelona, Spain, October 2011

25. Higgins, K.J.: No Java Patch For You: 93 Percent of Users Run Older
Versions of the App, June 2013. http://www.darkreading.com/vulnerability/
no-java-patch-for-you-93-percent-of-user/240156053

26. Rashid, F.Y.: Most Adobe Reader Users Running Outdated, Unpatched
Versions, July 2011. http://www.eweek.com/c/a/Messaging-and-Collaboration/
Most-Adobe-Reader-Users-Running-Outdated-Unpatched-Versions-213010/

27. Bit9: java vulnerabilities: write once, pwn anywhere. Technical report (2013)
28. Mozilla support: Outdated Adobe Acrobat plugin, March 2013. http://support.

mozilla.org/en-US/questions/953805
29. Chua, J.P.: Whitehole Exploit Kit Emerges, February 2013. http://blog.

trendmicro.com/trendlabs-security-intelligence/whitehole-exploit-kit-emerges/

http://cmu95752.wordpress.com/2012/09/27/dangerous-drive-by-downloads-protecting-yourself-with-noscript/
http://cmu95752.wordpress.com/2012/09/27/dangerous-drive-by-downloads-protecting-yourself-with-noscript/
http://nakedsecurity.sophos.com/2013/03/04/apple-bans-oudated-adobe-flash-plugins-from-safari/
http://nakedsecurity.sophos.com/2013/03/04/apple-bans-oudated-adobe-flash-plugins-from-safari/
http://www.darkreading.com/vulnerability/no-java-patch-for-you-93-percent-of-user/240156053
http://www.darkreading.com/vulnerability/no-java-patch-for-you-93-percent-of-user/240156053
http://www.eweek.com/c/a/Messaging-and-Collaboration/Most-Adobe-Reader-Users-Running-Outdated-Unpatched-Versions-213010/
http://www.eweek.com/c/a/Messaging-and-Collaboration/Most-Adobe-Reader-Users-Running-Outdated-Unpatched-Versions-213010/
http://support.mozilla.org/en-US/questions/953805
http://support.mozilla.org/en-US/questions/953805
http://blog.trendmicro.com/trendlabs-security-intelligence/whitehole-exploit-kit-emerges/
http://blog.trendmicro.com/trendlabs-security-intelligence/whitehole-exploit-kit-emerges/

A Simple and Novel Technique for Counteracting Exploit Kits 277

30. wmetcalf: Monthly Archives, May 2013. http://www.emergingthreats.net/2013/05/
31. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of

drive-by-download attacks. In: ACSAC 2010, Austin, Texas, USA (2010)
32. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,

C., Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of
remote javascript inclusions. In: CCS 2012, Raleigh, North Carolina, USA (2012)

33. Schlumberger, J., Kruegel, C., Vigna, G.: Jarhead analysis and detection of mali-
cious Java applets. In: ACSAC 2012, Orlando, Florida, USA (2012)

http://www.emergingthreats.net/2013/05/

	A Simple and Novel Technique for Counteracting Exploit Kits
	1 Introduction
	2 Background
	3 AFFAF: Proposed Methodology
	3.1 Merits of AFFAF

	4 Implementation
	5 Evaluation
	5.1 Defence Against Exploit Kits
	5.2 Benign Web Sites
	5.3 Browser Scan Services

	6 Related Work
	7 Concluding Remarks
	References

