
Securing Resource Discovery in Content
Hosting Networks

Sushama Karumanchi1(B), Jingwei Li2, and Anna Squicciarini1

1 College of Information Sciences and Technology,
Pennsylvania State University, State College, USA

sik5273@psu.edu
2 College of Computer and Control Engineering,

Nankai University, Tianjin, China

Abstract. Secure search query routing is a long-standing problem in
distributed networks, which has often been addressed using “all-or-
nothing” approaches, that require either full anonymity and encrypted
routing or full trust on the routing nodes. An important problem with
secure routing is how to guarantee the search query is transmitted in
an expected way. In this paper, we tackle the problem of secure routing
by considering a generic policy-driven routing approach, and focus on
the steps required to verify in a fully distributed manner that a search
query is routed in accordance to a requester’s preferences and detect
cheating nodes. We present an efficient and effective verification method
for query routes, that is agnostic to the specific routing algorithm being
used and achieves strong security guarantees. We cast our approach in
the context of content dissemination networks (CDN) and show through
experimental evaluations the performance of our approach.

Keywords: Resource discovery · Query routing · Security · Content
dissemination networks · Malicious forwarding

1 Introduction

Content hosting or dissemination networks are those networks that store content
in a distributed manner. Today, such networks are gaining popularity. Content
providers such as Netflix and Youtube utilize content distribution networks to
store their data [15]. Most of the current Internet activities are based on content
retrieval than point-to-point communications [13]. Resources in content sharing
and dissemination networks (CDN) are discovered through search queries, dis-
seminated along the network using a routing protocol, raising potential security
and privacy concerns against the query and the search route.

In these networks, user information privacy and security are considered
important issues [15], as content providers, in addition to their own information,
store their client’s information in the CDNs. In order to sustain their businesses,
clients’ information should be handled very carefully.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 153–173, 2015.
DOI: 10.1007/978-3-319-23829-6 12

154 S. Karumanchi et al.

One of the privacy and security problems of these environments is associated
with the propagation path of search query, which may be very sensitive, and may
ideally be handled only by trusted peers, due to the content of the query (and
possible business interests associated with them). The query owner or requester
might want to forward the query only to selected nodes in the network, according
to the company data management policies of the requester. For instance, a user
might request an album stored in his Flickr account, and Flickr uses Yahoo’s
cloud to store photos. The search query for the album might traverse the Internet
over random routing nodes and the user might not prefer such a random routing
path taken by his or her query and the content. Also, Flickr, in order to protect
the customer’s privacy might want the query to be routed only through specific
nodes that satisfy certain user or company requirements. As highlighted by this
example, we urge a practical method to detect cheating nodes in the query
propagation path, that do not comply with the user or company requirements.

In this paper, we assume the existence of a policy based routing protocol
in place (e.g., [11,19]), wherein the routing preferences of a node requesting a
resource through a distributed search are expressed by means of a set of policy
conditions. Our main goal is to detect nodes that tamper with such routing
protocols by (i) forwarding the query to policy non-satisfying nodes and (ii)
dropping the query even though there are policy satisfying nodes present. It is
worth noting that our focus on policy-compliant distributed search is different
from the problem of protecting the content of search query, which just aims
at preventing other (policy-non-compliant) nodes from learning the content of
search query, and can be easily achieved using one-to-many encryption [3,10,
18]. Here, we consider a more challenging issue, i.e., guaranteeing the query is
transmitted in correct path, which not only implies protecting the content of
search query, but also limits unnecessary access of the query over the network.

Toward developing solutions for ensuring policy-compliant distributed search,
we design a two-phased routing compliance verification mechanism in the con-
text of content dissemination networks. Our proposed scheme works by firstly
identifying the correct path of search query propagation, and then checking the
policy satisfiability of all the nodes in the path. Our scheme is secure, in terms of
verifiability and non-repudiable search compliance, if the path is correctly iden-
tified in the first phase. We also consider practical methods to further improve
the efficiency and enhance security of our proposed scheme. Note that our verifi-
cation method does not presume a specific policy routing method. Rather, given
a generic policy routing search wherein queries are routed across nodes based on
conditions of the relaying nodes, we wish to ensure that it has been forwarded
correctly, that is, as intended by the requester. We conduct an experimental
analysis of our approach, and obtain an estimate of the computational overhead
our approach generates. Our results show that our approach is efficient, even in
case of large networks.

The rest of the paper is organized as follows. Section 2 overviews related
work. Section 3 reviews the main cryptographic notions adopted by our scheme.
Section 4 discusses threat model and main assumptions. We define the policy

Securing Resource Discovery in Content Hosting Networks 155

compliant search in Sect. 5. In Sect. 6, we present our approach to detecting
malicious nodes. Section 7 discusses the security aspects of our approach. In
Sect. 8, we present our experimental analysis. We conclude in Sect. 9.

2 Related Work

Trust establishment is a well-known challenge in distributed networks. Malicious
nodes can abuse the data or the established search query forwarding protocols
in a number of ways. To address these issues, a large body of work exists on
secure distributed networks, tackling sybil attacks, denial of service, free riders
and cheat detection [4,9,15–17]. In the context of content dissemination net-
works, researchers have focused primarily on the issues of denial of service attacks
[4,7,9], privacy and security of the content propagated within the content centric
networks [23], and sybil attacks [15]. Some recent work has also explored issues
related to access control in ad-hoc networks [12]. In addition, issues related to
secure search query propagation are very crucial to content dissemination net-
works as searching is the main purpose of content dissemination networks, and
hence the protection of search query propagation through the network is very
important. In this work, we aim to tackle the security issues of search query
propagation in distributed networks.

In this space, recent work has focused on efficient query processing. For
instance, Durr et al. [5] analyzed different query forwarding strategies in
privacy preserving social networks. Also, many have investigated intelligent
query processing methods [2,14,20,22]. However, unlike in our work, intelligent
processing methods do not consider the security aspects of the query forwarding
process itself.

Zhang et al. [23] propose a mechanism to protect the confidentiality of data
by encrypting them with identity based cryptography in content-centric net-
works. While it is sensible to utilize identity based cryptography to protect the
confidentiality of the data propagated and selectively disseminate data, it is also
important to detect malicious nodes in the network which propagate the data to
false nodes. In this work, we employ efficient identity based signature schemes
and attribute based encryption schemes to establish the integrity of the path
taken by the search query and detect the malicious nodes that abuse the query
forwarding algorithms. On a similar note, Padmanabhan and Simon [17], pro-
pose a mechanism to identify offending routers in a network and securely trace
the path of the traffic. Their approach requires each node in a path to respond
to the requester with an OK response that it received a packet. In contrast, we
propose an efficient approach in which we use aggregated signatures to ensure
the integrity of the path taken by a search query. Our protocol does not require
a message from every node that the traffic or the query passes through. Mirzak
et al. [16] also propose an approach to detect malicious routers, based only on the
traffic information that each node has. Our approach is different from theirs in
that it detects the malicious nodes mainly based on the attributes or properties
of the nodes in the network, by making use of policies.

156 S. Karumanchi et al.

In summary, while several interesting works exist on policy compliance rout-
ing (e.g. [11,19]), we are not aware of any work on detection of malicious nodes
that do not comply with the query forwarding protocol established for the net-
work. Rather, previous works focus on policy specification, and assume that the
nodes are honest. In this work, we detect malicious nodes that do not comply
with such query routing protocols. Since search query forwarding is an impor-
tant phase of the dissemination of content in content dissemination and peer to
peer networks, we aim to provide a solution to efficiently and effectively support
verifiable query forwarding in these networks.

3 Cryptographic Background

3.1 Attribute-Based Encryption

Attribute-based encryption (ABE) has been widely applied to impose fine-
grained access control on encrypted data [18]. Two kinds of ABE have been
proposed so far: key-policy attribute-based encryption (KP-ABE) [10] and
ciphertext-policy attribute-based encryption (CP-ABE) [3]. In KP-ABE, each
ciphertext is labeled with a set of descriptive attributes, and each private key
is associated with an access policy that specifies which type of ciphertexts the
key can decrypt. In CP-ABE, the access policy is specified in ciphertext and the
private key is associated with a set of attributes. In this paper, we will utilize
CP-ABE for policy-compliance checking, and thus introduce its main primitives
below.

– Setup(λ): The setup algorithm takes as input a security parameter λ, and
outputs (pk,msk), where pk denotes the public key and msk denotes the
master secret key of ABE system.

– KeyGen(ω,msk): The key generation algorithm takes as input an attribute set
ω and the master secret key msk, and outputs the decryption key dkω.

– Enc(m,P): The encryption algorithm takes as input a message m and the
policy P, and outputs the ciphertext [ct]P with respect to access policy P.

– Dec([ct]P , dkω): The decryption algorithm takes as input a ciphertext [ct]P
which was assumed to be encrypted under a policy P and the decryption key
dkω for attribute set ω, and outputs the original message m if and only if ω
satisfies P.

3.2 Identity-Based Aggregate Signature

An aggregate signature is a single short string that convinces a verifier that a set
of n messages are signed by n distinct signers [8]. In this paper, we will utilize
a special line of aggregate signature, namely identity-based aggregate signature,
in which users’ identities (e.g., email address) are used as their public keys, and
thus the verifier only needs a description of who signed what for verification.
The algorithms of identity-based aggregated signature are described as follows.

Securing Resource Discovery in Content Hosting Networks 157

– Setup(λ): The setup algorithm takes as input a security parameter λ, and
outputs (pk,msk), where pk denotes the public key and msk denotes the
master secret key of identity-based aggregate signature.

– KeyGen(id,msk): The key generation algorithm takes as input a descriptive
identity id and the master secret key msk, and outputs the signing key skid.

– Sign(m, skid): The signing algorithm takes as input a message m and the
signing key skid, and outputs the signature [σ]id.

– Agg([σ]S1 , S1, [σ]S2 , S2): The aggregate algorithm takes as input two sets of
identity-message pairs S1 and S2, and two identity-based (aggregate) signa-
tures [σ]S1 and [σ]S2 on the identity-message pairs contained in sets S1 and
S2 respectively; if Ver([σ]S1 , S1) = 1 and Ver([σ]S2 , S2) = 1, this algorithm
outputs the signature [σ]S1∪S2 on the identity-message pairs in S1 ∪ S2.

– Ver([σ]S , S): The verification algorithm takes as input - the (aggregate) sig-
nature [σ]S and a description of the identity-message pairs in S, and outputs
1 if and only if [σ]S could be a valid signature output from Sign or Agg for S.

4 Design Goals and Threat Model

Our overarching goal is to guarantee policy compliant search, where policies can
be specified by means of a set of conditions against the relaying nodes. Our
specific objectives to accomplish this goal are outlined as follows.

(1) Verifiable Search Compliance: The main design goal of this work is to provide
a mechanism to verify that a search query in a CDN is forwarded in compliance
with the requester’s preferences. These routing preferences are defined over the
nodes’ attributes by means of policies, similar to conventional policy-based rout-
ing. Note that we do not aim to define a new way of performing policy-routing.
We assume the existence of a policy-compliant routing scheme such as [11]. We
aim to provide an effective mechanism to verify that policy routing is carried out
correctly. (2) Non-repudiable Search Compliance: we would like to ensure that if
a node is involved in a search query, it cannot deny having received the query.
(3) Cost-effective: the modifications and overhead for providing verifiable policy
routing should not represent a major additional cost to conventional routing,
nor should they alter the way either routing or caching operate.

Our approach to meet these objectives is based on the following threat model
and assumptions. We assume that the network is static. Nodes have knowledge
of their direct neighbors, but may not know any peers beyond their first degree
neighbors. Each node in the network is globally identifiable, and initially assigned
with its identity-based secret key skid and attribute-based decryption key dkprof .
Nodes find resources by forwarding requests through distributed search proto-
cols [1], wherein a resource request is evaluated by a receiving node and either
satisfied or relayed to the neighbor node in search of a node able to provide the
requested resource. Precisely, we assume that only nodes with certain properties,
indicated in a policy by the node originating the request, are asked and allowed
to forward the resource requests. We assume that the majority of the nodes are
semi-honest. That is, the nodes keep their individual identifiable information

158 S. Karumanchi et al.

(e.g., skid and dkprof) away from other nodes to avoid the leakage of private
information. Malicious nodes may not adhere to the policy-compliant search
protocol, and may send the search query to nodes which do not satisfy the
requester’s policy.

5 Search Query and Policy Compliant Search

5.1 Bloom Filters of the Nodes and Search Queries

The resources available in the peer network G are described by means of
attributes storing their main features, and are categorized based on their content
type (e.g. media files, services, etc.).1

A

B C

B
FB

B
F
C

B
F
A

B
FA

conBFA

conBFB conBFC

Fig. 1. Creation of concatenated Bloom Filter (conBFs)

We assume that resources and attributes of each node are encoded using
bloom filter (BF) by the node itself. More precisely for each attribute (say fee)
its corresponding value is encoded by means of a single order preserving hash
function [6,21] h agreed upon by the network. The hash function generates an
index value for the attribute value, where a 1 is placed in the corresponding
position in the filter. For instance, assuming fee = 100 and h(100) = 7, the
corresponding attribute filter should have the 7th element set to 1, whereas
the remaining elements are set to 0. Since the profile of a node consists of a
set of attributes, a bloom filter associated with a profile is generated as the
concatenation of attribute filters encoding all attribute values, in a known order.
Note that by using an order preserving hash function, there is no need of using
multiple hash functions to represent the attributes as there would not be any
collisions among the index values.

We also assume that all the nodes are aware of the neighbor nodes’ attributes.
Initially, all nodes send their local BF to their neighbor nodes, such that each

1 Examples of categories in T are Standard Industrial Classification (SIC), or the
North American Industry Classification System (NAICS).

Securing Resource Discovery in Content Hosting Networks 159

node is able to maintain a concatenated bloom filter (conBF) to keep track of
its neighbor’s information. A conBF consists of several layers, each of which is a
BF corresponding to a neighbor node, and the BF consists of the attribute infor-
mation of is neighbors. Figure 1 shows an example of how a concatenated filter,
conBF , may be created. The two pairs of nodes A and B, A and C exchange their
local attribute BF with each other, and finally three conBFs are respectively
built at these nodes.

Bloom filters aid in routing a query in a policy-compliant manner, which will
be discussed in the next section. Precisely, a search query is specified in terms of
the requested resource categories, and possible attribute conditions against the
service attributes.

Definition 1 (Search Query). A Search Query (SQ) is an expression of the
form: SQ = ({c1, . . . , cn}; {a1Θ1v1, . . . , amΘmvm}), where {c1, . . . , cn} ∈ T is a
set of resource categories, and {a1, . . . , am} is a set of resource attributes in A,
Θj ∈ {<,>,=,≥,≤}, and {v1, . . . , vm} is the set of attribute values.

Example 1. Let the requester specify the following search query, SQ =
({Weather}, {Fee < $100, ExecT ime < 20s}). The requester is looking for
a resource belonging to the Weather category, and the querying of this resource
should charge the requester less than 100 dollars fee and should execute in less
than 20 s.

As introduced in Sect. 4, given a service search query SQ, we aim to verify
that it is routed in the peer network only through compliant nodes. Compliant
nodes are the nodes that meet the conditions of the search policy (denoted as
SP), and therefore are involved in the resource discovery process. For the purpose
of this work we consider search policies defined against possible attributes of the
routing nodes themselves (e.g. support for certain services, domain, etc.), rather
than on the conditions for routing itself (e.g. minimal search path etc.). To
verify compliance, we model the profile prof of each node by a set of attributes
describing its features, related to security and privacy, routing.

For simplicity, an SP is defined as a combination of atomic Boolean condi-
tions (or Node Criteria), although a more sophisticated definition could also be
supported. Before formally introducing SP , we define node criteria, as follows.

Definition 2 (Node Criteria (NCriteria)). A node criteria is defined as
a combination of clauses in disjunctive normal form c1 ∨ · · · ∨ cn, where each
cj is an atomic clause, denoting a single or a conjunction of conditions cj =
cond1 ∧ .. ∧ condj, and each condi, i ∈ [1, j] is of the form: ATT OP value where:
(1) ATT is an attribute, (2) OP (e.g., =,≥, ≤) is a matching operator; (3) value
is the node preferred value for ATT, and can be a constant or a variable.

5.2 Search Policies and Policy Compliant Search

Having defined search queries, we are now ready to formalize search policy.

160 S. Karumanchi et al.

Definition 3 (Search Policy). Given a search query SQ, a search policy SP
is defined as a couple (NCriteria,NHop), where: NCriteria is the node criteria
specified according to Definition 2; NHop can take either a value n, n ≥ 0, or
it can be set to ∗. NHop denotes the maximum number of intermediate nodes,
that SQ will be allowed to traverse per a possible path, whose profile satisfies
NCriteria. NHop = ∗ denotes that no restrictions are placed on the hop count.

Given a node n and a search policy SP = (NCriteria, NHop) specified by a
requester r, a node is compliant if NCriteria is satisfied by the profile (profn)
of n and the number of hops transmitted from r to n is not more than NHop.2

A policy-compliant distributed search is simply defined as a list of connected
nodes satisfying SP .

Definition 4 (Policy-Compliant Distributed Search). Let G =< N,E >
be a network, and (SP, SQ) be a pair of search policy and query specified by
a requester node r. Suppose there is a (cycle-free) sequence of connected nodes
Path = {r, n1, . . . , nk = d} in G connecting r with a node d able to resolve the
query SQ. If every node ni ∈ Path satisfies the search policy SP , then Path
distributed search is policy-compliant with respect to SP .

Note that in the definition above we essentially request a sequence of nodes
in the network graph where each node satisfies the policy and that leads to the
successful resolution of query. We do not impose any condition against how this
path is found or against any other properties of the path itself (if it is an optimal
path or if it is minimal). Several path finding algorithms could be used, with no
impact on our problem statement.

r

A

B
D

C

Domain: 192.168.250.2
{(Weather; fee: $30)}

Domain: 192.168.253.18

Domain: 192.168.250.3
Domain: 192.168.250.5

resource back

que
ry

se
nd

ing

query sending

Fig. 2. An example for policy-compliant distributed search

A weaker notion of the above definition, which will be useful for our verifi-
cation algorithms is defined as α compliance.

Definition 5 (α-Policy-Compliant Distributed Search). Let the pair
(SP, SQ) be a search policy and query specified by a requester node r. Let the
2 If NHop = ∗, we consider it is infinitely large.

Securing Resource Discovery in Content Hosting Networks 161

set Path contain all the nodes transmitted during a time of distributed search
(SP, SQ). If, for any arbitrarily sampled node n ∈ Path, the probability that
n satisfies the search policy SP is not less than α (0 < α ≤ 1), then Path is
α-policy-compliant.

An example of policy-compliant distributed search is given below.

Example 2. Assume a P2P network is organized as in Fig. 2. A requester node
(denoted as r in Fig. 2) sends a query asking for academic files. r requests that
the files do not cost more than $25. Accordingly, the search query is formalized
as SQ = ({Academicfiles}, {fee ≤ $25}). Moreover, r requests the search to be
carried out only within its local area network and hence, defining the following
node criteria or policy: NCriteria = {(Domain = 192.168.250.X)}. This policy
indicates that the search is required to be performed within a subnet, the IP
address of which ranges from 191.168.250.1 to 192.168.250.255, and also restricts
the search zone to be its direct neighbor nodes (NHop is set to be 1). The
corresponding distributed search for this request is shown in Fig. 2. It is clear
that this query should not be transmitted to node C or node D, because the
former is in a different domain from the one specified in NCriteria, while the
latter violates the NHop restriction.

6 Malicious Node Detection

We now describe our routing compliance verification mechanism. Our solution
includes two main phases: resource discovery, and compliance checking phase.
During the resource discovery phase, the requester propagates a pair (SP, SQ) of
search policy and query to discover the resources satisfying SQ, while restricting
the query routing only through the nodes satisfying SP . Upon resolving the
query, the discovered resource R, as well as a path proof PF , are returned back
to requester. In the compliance checking phase, the requester takes as input PF
and verifies the policy-compliance of the returned search path.

6.1 Resource Discovery

We now describe the resource discovery phase of our policy verification mecha-
nism.

Suppose a requester issues a search query SQ = ({c1, . . . , cn}; {a1Θ1v1, . . . ,
amΘmvm}) (see Definition 1), simultaneously restricting the search query prop-
agation path to be controlled by a search policy SP = (NCriteria,NHop) (see
Definition 3). The following steps are executed.

Assume an exhaustive search across the network is enforced, where the query
is forwarded to all suitable nodes. The requester r firstly evaluates the node crite-
ria on all of its neighbor nodes. Let us consider each individual atomic condition
condi in search policy SP . Recall that condi is in the form of Att OP Value
(see Definition 2), and h is the hash function used for encoding the attribute
Att in the bloom filter. The requester computes the index indexcondi

of this

162 S. Karumanchi et al.

atomic condition by hashing h(Value). For example, for partly bounded condi-
tions (e.g. A < 1), the upper or lower bound of the condition are hashed (e.g.
h(10)). The computed indexcondi

is then compared with the positions of the
non-full index values of bloom filter in conBFr. This condition condi is fully
satisfied by a bloom filter BF in conBFr, when (1) BF in the exact position
equal to indexcondi

have 1, in case of equality conditions (Att = value); (2) or
BF in the positions anywhere before or after indexcond have 1s, in case of partly
bounded conditions (Att ≥ / ≤ value).

For every node (we say nj) satisfying BFs, the requester stores a hop item
to collect three pieces of information: the identity of the previous node (⊥ for
requester), idprev, the identity of current hop idcur and the identity of next hop
idnxt. Each of the hop items is signed under the requester’s signing key skr, and
encapsulated into a hop list L. The hop list is then to be passed along with the
search query and updated and signed by each node, such that the requester can
finally verify the authenticity of the propagation path.

During resource discovery, every node nj receives (SQ, SP) as well as (L =
〈er·, . . . , eij〉, σ), where L is the hop list consisting of the hop items the search
query has transmitted by and σ is the signature aggregated on these hop items.
More precisely, suppose nj receives this data from a previous node ni (ni could
be the requester nr). nj firstly verifies the authenticity of L. This is achieved by
completing two operations.

1. nj picks out the last item eij = (·, id′
i, id

′
j) of L and checks whether id′

i = idi

and id′
j = idj , to guarantee that the search query propagates in a authentic

way at this hop from ni to nj ;
2. nj checks the validity of signature σ on messages er·, . . . , eij and identities

idr, . . . , idi to guarantee this search query propagated correctly in all of the
previous hops.

Operation (1) guarantees that ni honestly sends query following the hop
information recorded in L, while (2) guarantees that none of the faked hop
items exists in previous propagation path. If either of the checks fails, an error
is reported and the search for resource is aborted.

Node nj then checks the satisfaction of local resources and neighbor node
criteria based on bloom filter, using the same approach described above for node
criteria evaluation. One of the following two cases could arise:

– Case 1. If a query-satisfying resource is found locally by nj or none of the
neighbor nodes satisfies the search policy, the search is over. A new hop item
ej⊥ = (idi, idj ,⊥) is generated to indicate “end hop”, and signed using nj ’s
signing key skj . The signature (on ej⊥) is then aggregated with the previous
aggregated signature σ to generate a new version of σ. Finally, after appending
ej⊥ with L, the authenticated path (L, σ) is sent back to the requester (either
traversing backward through the whole path or directly, depending on the
specific query resolution algorithm being adopted).

– Case 2. Otherwise, there must exist at least one neighboring node satisfying
SP . For every satisfying neighbor node (we say nk), (L, σ) is replicated, and

Securing Resource Discovery in Content Hosting Networks 163

another hop item ejk = (idi, idj , idk) is generated and appended with the
new copy of L, to indicate that next hop is nk. Similar to the first case, after
signing ejk and aggregating the new signature into (the copy) σ, the updated
(L, σ) is then sent to node nk, along with the query-policy pair (SQ, SP).

Note that, although we present it for the case of exhaustive search, our scheme
can be easily adapted to support any routing protocol (e.g. random walk). As
compared to existing protocols, in our scheme, the requester is able to restrict
the query to be forwarded only through certain nodes by defining a policy over
the query.

Example 3. Figure 3 shows a toy example for the process of resource discovery.
Two neighbor nodes (n1 and n3) are respectively sent the resource query from
nr. For the node n3, a satisfying resource is found locally, and returned back
to requester along with the authenticated path. For the node n1, it forwards
the query to a next policy satisfying node n2, which does not have any policy
satisfying neighbor nodes. So, another path of authenticated nodes is sent back
to the requester following this path: n2 → n1 → nr.

6.2 Compliance Checking

Upon receiving the authenticated path, the requester starts to check whether it
is also policy compliant. Verifying policy compliance is a two-step process. The
first step consists of checking path authenticity. The requester examines the hop
list L, in specific, whether the concatenation of nodes is correct. For example, for
any two continuous hop items (we say eij and ejk), the requester checks whether
idcur in eij equals idprev in ejk and whether idnxt in eij equals idcur. Then, it
verifies the validity of the aggregated signature σ using all the identities stored in
the current node entry of hop items in L. This is achieved by examining whether
σ is a valid aggregated signature on a series of messages er·, . . . , ejk, ek⊥ by the
public identities idr, . . . , idj , idk, where idi (i = r, . . . , j, k) is the identity of node
generating and signing the hop item ei·. If either of the verification steps fails,
an error is reported.

The second step is to check whether the authentic path is policy compliant.
The step is of course necessary as some nodes may have passed the message
along without meeting the policy conditions. Generally, our algorithm is based

nr

n1

n2

n3

(SQ, SP), (〈er1
〉, σ) (SQ, SP), (〈e

r1 , e
12 〉, σ)(SQ, SP), (〈er3〉, σ)

back

back

(〈e
r1 , e

12 , e
2⊥ 〉, σ)

(〈er1,
e12,

e2⊥〉, σ)

((〈er3 , e3⊥〉, σ), R)

back

Fig. 3. Resource discovery

164 S. Karumanchi et al.

requester node nr target node ni

[idr, idi, skr, g, p] [idi, idr, ski, g, p]

pick random integer x

m′
b = ABE.Dec(dki, [cb]SPi

)
m′

1−b = ABE.Dec(dki, [c1−b]SP i
)

([cb]SPi
, [c1−b]SP i

)

(m′
b, m

′
1−b)check mb

?= m′
b

pkr = gx mod p pkr

pick random integer y
pki = gy mod p

pki

pick b ∈R {0, 1}
pick random messages m0, m1

SPi = SP ∧ {ID = idi}

kri = pkx
i mod p kri = pky

r mod p

SP i = SP ∧ {ID = idi}
[cb]SPi = ABE.Enc(SP i, mb)

[c1−b]SP i
= ABE.Enc(SP i, m1−b)

Fig. 4. Protocol for checking policy satisfaction of node in iterative model (the group
generator g and big prime p are predefined as system parameters)

on examining the policy satisfiability of nodes in the propagation path using
attribute-based encryption, and follows either the iterative model or the non-
iterative model. Suppose the requester wants to check the satisfiability of node ni.
Iterative Model. The algorithm in iterative model shown in Fig. 4 is executed.
Firstly, the requester is to establish a secure communication channel with the
target node ni following the well known Diffie-Hellman key exchange protocol.
Notice that to avoid the man-in-the-middle attacks, the exchange step needs to
be cryptographically bounded. To this end, rather than trivially exchange DH
public keys, both nodes append their identity-based signatures along with their
DH public keys (omitted in Fig. 4 for simplicity), therefore preventing adversaries
from faking public keys and eavesdropping the shared session key kri.

After establishing a secure channel with ni, the requester generates two ran-
dom messages m0 and m1, and picks a random bit b ∈R {0, 1} for encrypting
m0,m1 respectively, under the hybrid policy SPi and its complementary SPi

using attribute-based encryption. Specifically, after building SPi = SP ∧ {ID =
idi}, where ∧ is an AND gate connecting SP and an atomic policy {ID = idi},
the requester encrypts mb under SP for obtaining [cb]SPi

, while m1−b under SPi

for obtaining [c1−b]SPi
. [cb]SPi

and [c1−b]SPi
are then sent to ni for decryption.

The target node ni tries to decrypt both the ciphertexts using its decryption
key dki and feeds back the messages (m′

b,m
′
1−b). The requester checks whether

mb = m′
b, if not, a policy-violating routing is reported. The reason to build

a hybrid policy SPi (binding the target node’s identity with test policy) is to
prevent collusion among nodes, in which a policy satisfying node could lend its
decryption key to the target node to help it pass the test. In other words, under
the hybrid policy, even if other satisfying nodes share their decryption keys with
the target node, the checking cannot be passed, because the lent decryption keys

Securing Resource Discovery in Content Hosting Networks 165

from other nodes do not satisfy the binding policy ID = idi, and fail to decrypt
the test ciphertext.

Non-Iterative Model. In the verification algorithm above, the requester is able
to detect non-compliant nodes in an adaptive manner. In other words, since the
requester runs the proposed protocol with the target node one by one, to check
the policy compliance of a full path, it is able to know the intermediate check-
ing results at each node, and decide the node to be checked for the next time.
For higher efficiency, the requester may prefer to check nodes in a non-iterative
manner. Suppose S = {idik}|S|

k=1 is the set consisting of all the target nodes
to be checked. For each node idij (j = 1, . . . , n) in S, two random messages
(m(ij)

0 ,m
(ij)
1) are generated and encrypted in the same way for m0 and m1 as

the algorithm of Fig. 4. All the test messages {(m(x)
0 ,m

(x)
1)}idx∈S are then prop-

agated along with the set S in the checking path. Each node tries to decrypt
the pair of encrypted messages if its identity is in S. Finally, the decrypted
messages are sent back to the requester for final decision. Each decrypted mes-
sage can be optionally signed by the nodes in the path to avoid modifications
to the decrypted messages by other nodes in the path. Through this model,
the requester is only required to be online when preparing test messages and
when checking the decrypted results, reducing the computational overhead sig-
nificantly.

Example 4. Let us re-consider Example 3. Suppose the path delivered back to
requester is {nr, n1, n2}, and the requester nr tries to verify the policy com-
pliance of n1 and n2. To this end, nr generates two pairs of random messages
(m(1)

0 ,m
(1)
1) and (m(2)

0 ,m
(2)
1), and for each pair (m(i)

0 ,m
(i)
1) (where i = 1, 2)

respectively encrypts m
(i)
0 and m

(i)
1 under the policy SP ∧ {ID = ni} and

SP ∧ {ID = ni}. In the iterative model of the compliance checking proto-
col, requester sends C1 = ([c(1)0]SP∧{ID=n1}, [c

(1)
1]SP∧{ID=n1}) to n1 for decryp-

tion, and if the decrypted ciphertext m
(1)′
1 does not equal m

(1)
1 , an unsatis-

fying node is reported; otherwise requester continues to test n2 using C2 =
([c(2)0]SP∧{ID=n2}, [c

(2)
1]SP∧{ID=n2})) in the same way. In the non-iterative model

mode of this protocol, the requester sends the two pairs (i.e., C1 and C2) of
ciphertext to n1 at once, which tries to decrypt the pair (i.e., C1) of ciphertext
intended for it and forwards the other pair (i.e., C2) to n2 for decryption. The
response (i.e., decryptions of C2 and C1) is then sent back to requester for final
decision along the path from n2, n1 to nr.

7 Practical and Security Considerations

Recall our proposed two-phased method works by identifying the correct path
of search query propagation and then checking the policy satisfiability of all
the nodes in the path. The method is secure if the path is correctly identified at
first. In spite of this, our approach suffers from two shortcomings. First, it places
a computational burden on the requester for testing the policy satisfiability of

166 S. Karumanchi et al.

the nodes in the path. Second, our method relies on the correctness of the query
propagation path, resulting that there might exist a few potential attacks aiming
at breaking our method through faking a cheating path. In this section, we
consider some practical methods to address both shortcomings.

7.1 Determining the Number of Nodes to Verify

In this subsection, we analyze the number of nodes the requester should check to
achieve α-compliance (i.e., at least a percentage α of the nodes in path satisfies
the policy), for both cases.

We model our problem as follows. Suppose a query SQ has been resolved by
a given Path, where |Path| = n indicates that n unique nodes were involved
during this search. Assume that an arbitrary number of nodes m (m < n) in the
path does not satisfy our policy requirement. Our aim is to estimate the number
of nodes to be checked to detect this dishonest behavior with a confidence greater
than α3. Note that our detection model follows the “once for all” philosophy.
That is, if only one non-compliant node is found, we consider the full search
dishonest.

Non-iterative Probabilistic Model. In the first verification model, discussed in
Sect. 6.2, we assume that the requester generates all the target nodes (constitute
the target set target) to check at once. The requester does not obtain any
feedback about the intermediate checking results before it generates all the target
nodes. Suppose the number of nodes to be checked is x (i.e., |target| = x in
this case)4.

Given known values of n and m, we can compute the minimum value of x by
resolving the following inequality which contains only x as an unknown value.

1 −
(
n−m

x

)
(
n
x

) ≥ α ⇒ 1 − (n − m)!(n − x)!
n!(n − m − x)!

≥ α (1)

The equation is easily understood. Our problem consists of selecting x nodes
at once from n path nodes to be checked, with

(
n
x

)
possibilities. Assume the x

target nodes to check are all selected from the n−m satisfying nodes, which has(
n−m

x

)
possibilities.

Then, we can compute the probability of not detecting a dishonest node

by randomly checking x nodes as (n−m
x)

(nx)
. Thus, 1 − (n−m

x)
(nx)

is the probability of

detecting any non-compliant node by checking x nodes.

Iterative Probabilistic Model. In the iterative probabilistic model presented in
Sect. 6.2, we assume that the requester is able to adaptively generate the target
node to be checked. Since in this scheme, the requester knows the intermediate
results obtained from previous checks, it can decide accordingly which nodes are
3 The symbol α is abused here to denote the confidence threshold in dishonesty detec-

tion.
4 We need to restrict that x ≤ n − m in our models. This is because, we can always

detect non-compliant nodes if we test more than n − m nodes.

Securing Resource Discovery in Content Hosting Networks 167

to be checked. Suppose the number of nodes to be checked is x. Suppose Ak is
the probability for detecting dishonesty by checking k nodes in Path. It is clear
that A1 = m

n and

Ak = (1 −
k−1∑

i=1

Ai)
m

n − k + 1
(2)

In what follows we explain the above equation. Since the requester can adap-
tively generate the target node, the probability of selecting the satisfying node
is not identical each time a check is performed. For example, if the requester
successfully selects a non-compliant node the first time, and detects a dishonest
node, then A1 = m

n . The next time, in the adaptive case, the probability of
catching a non-compliant node becomes m

n−1 , because one satisfying node has
been verified already, and should be removed for all the subsequent selections.
Thus, the probability m

n−1 holds in the case that the non-compliant node is not
caught in the first time, having probability 1 − A1.

Accordingly, the probability of catching non-compliant nodes in the second
check is computed as A2 = (1 − A1) m

n−1 . Recursively, for Ak, (1 − ∑k−1
i=1 Ai)

is the probability that any non-compliant node is not caught in the first k − 1
times of checking. At the kth round, k − 1 satisfying nodes are removed due to
the inability of catching non-compliant nodes in the first k − 1 times, and thus
the probability of catching a dishonest node for the k th time is m

n−k+1 . Finally,
we can get the probability Ak = (1 − ∑k−1

i=1 Ai) m
n−k+1 .

We are to solve the following inequality with respect to unknown x:
x∑

i=1

Ai ≥ α (3)

Interestingly, although our proposed non-iterative and iterative models work
in a different manner, they achieve the same probability of catching dishon-
est nodes, assuming they check the same number of nodes. This finding can
be demonstrated by solving the general formula (2) and comparing the result∑x

i=1 Ai with the probability of non-iterative model (i.e., the left part of inequal-
ity (1)). In what follows, we provide a detailed proof that the left part of
Eq. (3) equals to the left part of Eq. (1). That is, for a fixed value of x,
∑x

i=1 Ai = 1 − (n−m)!(n−x)
n!(n−m−x)! where Ak = (1 − ∑k−1

i=1 Ai) m
n−k+1 for k = 2, 3, . . . , x.

Without loss of generality, we denote probnonitera(k) = 1− (n−m)!(n−k)!
n!(n−m−k)! indi-

cating the probability of catching dishonest nodes in the non-iterative model
when checking x nodes. Similarly, probitera(x) =

∑x
i=1 Ai is the probability of

catching dishonest nodes in the interactive model. It is clear that in the iterative
model Ax = probitera(x) − probitera(x − 1), and we substitute this expression
into Eq. (2) to obtain

probitera(k) − probitera(k − 1) = (1 − probitera(k − 1))
m

n − k + 1

1 − probitera(k) = (1 − m

n − k + 1
)(1 − probitera(k − 1)) (4)

168 S. Karumanchi et al.

Then, our aim is to recursively solve the Eq. (4) to obtain probitera(k), with
the condition that probitera(1) = A1 = m

n . To this end, we iterate the variable k
in Eq. (4) from k down to 2 to get a series of k − 1 equations as follows.

1 − probitera(k) = (1 − m

n − k + 1
)(1 − probitera(k − 1))

.

1 − probitera(2) = (1 − m

n − 2 + 1
)(1 − probitera(1))

We then multiply these k − 1 equations together to get

1 − probitera(k) = (1 − probitera(1)) ×
∏k

i=2(n − i + 1 − m)
∏k

i=2(n − i + 1)
(5)

It is clear that
∏k

i=2(n−i+1−m) = (n−m−k+1) . . . (n−m−1) = (n−m−1)!
(n−m−k)!

and
∏k

i=2(n − i + 1) = (n − k + 1) . . . (n − 1) = (n−1)!
(n−k)! . We further substitute

both equations as well as probitera(1) = m
n into Eq. (5).

1 − probitera(k) =
n − m

n

(n − m − 1)!(n − k)!
(n − 1)!(n − m − k)!

probitera(k) = 1 − (n − m)!(n − k)!
n!(n − m − k)!

= probnonitera(k)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

D
et

ec
tio

n
of

 D
is

ho
ne

st
 (

%
)

Number of Nodes Checked

15%
20%
25%

Fig. 5. Probability estimation of dishonest detection in non-iterative and iterative
models

In Fig. 5, we provide some numerical examples about probability of detecting
dishonest nodes proportional to the number of nodes to be verified. In this
numerical example, the path consists of 100 loop-free nodes. We present three
cases wherein we assume there are respectively 15%, 20% and 25% nodes in
the path that do not satisfy the requester’s policy, and show the confidence

Securing Resource Discovery in Content Hosting Networks 169

of detecting dishonest nodes. It is clear from Fig. 5 that, in order to achieve a
detection confidence of 0.9, we only need to check a small set of nodes in the path.
Precisely, the requester will need to check 8, 11 and 15 nodes in the 15%, 20%
and 25% case for ensuring 0.9 confidence. Only a subset of the nodes in the path
are to be verified for high confidence results, and we can check only part of the
nodes in the path to save computing and networking resources.

7.2 Attacks and Countermeasures

There are a number of potential attacks against our scheme. In this subsection,
we outline two of the most common attacks, along with some potential counter-
measures.

– In the first potential attack, since the metadata (i.e., the hop list L and
aggregated signature σ) in resource discovery phase would be transferred back
to the requester, a malicious node could record this information, and use it
for launching replay attack in the future. For example, suppose a requester
requests for resources, with the same policy twice. Since the policy is the same,
it would follow the same path for the both times of search. A malicious node
could record the hop list as well as the aggregated signature returned back
in the first time, and use it for cheating the next time of search. Specifically,
in the second time of search, even if the malicious node does not forward the
query to the policy satisfying neighbor node, it can send back the recorded hop
list and aggregated signature in the first time to cheat that it has forwarded
the query in the correct way. A simple countermeasure to this attack is to
append another time entry in the hop item in L and ask each node to sign
on the hop item including not only previous, current and next node, but also
a time period to distinguish the signatures for two times of search. In this
way, during verification, the requester can easily detect the old metadata and
catch the dishonest node.

– The second potential attack originates from the fact that a malicious node
is lazy, which does not forward the search query to satisfying neighbor node
and cheat that none of the neighbor nodes satisfy the policy. Suppose A is
a lazy node adjacent to the requester r, and we can detect this lazy node in
the following ways. The requester node r compares the policy with the BF
received from a neighbor node A, and notes down the value x that lies in
the corresponding positions related to the policy. This value gives the number
of A’s neighbor nodes satisfying the search policy. The requester expects to
receive x aggregated signatures from its neighbor A. If it did not receive at
least x aggregated signatures (and an exhaustive search was implemented),
then it concludes that A is lazy or that it has dropped SQ5.

– In the third potential attack, a malicious node (say A), upon receiving a
search query, could cheat that none of the neighbor nodes satisfies the policy

5 If a non-exhaustive search algorithm is used, the requestor would expect at least k
responses, where k is to be determined according to the routing scheme employed
by the network.

170 S. Karumanchi et al.

and return back the updated (L, σ) to requester, but forwards the search
query to a policy unsatisfying neighbor node (say B), which will drop the
forwarding of the query and/or does not send the aggregated signature to the
requester. We point out that, this attack is challenging to be detected, since
the malicious nodes (A and B) are adjacent. In this case, some additional
controls are needed, in addition to the scheme discussed in this paper. A
simple approach to fully prevent the policy unsatisfying nodes from accessing
the search query, is for the requester to encrypt the content of the query using
attribute-based encryption, such that only the policy satisfying nodes are able
to decrypt and access the query. In this way, even if a policy unsatisfying node
receives the search query, it is not able to learn the content of query.

8 Experimental Analysis

We conducted our experiments on an Intel core i7 CPU @2.00 GHz, 8 GB RAM,
Ubuntu machine. In these experiments, we are mainly concerned with the com-
putational times of our protocols rather than the network delays involved. Hence,
our experiments do not reflect network communication delays among the nodes
in the network. We conduct our experiment on a peer to peer network topology
whose structure is obtained from http://snap.stanford.edu/data/. The network
consists of 10,000 + nodes.

Our first experiment involves testing for the computational times of the first
step of our protocol, that is, secure proof of identities of the path of the search
query (see Sect. 6.1). This experiment has two parts to it. The first part measures
the computational times for the aggregated signature and search query traversal
through the network. The second part measures the computational times for the
verification by the requester, of the aggregated signatures of the paths that the
search query had taken.

First, we vary the path length traversed by the search query and observe the
respective computational times. Path length is the number of nodes traversed
by the search query in a path. From the graph in Fig. 6(a), we observe that
as the path length increases, the time for computing the aggregated signatures
increases. Next, in the second part, we vary the path length and observe the
respective computational times. Interestingly, from the graph in Fig. 6(b), we
observe that even though as the number of nodes in a path increases, the time
to verify the aggregated signatures increases very negligibly, in the order of
milliseconds. This confirms that using aggregated signatures for secure proof of
identities of a path is efficient when compared to sending individual signatures
by each node in the path to the requester. This is because as the number of nodes
increases in a path, the number of individual signatures to verify will increase
for the verifier. Hence, receiving individual signatures from every node would
drastically increase the communication overhead of the protocol.

Our second set of experiments test the policy compliance of the nodes in the
paths taken by the search query, that is, to test the phase where the requester
uses attribute based encryption. First, we compute the computational times

http://snap.stanford.edu/data/

Securing Resource Discovery in Content Hosting Networks 171

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

T
im

e
C

os
t (

se
co

nd
)

Number of Nodes in Path

Resource Discovery

(a) Resource discovery

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300

T
im

e
C

os
t (

M
ill

is
ec

on
d)

Number of Nodes in Path

Signature Verification

(b) Verification of correctness of the path
taken

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

T
im

e
C

os
t (

se
co

nd
)

Number of Nodes in Path

2-attribute
4-attribute
6-attribute
8-attribute

10-attribute

(c) Verification of policy compliance:
ABE encryption in a path

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250 300

T
im

e
C

os
t (

se
co

nd
)

Number of Nodes in Path

ABE Decryption

(d) Verification of policy compliance:
ABE decryption in a path

Fig. 6. Computational times of steps

of the encryption of messages performed by the requester or the owner of the
query for each node in a path taken by the query. If there are n nodes in a path,
then the requester encrypts n messages with the ABE protocol. We compute
the computational times by varying the number of nodes in a path, and also we
perform the same experiment for different number of attributes in the encryption
policy of the requester. From the graph in Fig. 6(c), we observe that as the
number of nodes in a path increases, the computational time linearly increases
for encrypting the messages with ABE. We also observe that, as the number of
attributes in a policy increases, the computational time linearly increases. Next,
we also compute the times of the decryption of messages by all the nodes in a
path. That is, in this experiment, each node in the path sequentially decrypts
the message encrypted by the requester for the node, with the requester’s policy.
We compute the computational times by varying the number of nodes in a path.
From the graph in Fig. 6(d), we observe that the time for all the nodes in a
path to decrypt the ABE message linearly increases as the number of nodes in
a path increases. In this experiment, the number of attributes in the policy does
not affect the computational time for decrypting the message, as for decryption,
each node uses its own private key to decrypt the message, and the private key
is not associated with the number of attributes in the encryption policy.

172 S. Karumanchi et al.

9 Conclusion

In this paper, we posit that search queries are critical in such content dissemi-
nation networks, as eventually these queries lead to the discovery of the desired
content. The importance of search queries, requires us to develop security mech-
anisms to ensure that the queries are appropriately forwarded based on the needs
and policies of the query owner. We propose an effective and efficient protocol
to detect malicious nodes that do not comply with the forwarding protocols
established in the network. In addition to this, our protocol also aims to protect
the integrity of the proof of various paths taken by a search query through the
network. In the future, we aim to efficiently address the collusion problem such
that the requester is able to verify the policy compliance by just preparing a
single ABE encrypted message instead of a multiple encrypted messages equal
to the number of nodes in the path.

Acknowledgement. Portion of the work from Dr. Squicciarini was funded under the
auspices of National Science Foundation, Grant #1250319.

References

1. Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distri-
bution technologies. ACM Comput. Surv. (CSUR) 36(4), 335–371 (2004)

2. Arai, B., Das, G., Gunopulos, D., Kalogeraki, V.: Efficient approximate query
processing in peer-to-peer networks. IEEE Trans. Knowl. Data Eng. 19(7), 919–
933 (2007)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: SP 2007: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pp. 321–334. IEEE Computer Society (2007)

4. Compagno, A., Conti, M., Gasti, P., Tsudik, G.: Poseidon: mitigating interest
flooding ddos attacks in named data networking. In: 2013 IEEE 38th Conference
on Local Computer Networks (LCN), pp. 630–638, October 2013

5. Durr, M., Maier, M., Wiesner, K.: An analysis of query forwarding strategies for
secure and privacy-preserving social networks. In: 2012 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
535–542, August 2012

6. Fox, E.A., Chen, Q.F., Daoud, A.M., Heath, L.S.: Order preserving minimal per-
fect hash functions and information retrieval. In: Proceedings of the 13th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 279–311. ACM (1990)

7. Gasti, P., Tsudik, G., Uzun, E., Zhang, L.: Dos and ddos in named data network-
ing. In: 2013 22nd International Conference on Computer Communications and
Networks (ICCCN), pp. 1–7, July 2013

8. Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis,
Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273.
Springer, Heidelberg (2006)

9. Goergen, D., Cholez, T., Fran, J., Engel, T.: Security monitoring for content-centric
networking (2012)

Securing Resource Discovery in Content Hosting Networks 173

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

11. Karumanchi, S., Squicciarini, A.C., Carminati, B.: Policy-compliant search query
routing for web service discovery in peer to peer networks. In: International Con-
ference on Web-Services, pp. 387–394 (2013)

12. Karumanchi, S., Squicciarini, A., Lin, D.: Selective and confidential message
exchange in vehicular ad hoc networks. In: Xu, L., Bertino, E., Mu, Y. (eds.)
NSS 2012. LNCS, vol. 7645, pp. 445–461. Springer, Heidelberg (2012)

13. Khan, S., Cholez, T., Engel, T., Lavagno, L.: A key management scheme for content
centric networking. In: 2013 IFIP/IEEE International Symposium on Integrated
Network Management (IM 2013), pp. 828–831, May 2013

14. Li, X., Wu, J.: Cluster-based intelligent searching in unstructured peer-to-peer
networks. In: 2005 25th IEEE International Conference on Distributed Computing
Systems Workshops, pp. 642–645, June 2005

15. Misra, S., Tourani, R., Majd, N.E.: Secure content delivery in information-centric
networks: design, implementation, and analyses. In: Proceedings of the 3rd ACM
SIGCOMM Workshop on Information-centric Networking, pp. 73–78. ACM (2013)

16. Mizrak, A., Cheng, Y.C., Marzullo, K., Savage, S.: Fatih: detecting and isolating
malicious routers. In: 2005 Proceedings of International Conference on Dependable
Systems and Networks, DSN 2005, pp. 538–547, June 2005

17. Padmanabhan, V.N., Simon, D.R.: Secure traceroute to detect faulty or malicious
routing. SIGCOMM Comput. Commun. Rev. 33(1), 77–82 (2003)

18. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

19. Salmanian, M., Li, M.: Enabling secure and reliable policy-based routing in manets.
In: Military Communications Conference - MILCOM 2012, pp. 1–7 (2012)

20. Vishnu, V., Senthilkumar, N.C.: An intelligent approach to query processing in
peer to peer networks. Int. J. Comput. Sci. Issues 9(3), 1–4 (2012)

21. Wang, J., Wang, J., Yu, N., Li, S.: Order preserving hashing for approximate
nearest neighbor search. In: Proceedings of the 21st ACM International Conference
on Multimedia, pp. 133–142. ACM (2013)

22. Wang, S., Ooi, B.C., Tung, A., Xu, L.: Efficient skyline query processing on peer-to-
peer networks. In: 2007 IEEE 23rd International Conference on Data Engineering,
ICDE 2007, pp. 1126–1135, April 2007

23. Zhang, X., Chang, K., Xiong, H., Wen, Y., Shi, G., Wang, G.: Towards name-based
trust and security for content-centric network. In: 2011 19th IEEE International
Conference on Network Protocols (ICNP), pp. 1–6, October 2011

	Securing Resource Discovery in Content Hosting Networks
	1 Introduction
	2 Related Work
	3 Cryptographic Background
	3.1 Attribute-Based Encryption
	3.2 Identity-Based Aggregate Signature

	4 Design Goals and Threat Model
	5 Search Query and Policy Compliant Search
	5.1 Bloom Filters of the Nodes and Search Queries
	5.2 Search Policies and Policy Compliant Search

	6 Malicious Node Detection
	6.1 Resource Discovery
	6.2 Compliance Checking

	7 Practical and Security Considerations
	7.1 Determining the Number of Nodes to Verify
	7.2 Attacks and Countermeasures

	8 Experimental Analysis
	9 Conclusion
	References

