
Inferring the Stealthy Bridges Between
Enterprise Network Islands in Cloud Using

Cross-Layer Bayesian Networks

Xiaoyan Sun1(B), Jun Dai2, Anoop Singhal3, and Peng Liu1

1 The Pennsylvania State University, University Park, State College, PA 16802, USA
{xzs5052,pliu}@ist.psu.edu

2 California State University, Sacramento, CA 95819, USA
daij@ecs.csus.edu

3 National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
anoop.singhal@nist.gov

Abstract. Enterprise networks are migrating to the public cloud to
acquire computing resources for promising benefits in terms of efficiency,
expense, and flexibility. Except for some public services, the enterprise
network islands in cloud are expected to be absolutely isolated from
each other. However, some “stealthy bridges” may be created to break
such isolation due to two features of the public cloud: virtual machine
image sharing and virtual machine co-residency. This paper proposes
to use cross-layer Bayesian networks to infer the stealthy bridges exist-
ing between enterprise network islands. Prior to constructing cross-layer
Bayesian networks, cloud-level attack graphs are built to capture the
potential attacks enabled by stealthy bridges and reveal hidden pos-
sible attack paths. The result of the experiment justifies the cross-
layer Bayesian network’s capability of inferring the existence of stealthy
bridges given supporting evidence from other intrusion steps in a multi-
step attack.

Keywords: Cloud · Stealthy bridge · Bayesian network · Attack graph

1 Introduction

Enterprises have begun to move parts of their networks (such as web server, mail
server, etc.) from traditional infrastructure into cloud computing environments.
Cloud providers such as Amazon Elastic Compute Cloud (EC2) [1], Rackspace
[2], and Microsoft’s Azure cloud platform [3] provide virtual servers that can be
rented on demand by users. This paradigm enables cloud customers to acquire
computing resources with high efficiency, low cost, and great flexibility. However,
it also introduces some security issues that are yet to be solved.

A public cloud can provide virtual infrastructures to many enterprises.
Except for some public services, enterprise networks are expected to be like iso-
lated islands in the cloud: connections from the outside network to the protected
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part I, LNICST 152, pp. 3–23, 2015.
DOI: 10.1007/978-3-319-23829-6 1

4 X. Sun et al.

Attacker

Web
Server

File
Server

Database
Server

DNS
Server

Email
Server

Web
Server

File
Server SSH Server

Database
Server

DNS
Server

Email
Server

VMI repository

Web
Server

NFS
Server SSH

Server

Database
Server

DNS
Server

Email
Server

Enterprise A

Enterprise B Enterprise C

Cloud

Other Enterprise
networks

Fig. 1. The attack scenario

internal network should be prohibited. Consequently, an attack path that shows
the multi-step exploitation sequence in an enterprise network should also be con-
fined inside this island. However, as enterprise networks migrate into the cloud
and replace traditional physical hosts with virtual machines, some “stealthy
bridges” could be created between the isolated enterprise network islands, as
shown in Fig. 1. Moreover, with the stealthy bridges, the attack path confined
inside an enterprise network is able to traverse to another enterprise network in
cloud.

The creation of such “stealthy bridges” is enabled by two unique features
of the public cloud. First, cloud users are allowed to create and share virtual
machine images (VMIs) with other users. Besides, cloud providers also provide
VMIs with pre-configured software, saving users’ efforts of installing the software
from scratch. These VMIs provided by both cloud providers and users form a
large repository. For convenience, users can take a VMI directly from the repos-
itory and instantiate it with ease. The instance virtual machine inherits all the
security characteristics from the parent image, such as the security configura-
tions and vulnerabilities. Therefore, if a user instantiates a malicious VMI, it’s
like moving the attacker’s machine directly into the internal enterprise network,
without triggering the Intrusion Detection Systems (IDSs) or the firewall. In this
case, a “stealthy bridge” can be created via security holes such as backdoors.
For example, in Amazon EC2, if an attacker intentionally leaves his public key
unremoved when publishing an AMI (Amazon Machine Image), the attacker can
later login into the running instances of this AMI with his own private key.

Second, virtual machines owned by different tenants may co-reside on the
same physical host machine. To achieve high efficiency, customer workloads
are multiplexed onto a single physical machine utilizing virtualization. Virtual
machines on the same host may belong to unrelated users, or even rivals. Thus co-
resident virtual machines are expected to be absolutely isolated from each other.

Inferring the Stealthy Bridges Between Enterprise Network 5

However, current virutalization mechanisms cannot ensure perfect isolation. The
co-residency relationship can still enable security problems such as information
leakage, performance interference [4], or even co-resident virtual machine crash-
ing. Previous work [5] has shown that it is possible to identify on which physical
host a target virtual machine is likely to reside, and then intentionally place
an attacker virtual machine onto the same host in Amazon EC2. Once the co-
residency is achieved, a “stealthy bridge” can be further established, such as
a side-channel for passively observing the activities of the target machine to
extract information for credential recovering [6], or a covert-channel for actively
sending information from the target machine [8].

Stealthy bridges are stealthy information tunnels existing between disparate
networks in cloud, that are unknown to security sensors and should have been
forbidden. Stealthy bridges are developed mainly by exploiting vulnerabilities
that are unknown to vulnerability scanners. Isolated enterprise network islands
are connected via these stealthy tunnels, through which information (data, com-
mands, etc.) can be acquired, transmitted or exchanged maliciously. Therefore
stealthy bridges pose very severe threats to the security of public cloud. However,
the stealthy bridges are inherently unknown or hard to detect: they either exploit
unknown vulnerabilities, or cannot be easily distinguished from authorized activ-
ities by security sensors. For example, side-channel attacks extract information
by passively observing the activities of resources shared by the attacker and
the target virtual machine (e.g. CPU, cache), without interfering the normal
running of the target virtual machine. Similarly, the activity of logging into an
instance by leveraging intentionally left credentials (passwords, public keys, etc.)
also hides in the authorized user activties.

The stealthy bridges can be used to construct a multi-step attack and facil-
itate subsequent intrusion steps across enterprise network islands in cloud. The
stealthy bridges per se are difficult to detect, but the intrusion steps before and
after the construction of stealthy bridges may trigger some abnormal activities.
Human administrators or security sensors like IDS could notice such abnormal
activities and raise corresponding alerts, which can be collected as the evidence
of attack happening1. So our approach has two insights: (1) It is quite straightfor-
ward to build a cloud-level attack graph to capture the potential attacks enabled
by stealthy bridges. (2) To leverage the evidence collected from other intrusion
steps, we construct a cross-layer Bayesian Network (BN) to infer the existence
of stealthy bridges. Based on the inference, security analysts will know where
stealthy bridges are most likely to exist and need to be further scrutinized.

The main contributions of this paper are as follows:
First, a cloud-level attack graph is built to capture the potential attacks

enabled by stealthy bridges and reveal possible hidden attack paths that are
previously missed by individual enterprise network attack graphs.

1 In our trust model, we assume cloud providers are fully trusted by cloud customers.
In addition to security alerts generated at cloud level, such as alerts from hypervisors
or cache monitors, the cloud providers also have the privilege of accessing alerts
generated by customers’ virtual machines.

6 X. Sun et al.

Second, based on the cloud-level attack graph, a cross-layer Bayesian net-
work is constructed by identifying four types of uncertainties. The cross-layer
Bayesian network is able to infer the existence of stealthy bridges given support-
ing evidence from other intrusion steps.

2 Cloud-Level Attack Graph Model

A Bayesian network is a probabilistic graphical model that is applicable for
real-time security analysis. Prior to the construction of a Bayesian Network, an
attack graph should be built to reflect the attacks enabled by stealthy bridges.

2.1 Logical Attack Graph

An attack graph is a valuable tool for network vulnerability analysis. Current
network defenders should not only understand how attackers could exploit a
specific vulnerability to compromise one single host, but also clearly know how
the security holes can be combined together for achieving an attack goal. An
attack graph is powerful for dealing with the combination of security holes. Tak-
ing vulnerabilities existing in a network as the input, attack graph can generate
the possible attack paths for a network. An attack path shows a sequence of
potential exploitations to specific attack goals. For instance, an attacker may
first exploit a vulnerability on Web Server to obtain the root privilege, and then
further compromise Database Server through the acquired privilege. A variety of
attack graphs have been developed for vulnerability analysis, mainly including
state enumeration attack graphs [12–14] and dependency attack graphs [15–17].
The tool MulVAL employed in this paper is able to generate the logical attack
graph, which is a type of dependency attack graph.

Figure 2 shows part of an exemplar logical attack graph. There are two types
of nodes in logical attack graph: derivation nodes (also called rule nodes, repre-
sented with ellipse), and fact nodes. The fact nodes could be further classified
into primitive fact nodes (in rectangles), and derived fact nodes (in diamonds).
Primitive fact nodes are typically objective conditions of the network, including
network connectivity, host configuration, and vulnerability information. Derived
fact nodes represent the facts inferred from logical derivation. Derivation nodes

26: networkServiceInfo(web
Server, openssl,tcp,22,_)

27: vulExists(webServer, ’CVE -2008-
0166’, openssl, remoteExploit, privEscalation)

22 :Rule (remote exploit of a server program)

14: execCode(webServer,root)

23 :netAccess(webServer,tcp,22)

...

...

Fig. 2. A portion of an example logical attack graph

Inferring the Stealthy Bridges Between Enterprise Network 7

represent the interaction rules used for derivation. The directed edges in this
graph represent the causality relationship between nodes. In a logical depen-
dency attack graph, one or more fact nodes could serve as the preconditions of a
derivation node and cause it to take effect. One or more derivation nodes could
further cause a derived fact node to become true. Each derivation node repre-
sents the application of an interaction rule given in [19] that yields the derived
fact.

For example, in Fig. 2, Node 26, 27 (primitive fact nodes) and Node 23
(derived fact node) are three fact nodes. They represent three preconditions
respectively: Node 23, the attacker has access to the Web Server; Node 26, Web
Server provides OpenSSL service; Node 27, Openssl has a vulnerability CVE-
2008-0166. With the three preconditions satisfied simultaneously, the rule of
Node 22 (derivation node) can take effect, meaning the remote exploit of a server
program could happen. This derivation rule can further cause Node 14 (derived
fact node) to be valid, meaning attacker can execute code on Web Server.

2.2 Cloud-Level Attack Graph

In the cloud, each enterprise network can scan its own virtual machines for exist-
ing vulnerabilities and then generate an attack graph. The individual attack
graph shows how attackers could exploit certain vulnerabilities and conduct a
sequence of attack steps inside the enterprise network. However, such individ-
ual attack graphs are confined to the enterprise networks without considering
the potential threats from cloud environment. The existence of stealthy bridges
could activate the prerequisites of some attacks that are previously impossible
in traditional network environment and thus enable new attack paths. These
attack paths are easily missed by individual attack graphs. For example, in
Fig. 1, without assuming the stealthy bridge existing between enterprise A and
B, the individual attack graph for enterprise B can be incomplete or even not
established due to lack of exploitable vulnerabilities. Therefore, a cloud-level
attack graph needs to be built to incorporate the existence of stealthy bridges in
the cloud. By considering the attack preconditions enabled by stealthy bridges,
the cloud-level attack graph can reveal hidden potential attack paths that are
missed by individual attack graphs.

The cloud-level attack graph should be modeled based on the cloud structure.
Due to the VMI sharing feature and the co-residency feature of cloud, a public
cloud has the following structural characteristics. First, virtual machines can be
created by instantiating VMIs. Therefore virtual machines residing on different
hosts may actually be instances of the same VMI. In simple words, they could
have the same VMI parents. Second, virtual machines belong to one enterprise
network may be assigned to a number of different physical hosts that are shared
by other enterprise networks. That is, the virtual machines employed by different
enterprise networks are likely to reside on the same host. As shown in Fig. 3,
the vm11 on host 1 and vm2j on host 2 may be instances of the same VMI,
while vm12 and vm2k could belong to the same enterprise network. Third, the
real enterprise network could be a hybrid of a cloud network and a traditional

8 X. Sun et al.

network. For example, the servers of an enterprise network could be implemented
in the cloud, while the personal computers and workstations could be in the
traditional network infrastructure.

Fig. 3. Features of the public cloud structure

Due to the above characteristics of cloud structure, the model for the cloud-
level attack graph should have the following corresponding characteristics.

(1) The cloud-level attack graph is a cross-layer graph that is composed of three
layers: virtual machine layer, VMI layer, and host layer, as shown in Fig. 4.

(2) The virtual machine layer is the major layer in the attack graph stack. This
layer reflects the causality relationship between vulnerabilities existing inside
the virtual machines and the potential exploits towards these vulnerabilities.
If stealthy bridges do not exist, the attack graph generated in this layer is
scattered: each enterprise network has an individual attack graph that is
isolated from others. The individual attack graphs can be the same as the
ones generated by cloud customers themselves through scanning the virtual
machines for known vulnerabilities. However, if stealthy bridges exist on
the other two layers, the isolated attack graph could be connected, or even
experience dramatic changes: some hidden potential attack paths will be
revealed and the original attack graph is enriched. For example, in Fig. 4,
without the stealthy bridge on h1, attack paths in enterprise network C will
be missing or incomplete because no exploitable vulnerability is available as
the entry point for attack.

(3) The VMI layer mainly captures the stealthy bridges and corresponding
attacks caused by VMI sharing. Since virtual machines in different enterprise
networks may be instantiated from the same parent VMI, they could inherit
the same security issues from parent image, such as software vulnerabilities,
malware, or backdoors, etc. Evidence from [20] shows that 98 % of Windows
VMI and 58 % of Linux VMIs in Amazon EC2 contain software with criti-
cal vulnerabilities. A large number of software on these VMIs are more than
two years old. Since cloud customers take full responsibility for securing their
virtual machines, many of these vulnerabilities remain unpatched and thus
pose great risks to cloud. Once a vulnerability or an attack type is identified
in the parent VMI, the attack graph for all the children virtual machine
instances may be affected: a precondition node could be activated, or a new
interaction rule should be constructed in attack graph generation tool.

Inferring the Stealthy Bridges Between Enterprise Network 9

The incorporation of the VMI layer provides another benefit to the sub-
sequent Bayesian network analysis. It enables the interaction between the
virtual machine layer and the VMI layer. On one hand, the probability of a
vulnerability existence on a VMI will affect the probability of the vulnerabil-
ity existence on its children instance virtual machines. On the other hand, if
new evidence is found regarding the vulnerability existence on the children
instances, the probability change will in turn influence the parent VMI. If
the same evidence is observed on multiple instances of the VMI, this VMI
is very likely to be problematic.

(4) The host layer is able to reason exploits of stealthy bridges caused by virtual
machine co-residency. Exploits on this layer could lead to further penetra-
tions on the virtual machine layer. In addition, this layer actually captures
all attacks that could happen on the host level, including those on pure
physical hosts with no virtual machines. Hence it provides a good interface
to hybrid enterprise networks that are implemented with partial cloud and
partial traditional infrastructures. The potential attack paths identified on
the cloud part could possibly extend to traditional infrastructures if all pre-
requisites for the remote exploits are satisfied, such as network access being
allowed, and exploitable vulnerabilities existing, etc. As in Fig. 4, the attack
graph for enterprise C extends from virtual machine layer to host layer.

Fig. 4. An example cloud-level attack graph model

3 Cross-Layer Bayesian Networks

A Bayesian network (BN) is a probabilistic graphical model representing cause
and effect relations. For example, it is able to show the probabilistic causal
relationships between a disease and the corresponding symptoms. Formally, a
Bayesian network is a Directed Acyclic Graph (DAG) that contains a set of nodes
and directed edges. The nodes represent random variables of interest and the
directed edges represent the causal influence among the variables. The strength
of such influence is represented with a conditional probability table (CPT). For

10 X. Sun et al.

example, Fig. 5 shows a portion of a BN constructed directly from the attack
graph in Fig. 2 by removing the rule Node 22. Node 14 can be associated with
the CPT table as shown. This CPT means that if all of the preconditions of
Node 14 are satisfied, the probability of Node 14 being true is 0.9. Node 14 is
false in all other cases.

Fig. 5. A portion of Bayesian network with associated CPT table

A Bayesian network can be used to compute the probabilities of variables of
interest. It is especially powerful for diagnosis and prediction analysis. For exam-
ple, in diagnosis analysis, given the symptoms being observed, a BN can calcu-
late the probability of the causing fact (respresented with Pr(cause | symptom =
True)). While in prediction analysis, given the causing fact, a BN will predict the
probability of the corresponding symptoms showing up (Pr(symptom|cause =
True)). In the cybersecurity field, similar diagnosis and prediction analysis can
also be performed, such as calculating the probability of an exploitation hap-
pening if related IDS alerts are observed(Pr(exploitation|IDSalert = True)),
or the probability of the IDS raising an alert if an exploitation already hap-
pened (Pr(IDSalert|exploitation = True)). This paper mainly carries out a
diagnosis analysis that computes the probability of stealthy bridge existence
by collecting evidence from other intrusion steps. Diagnosis analysis is a kind
of “backward” computation. In the cause-and-symptom model, a concrete evi-
dence about the symptom could change the posterior probability of the cause by
computing Pr(cause|symptom = True). More intuitively, as more evidence is
collected regarding the symptom, the probability of the cause will become closer
to reality if the BN is constructed properly.

3.1 Identify the Uncertainties

Inferring the existence of stealthy bridges requires real-time evidence being col-
lected and analyzed. BN has the capability, which attack graphs lack, of perform-
ing such real-time security analysis. Attack graphs correlate vulnerabilities and
potential exploits in different machines and enables determinstic reasoning. For
example, if all the preconditions of an attack are satisfied, the attacker should
be able to launch the attack. However, in real-time security analysis, there are
a range of uncertainties associated with this attack that cannot be reflected in
an attack graph. For example, has the attacker chosen to launch the attack?
If he launched it, did he succeed to compromise the host? Are the Snort [22]

Inferring the Stealthy Bridges Between Enterprise Network 11

alerts raised on this host related to the attack? Should we be more confident if
we got other alerts from other hosts in this network? Such uncertainty aspects
should be taken into account when performing real-time security analysis. BN
is a valuable tool for capturing these uncertainties.

One non-trivial difficulty for constructing a well functioning BN is to identify
and model the uncertainty types existing in the attack procedure. In this paper,
we mainly consider four types of uncertainties related to cloud security.

Uncertainty of Stealthy Bridges Existence. The presence of known vulner-
abilities is usually deterministic due to the availability of vulnerability scanners.
After scanning a virtual machine or a physical host, the vulnerability scanner
such as Nessus [24] is able to tell whether a known vulnerability exists or not2.
However, due to its unknown or hard-to-detect feature, effective scanners for
stealthy bridges are rare. Therefore, the existence of stealthy bridges itself is
a type of uncertainty. In this paper, to enable the construction of a complete
attack graph, stealthy bridges are hypothesized to be existing when correspond-
ing conditions are met. For example, if two virtual machines co-reside on the
same physical host and one of them has been compromised by the attacker, the
attack graph will be generated by making a hypothesis that a stealthy bridge
can be created between these two virtual machines. This is enforced by crafting
a new interaction rule as follows in MulVAL:

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

Afterwards, the BN constructed based on the attack graph will infer the
probability of this hypothesis being true.

Uncertainty of Attacker Action. Uncertainty of attacker action is first iden-
tified by [23]. Even if all the prerequsites for an attack are satisfied, the attack
may not happen because attackers may not take action. Therefore, a kind of
Attack Action Node (AAN) is added to the BN to model attackers’ actions.
An AAN node is introduced as an additional parent node for the attack. For
example, the BN shown in Fig. 5 is changed to Fig. 6 after adding an AAN node.
Correspondingly, the CPT table is modified as in Fig. 6. This means “attacker
taking action” is another prerequisite to be satisfied for the attack to happen.

An AAN node is not added for all attacks. They are needed only for important
attacks such as the very first intrustion steps in a multi-step attack, or attacks
that need attackers’ action. Since an AAN node represents the primitive fact of
whether an attacker taking action and has no parent nodes, a prior probability
distribution should be assigned to an AAN to indicate the likelihood of an attack.
The posterior probability of AAN will change as more evidence is collected.
2 The assumption here is that a capable vulnerability scanner is able to scan out all

the known vulnerabilities.

12 X. Sun et al.

26 27 23 AAN 14
T T T T 0.9

otherwise 0

Fig. 6. A portion of bayesian network with AAN node

Uncertainty of Exploitation Success. Uncertainty of exploitation success
goes to the question of “did the attacker succeed in this step?”. Even if all
the prerequisites are satisfied and the attacker indeed launches the attack, the
attack is not guarenteed to succeed. The success likelihood of an attack mainly
depends on the exploit difficulty of vulnerabilities. For some vulnerabilities,
usable exploit code is already publicly available. While for some other vulnera-
bilities, the exploit is still in the proof-of-concept stage and no successful exploit
has been demonstrated. Therefore, the exploit difficulty of a vulnerability can
be used to derive the CPT table of an exploitation. For example, if the exploit
difficulty for the vulnerability in Fig. 5 is very high, the probability for Node
14 when all parent nodes are true could be assigned as very low, such as 0.3.
If in the future a public exploit code is made available for this vulnerability,
the probability for Node 14 may be changed to a higher value accordingly. The
National Vulnerability Database (NVD) [25] maintains a CVSS [26] scoring sys-
tem for all CVE [27] vulnerabilities. In CVSS, Access Complexity (AC) is a
metric that describes the exploit complexity of a vulnerability using values of
“high”, “medium”, “low”. Hence the AC metric can be employed to derive CPT
tables of exploitations and model the uncertainty of exploitation success.

Uncertainty of Evidence. Evidence is the key factor for BN to function. In
BN, uncertainties are indicated with probabilities of related nodes. Each node
describes a real or hypothetical event, such as “attacker can execute code on
Web Server”, or “a stealthy bridge exists between virtual machine A and B”,
etc. Evidence is collected to reduce uncertainty and calculate the probabilities of
these events. According to the uncertainty types mentioned above, evidence is
also classified into three types: evidence for stealthy bridges existence, evidence
for attacker action, and evidence for exploitation success. Whenever a piece of
evidence is observed, it is assigned to one of the above evidence types to support
the corresponding event. This is done by adding evidence as the children nodes
to the event nodes. For example, an IDS alert about a large number of login
attempts can be regarded as evidence of attacker action, showing that an attacker
could have tried to launch an attack. This evidence is then added as the child
node to an AAN, as exemplified in Fig. 7. For another example, the alert “system
log is deleted” given by Tripwire [28] can be the child of the node “attacker can
execute code”, showing that an exploit has been successfully achieved.

However, evidence per se contain uncertainty. The uncertainty is twofold.
First, the support of evidence to an event is uncertain. For analogy, a symptom
of coughing cannot completely prove the presence of lung disease. In the above
examples, could the multiple login attempts testify that attackers have launched

Inferring the Stealthy Bridges Between Enterprise Network 13

Fig. 7. The evidence-condidence pair and associated exemplar CPT

the attack? How likely is it that attackers have succeeded in compromising the
host if a system log deletion is observed? Second, evidence from security sensors
is not 100 % accurate. IDS systems such as Snort, Tripwire, etc. suffer a lot from
a high false alert rate. For example, an event may trigger an IDS to raise an
alert while actually no attack happens. In this case, the alert is a false positive.
The reverse case is a false negative, that is, when an IDS should have raised an
alarm but doesn’t. Therefore, we propose to model the uncertainty of evidence
with an Evidence-Confidence(EC) pair as shown in Fig. 7. The EC pair has two
nodes, an Evidence node and an Evidence Confidence Node (ECN). An ECN
is assigned as the parent of an Evidence node to model the confidence level of
the evidence. If the confidence level is high, the child evidence node will have
larger impact on other nodes. Otherwise, the evidence will have lower impact on
others. An example CPT associated with the evidence node is given in Fig. 7.
Whenever new evidence is observed, an EC pair is attached to the supported
node. A node can have several EC pairs attached with it if multiple instances of
evidence are observed. With ECN nodes, security experts can tune confidence
levels of evidence with ease based on their domain knowledge and experience.
This will greatly enhance the flexibility and accuracy of BN analysis.

4 Implementation

4.1 Cloud-Level Attack Graph Generation

This paper uses MulVAL [19] as the attack graph generation tool. To construct a
cloud-level attack graph, new primitive fact nodes and interaction rules have to
be crafted in MulVAL on the VMI layer and host layer to model the existence of
stealthy bridges. Each virtual machine has an ID tuple (Vm id, VMI id, H id)
associated with it, which represents the ID for the virtual machine itself, the
VMI it was derived from, and the host it resides on. The VMI layer mainly
focuses on the model of VMI vulnerability inheritance and the VMI backdoor
problems. The host layer mainly focuses on modeling the virtual machine co-
residency problems. Table 1 provides a sample set of newly crafted interaction
rules that are incorporated into MulVAL for cloud-level attack graph generation.

4.2 Construction of Bayesian Networks

Deriving Bayesian networks from cross-layer attack graphs consists of four major
components: removing rule nodes in the attack graph, adding new nodes, deter-
mining prior probabilities, and constructing CPT tables.

14 X. Sun et al.

Table 1. A sample set of interaction rules

/***Model the Virtual Machine Image Vulnerability Inheritance***/
primitive(IsInstance(Vm_id, VMI_id))
primitive(ImageVulExists(VMI_id, vulID, _program, _range, _consequence))
derived(VulExists(Vm_id, vulID, _program,_range,_consequence)).

%remove vulExists from the primitive fact set
primitive(vulExists(_host, _vulID, _program, _range, _consequence)

interaction rule(
(VulExists(Vm_id, vulID, _program, _range, _consequence):-

ImageVulExists(VMI_id, vulID, _program, _range, _consequence),
IsInstance(Vm_id, VMI_id)),

rule_desc(‘A virtual machine instance inherits the vulnerability from the parent VMI’)).

/***Model the Virtual Machine Image Backdoor Problem***/
primitive(IsThirdPartyImage(VMI_id)).
derived(ImageVulExists(VMI_id, sealthyBridge_id, _, _remoteExploit, privEscalation)).

interaction rule(
(ImageVulExists(VMI_id,stealthyBridge_id, _, _remoteExploit, privEscalation):-

IsThirdPartyImage(VMI_id)),
rule_desc(‘A third party VMI could contain a stealthy bridge’)).

interaction rule(
(execCode(Vm_id, Perm):

VulEixsts(Vm_id, stealthyBridge_id, _, _, privEscalation),
netAccess(H, _Protocol, _Port)),

rule_desc(‘remoteExploit of a stealthy bridge’)).

/***Model the Virtual Machine Co-residency Problem***/
primitive(ResideOn(VM_id, H_id)).
derived(stealthyBridgeExists(Vm_1,Vm_2, H_id, stealthyBridge_id).

interaction rule(
(stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id):-

execCode(Vm_1,_user),
ResideOn(Vm_1, Host),
ResideOn(Vm_2, Host)),

rule_desc(‘A stealthy bridge could be built between virtual machines co-residing on
the same host after one virtual machine is compromised’)).

interaction rule(
(execCode(Vm_2,_user):-

stealthyBridgeExists(Vm_1,Vm_2, Host, stealthyBridge_id)),
rule_desc(‘A stealthy bridge could lead to privilege escalation on victim machine’)).

interaction rule(
(canAccessHost(Vm_2):-

logInService(Vm_2,Protocol,Port),
stealthyBridgeExists(Vm_1,Vm_2,Host,stealthyBridge_id)),

rule_desc(‘Access a host through a log-in service by obtaining authentication
information through stealthy bridges’)).

Remove rule Nodes of Attack Graph. In an attack graph, the rule nodes
imply how postconditions are derived from preconditions. The derivation is
deterministic and contains no uncertainty. Therefore, these rule nodes have no
effect on the reasoning process, and thus can be removed when constructing the
BN. To remove a rule node, its preconditions are connected directly to its post-
conditions. For example, in Fig. 2, Node 26, 27, and 23 will be connected directly
to Node 14 by removing Node 22.

Inferring the Stealthy Bridges Between Enterprise Network 15

Adding New Nodes. New nodes are added to capture the uncertainty of
attacker action and the uncertainty of evidence. To capture the uncertainty of
attacker action, each step has a separate AAN node as the parent, rather than
sharing the same AAN among multiple steps. The AAN node models attacker
action at the granularity of attack steps, and thus reflects the actual attack paths.
To model the uncertainty of evidence, whenever new evidence is observed, an
EC pair is constructed and attached to the supported node with uncertainty.

Determining Prior Probabilities. Prior probability distributions should be
determined for all root nodes that have no parents, such as the vulnerability
existence nodes, the network access nodes, or the AAN nodes.

Constructing CPT Tables. Some CPT tables can be determined according
to a standard, such as the the AC metric in CVSS scoring system. The AC
metric describes the exploit complexity of vulnerabilities and thus can be used
to derive the CPT tables for corresponding exploitations. Some other CPT tables
may involve security experts’ domain knowledge and experience. For example,
the VMIs from a trusted third party may have lower probability of containing
security holes such as backdoors, while those created and shared by individual
cloud users may have higher probability.

The constructed BN should be robust against small changes in prior prob-
abilities and CPT tables. To ensure such robustness, we use SamIam [33] for
sensitivity analysis when constructing and debugging the BN. By specifying the
requirements for an interested node’s probability, SamIam will check the asso-
ciated CPT tables and provide suggestions on feasible changes. For example, if
we want to change P (N5 = True) from 0.34 to 0.2, SamIam will provide two
suggestions, either changing P (N5 = True|N2 = True,N3 = True) from 0.9
to <= 0.43, or changing P (N3 = True|N1 = True) from 0.3 to <= 0.125.

5 Experiment

5.1 Attack Scenario

Figure 1 shows the network structure in our attack scenario. We have 3 major
enterprise networks: A, B, and C. A and B are all implemented within the cloud,
while C is implemented by partially cloud, and partially traditional network
(the servers are located in the cloud and the workstations are in a traditional
network). The attack includes several steps conducted by attacker Mallory.

Step 1, Mallory first publishes a VMI that provides a web service in the cloud.
This VMI is malicious in that it contains a security hole that Mallory knows how
to exploit. For example, this security hole could be an SSH user authentication
key (the public key located in .ssh/authorized keys) that is intentionally left in
the VMI by Mallory. The leftover creates a backdoor that allows Mallory to login
into any instances derived from this malicious VMI using his own private key.
The security hole could also be an unknown vulnerability that is not yet publicly
known. To make the attack scenario more generic, we choose a vulnerability

16 X. Sun et al.

CVE-2007-2446 [29], existing in Samba 3.0.0 [30], as the one imbedded in the
malicious VMI, but assume it as unknown for the purpose of simulation.

Step 2, the malicious VMI is then adopted and instantiated as a web server
by an innocent user from A. Mallory now wants to compromise the live instances,
but he needs to know which instances are derived from his malicious VMI. [20]
provides three possible ways for machine fingerprinting: ssh matching, service
matching, and web matching. Through ssh key matching, Mallory finds the right
instance in A and completes the exploitation towards CVE-2007-2446 [29].

Step 3, enterprise network B provides web services to a limited number of
customers, including A. With the acquired root privilege from A’s web server,
Mallory is able to access B’s web server, exploit one of its vulnerabilities CVE-
2007-5423 [31] from application tikiwiki 1.9.8 [32], and create a reverse shell.

Step 4, Mallory notices that enterprise B and C has a special relationship:
their web servers are implemented with virtual machines co-residing on the same
host. C is a start-up company that has some valuable information stored on
its CEO’s workstation. Mallory then leverages the co-residency relationship of
the web servers and launches a side-channel attack towards C’s web server to
extract its password. Mallory obtains user privilege through the attack. Mallory
also establishes a covert channel between the co-resident virtual machines for
convenient information exchange.

Step 5, the NFS server in C has a directory that is shared by all the servers
and workstations inside the company. Normally C’s web server should not have
write permission to this shared directory. But due to a configuration error of
the NFS export table, the web server is given write permission. Therefore, if
Mallory can upload a Trojan horse to the shared directory, other innocent users
may download the Trojan horse from this directory and install it. Hence Mallory
crafts a Trojan horse management tool.deb and uploads it into the shared NSF
directory on web server.

Step 6, The innocent CEO from C downloads management tool.deb and
installs it. Mallory then exploits the Trojan horse and creats a unsolicited con-
nection back to his own machine.

Step 7, Mallory’s VMI is also adopted by several other enterprise networks,
so Mallory compromises their instances using the same method in Step 2.

In this scenario, two stealthy bridges are established3: one is from Internet
to enterprise network A through exploiting an unknown vulnerability, the other
one is between enterprise network B and C by leveraging virtual machine co-
residency. The attack path crosses over three enterprise networks that reside in
the same cloud, and extends to C’s traditional network.

5.2 Experiment Result

The purpose of our experiment is to check whether the BN-based tool is able to
infer the existence of stealthy bridges given the evidence. The Bayesian network

3 The enterprise networks in Step 7 are not key players, so we do not analyze the
stealthy bridges established in this step, but still use the raised alerts as evidence.

Inferring the Stealthy Bridges Between Enterprise Network 17

has two inputs: the network deployment (network connection, host configuration,
and vulnerability information, etc.) and the evidence. The output of BN is the
probability of specific events, such as the probability of stealthy bridges being
established, or the probability of a web server being compromised. We view the
attackers’ sequence of attack steps as a set of ground truth. To evaluate the
effectiveness of the constructed BN, we compare the output of the BN with the
ground truth of the attack sequence. For example, given the ground truth that a
stealthy bridge has been established, we will check the corresponding probability
provided by the BN to see whether the result is convincible.

For the attack scenario illustrated in Fig. 1, the cross-layer BN is constructed
as in Fig. 8. By taking into account the existence of stealthy bridges, the cloud-
level attack graph has the capability of revealing potential hidden attack paths.
Therefore, the constructed BN also inherits the revealed hidden paths from the
cloud-level attack graph. For example, the white part in Fig. 8 shows the hidden
paths enabled by the stealthy bridge between enterprise network B and C. These
paths will be missed by individual attack graphs if the stealthy bridge is not
considered. The inputs for this BN are respectively the network deployment
shown in Table 24 and the collected evidence is shown in Table 3. Evidence is
collected against the attack steps described in our attack scenario. Not all attack
steps have corresponding observed evidence.

Table 2. Network deployment

Node Deployed facts

N1 IsThirdPartyImage(VMI)

N2 IsInstance(Aws, VMI)

N4 netAccess(Aws, protocol, port)

N17 netServiceInfo(Bws, tikiwiki, http, 80,)

N19 ResideOn(Bws, H)

N20 ResideOn(Cws, H)

N21 hacl(Cws, Cnfs, nfsProtocol, nfsPort)

N27 nfsExport(Cnfs, ‘/export’, write, Cws)

N30 nfsMountd(CworkStation,‘/mnt/share’, Cnfs, ‘/export’, read)

N32 VulExists(CworkStation, ‘CVE-2009-2692’, kernel, localExploit, privEscalation)

N41 IsInstance(Dws, VMI)

N43 netAccess(Dws, protocol, port)

We conducted four sets of simulation experiments, each with a specific pur-
pose. For simplicity, we assume all attack steps are completed instantly with no
time delay. The ground truth in our attack scenario tells that one stealthy bridge
between attacker and enterprise A is established in attack step 2, and the other

4 Aws,Bws,Cws,Cnfs,Cworkstation denote A’s web server, B’s web server, C’s web
server, C’s NFS server, C’s workstation respectively.

18 X. Sun et al.

Table 3. Collected evidence corresponding to attack steps

Node Step Collected evidence

N9 2 Wireshark shows multiple suspicious connections established

N11 2 IDS shows malicious packet detected

N13 2 Wireshark “follow tcp stream” shows a back telnet connection is instructed to open

N23 4 Cache monitor observes abnormal cache activities

N34 5 Tripwire shows several file modification toward management tool.deb

N37 6 IDS shows Trojan horse installation

N39 6 Wireshark “follow tcp stream” find plain text in supposed encrypted-connection

N47 7 Wireshark shows a back telnet connection is instructed to open

N49 7 IDS shows malicious packet detected

one between B and C is established in step 4. By taking evidence with a certain
order as input, the BN will generate a corresponding sequence of marginal prob-
abilities for events of interest. The probabilities are compared with the ground
truth to evaluate the performance of the BN.

In experiment 1, we assume all the evidence is observed in the order of the
corresponding attack steps. We are interested in four events, a stealthy bridge
exists in enterprise A’s web server (N5), the attacker can execute arbitrary code
on A’s web server (N8), a stealthy bridge exists in the host that B’s web server
reside (N22), and the attacker can execute arbitrary code on C’s web server
(N25). N8 and N25 respectively imply that the stealthy bridges in N5 and N22
are successfully established. Table 4 shows the results of experiment 1 given
supporting evidence with corresponding confidence values. The results indicate
that the probability of stealthy bridge existence is initially very low, and increases
as more evidence is collected. For example, marginal probability Pr(N5 = True)
increases from 34 % with no evidence observed to 88.95 % given all evidence
presented. This means that a stealthy bridge is very likely to exist on enterprise
A’s web server after enough evidence is collected.

The first stealthy bridge in our attack scenario is established in attack step 2,
and the corresponding pieces of evidence are N9, N11, and N13. Pr(N8 = True)
is 95.77 % after all the evidence from step 2 is observed, but Pr(N5 = True) is
only 74.64 %. This means that although the BN is almost sure that A’s web server
has been compromised, it doesn’t have the same confidence of attributing the
exploitation to the stealthy bridge, which is caused by the unknown vulnerability
inherited from a VMI. Pr(N5 = True) increases to 88.95 % only after evidence
N47 and N49 from other enterprise networks is observed for attack step 7. This
means that if the same alerts appear in other instances of the same VMI, the
VMI is very likely to contain the related unknown vulnerability.

The second stealthy bridge is established in step 4, and the corresponding evi-
dence is N23. Pr(N22 = True) is 57.45 % after evidence N9 to N23 is collected.
The number seems to be low. However, considering the unusual difficulty of lever-
aging a co-residency relationship, this low probability still should be treated with
great attention. After all evidence is observed, the increase of Pr(N22 = True)

Inferring the Stealthy Bridges Between Enterprise Network 19

Fig. 8. The cross-layer Bayesian network constructed for the attack scenario

Table 4. Results of experiment 1

Events
No N9 N11 N13 N23 N34 N37 N39 N47 N49

evidence Medium High High High VeryHigh High VeryHigh VeryHigh VeryHigh

N5=True 34% 34% 51.54% 74.64% 75.22% 75.22% 75.41% 75.5% 86.07% 88.95%
N8=True 20.25% 22.96% 54.38% 95.77% 96.81% 96.81% 97.14% 97.31% 98.14% 98.37%
N22=True 13.91% 14.32% 19.03% 25.23% 57.45% 57.45% 67.67% 73.04% 73.24% 73.29%
N25=True 17.52% 17.89% 22.13% 27.71% 56.7% 56.7% 68.11% 74.1% 74.27% 74.32%

from 13.91 % to 73.29 % may require security experts to carefully scrutinize the
virtual machine isolation status on the related host.

Experiment 2 tests the influence of false alerts to BN. In this experiment,
we assume evidence N11 is a false alert generated by IDS. We perform the same
analysis as in experiment 1 and compare results with it. Table 5 shows that when
only 3 pieces of evidence (N9, N11, and N13) are observed, the probability of the
related event is greatly affected by the false alert. For instance, Pr(N5 = True)
is 74.64 % when N11 is correct, and is 53.9 % when N11 is a false alert. But
Pr(N8 = True) is not greatly influenced by N11 because it’s not closely related
to the false alert. When all evidence is input into the BN, the influence of false
alerts to related events is reduced to an acceptable level. This shows that a BN
can provide relatively correct answer by combining the overall evidence set.

Since security experts may change their confidence value towards evidence
based on their new knowledge and observation, experiment 3 tests the influence
of evidence confidence value to the BN. This experiment generates similar results
as in experiment 2, as shown in Table 6. When evidence is rare, the confidence

20 X. Sun et al.

Table 5. Results of experiment 2

Events With 3 pieces of evidence With all evidence

N11 = True N11 = False N11 = True N11 = False

N5 74.64 % 53.9 % 88.95 % 79.59 %

N8 95.77 % 58.6 % 98.37 % 79.07 %

N22 25.23 % 19.66 % 73.29 % 68.62 %

N25 27.71 % 22.7 % 74.32 % 70.24 %

Table 6. Results of experiment 3

Events With 3 pieces of evidence With all evidence

N14 = VeryHigh N14 = Low N14 = VeryHigh N14 = Low

N5 74.64 % 54.29 % 88.95 % 79.82 %

N8 95.77 % 59.30 % 98.37 % 79.54 %

N22 25.23 % 19.77 % 73.29 % 68.73 %

N25 27.71 % 22.79 % 74.32 % 70.34 %

value changes from VeryHigh to Low has larger influence to related events than
when evidence is sufficient.

In experiment 4, we test the affect of evidence input order to the BN analysis
result. We bring forward the evidence N47 and N49 from step 7 and insert them
before N23 and N37 respectively. The analysis shows that a BN can still produce
reliable results in the presence of changing evidence order.

6 Related Work

We explore the literature for the following topics that are related to our paper.

VMI Sharing. [34] explores a variety of attacks that leverage the virtual
machine image sharing in Amazon EC2. Researchers were able to extract highly
sensitive information from publicly available VMIs. The analysis revealed that
30 % of the 1100 analyzed AMIs (Amazon Machine Images) at the time of the
analysis contained public keys that are backdoors for the AMI Publishers. The
backdoor problem is not limited to AMIs created by individuals, but also affects
those from well-known open-source projects and companies.

Co-Residency. The security issues caused by virtual machine co-residency
have attracted researchers’ attention recently. [11] pointed out that the shared
resource environment of cloud will introduce security issues that are fundamen-
tally new and unique to cloud. [5] shows how attackers can identify on which
host a target virtual machine is likely to reside in Amazon EC2, and then place
the malicious virtual machine onto the same host through a number of instan-
tiating attemps. Such co-residency can be used for further malicious activities,

Inferring the Stealthy Bridges Between Enterprise Network 21

such as launching side-channel attack to extract information from a target vir-
tual machine [6]. [10] takes an opposite perspective and proposes to detect co-
residency via side-channel analysis. [4] demonstrates a new class of attacks called
resource-freeing attacks (RFAs), which leverage the performance interference of
co-resident virtual machine. [8] presents a traffic analysis attack that can ini-
tiate a covert channel and confirm co-residency with a target virtual machine
instance. [7] also considers attacks towards hypervisor and propose to eliminate
the hypervisor attack surface through new system design.

Bayesian Networks. BNs have been applied to intrusion detection [35] and
cyber security analysis in traditional networks [23]. [23] analyzes which hosts
are likely to be compromised based on known vulnerabilities and observed alerts.
Our work lands on a different cloud environment and takes a reverse strategy
by using BN to infer the stealthy bridges, which are unknown in nature. In the
future, the inference of stealthy bridges can be further extended to identify the
zero-day attack paths in cloud, as in [9] for traditional networks.

7 Conclusion and Discussion

This paper identifies the problem of stealthy bridges between isolated enterprise
networks in the public cloud. To infer the existence of stealthy bridges, we pro-
pose a two-step approach. A cloud-level attack graph is first built to capture
the potential attacks enabled by stealthy bridges. Based on the attack graph,
a cross-layer Bayesian network is constructed by identifying uncertainty types
existing in attacks exploiting stealthy bridges. The experiments show that the
cross-layer Bayesian network is able to infer the existence of stealthy bridges
given supporting evidence from other intrusion steps. However, one challenge
posed by cloud environments needs further effort. Since the structure of cloud
is very dynamic, generating the cloud-level attack graph from scratch whenever
a change happens is expensive and time-consuming. Therefore, an incremental
algorithm needs to be developed to address such frequent changes such as virtual
machine turning on and off, configuration changes, etc.

Disclaimer

This paper is not subject to copyright in the United States. Commercial products
are identified in order to adequately specify certain procedures. In no case does
such identification imply recommendation or endorsement by the National Insti-
tute of Standards and Technology, nor does it imply that the identified products
are necessarily the best available for the purpose.

Acknowledgements. This work was supported by ARO W911NF-09-1-0525
(MURI), NSF CNS-1223710, NSF CNS-1422594, ARO W911NF-13-1-0421 (MURI),
and AFOSR W911NF1210055.

22 X. Sun et al.

References

1. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/
2. Rackspace. http://www.rackspace.com/
3. Windows Azure: Microsoft’s Cloud. https://www.windowsazure.com/en-us/
4. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-

freeing attacks: improve your cloud performance (at your neighbors expense). In:
Proceedings of the 2012 ACM conference on Computer and communications secu-
rity (CCS) (2012)

5. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 2009 ACM CCS (2009)

6. Song, D.X., Wagner, D., Tian, X.: Timing analysis of keystrokes and timing attacks
on SSH. In: USENIX Security Symposium (2001)

7. Szefer, J., Keller, E., Lee, R.B., Rexford, J.: Eliminating the hypervisor attack
surface for a more secure cloud. In: Proceedings of the 2011 ACM CCS (2011)

8. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: Detecting
co-residency with active traffic analysis techniques. In: Proceedings of the 2012
ACM Workshop on Cloud computing security workshop (CCSW) (2012)

9. Dai, J., Sun, X., Liu, P.: Patrol: revealing zero-day attack paths through network-
wide system object dependencies. In: Crampton, J., Jajodia, S., Mayes, K. (eds.)
ESORICS 2013. LNCS, vol. 8134, pp. 536–555. Springer, Heidelberg (2013)

10. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: HomeAlone: co-residency detection
in the cloud via side-channel analysis. In: 2011 Symposium on Security and Privacy
(S&P) (2011)

11. Chen, Y., Paxson, V., Katz, R.H.: What’s new about cloud computing security.
University of California, Berkeley Report No. UCB/EECS-2010-5, January 2010

12. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: 2002 Symposium on Security and Privacy (S&P)
(2002)

13. Ramakrishnan, C.R., Sekar, R.: Model-based analysis of configuration vulnerabil-
ities. J. Comput. Secur. 10(1/2), 189–209 (2002)

14. Phillips C., Swiler, L.P.: A graph-based system for network-vulnerability analysis.
In: Proceedings of the 1998 Workshop on New security paradigms (1998)

15. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats,
vol. 5, pp. 247–266. Springer, Heidelberg (2006)

16. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnera-
bility analysis. In: Proceedings of the 2002 ACM CCS (2002)

17. Ingols, K., Lippmann, R., Piwowarski, K.: Practical attack graph generation for
network defense. In: 22nd Annual Computer Security Applications Conference
(ACSAC) (2006)

18. Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph gener-
ation. In: Proceedings of the 2006 ACM Conference on Computer and Communi-
cations Security (2006)

19. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: A logic-based network security
analyzer. In: USENIX Security Symposium (2005)

20. Balduzzi, M., Zaddach, J., Balzarotti, D., Kirda, E., Loureiro, S.: A security analy-
sis of Amazon’s elastic compute cloud service. In: Proceedings of the 27th ACM
SAC (2012)

http://aws.amazon.com/ec2/
http://www.rackspace.com/
https://www.windowsazure.com/en-us/

Inferring the Stealthy Bridges Between Enterprise Network 23

21. Lazri, K., Laniepce, S., Ben-Othman, J.: Reconsidering intrusion monitoring
requirements in shared cloud platforms. In: Availability, Reliability, and Security
(ARES). IEEE (2013)

22. http://www.snort.org/
23. Xie, P., Li, J., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber security

analysis. In: Dependable Systems and Networks (DSN). IEEE/IFIP (2010)
24. http://www.tenable.com/products/nessus
25. http://nvd.nist.gov/
26. http://nvd.nist.gov/cvss.cfm
27. http://cve.mitre.org/
28. http://www.tripwire.com/
29. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2446
30. https://www.samba.org
31. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5423
32. https://info.tiki.org/
33. http://reasoning.cs.ucla.edu/samiam/
34. Bugiel, S., Nrnberger, S., Pppelmann, T., Sadeghi, A.-R., Schneider, T.: Amazo-

nIA: when elasticity snaps back. In: Proceedings of the 2011 ACM CCS (2011)
35. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for

intrusion detection. In:19th Annual Computer Security Applications Conference
(ACSAC) (2003)

http://www.snort.org/
http://www.tenable.com/products/nessus
http://nvd.nist.gov/
http://nvd.nist.gov/cvss.cfm
http://cve.mitre.org/
http://www.tripwire.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-2446
https://www.samba.org
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-5423
https://info.tiki.org/
http://reasoning.cs.ucla.edu/samiam/

	Inferring the Stealthy Bridges Between Enterprise Network Islands in Cloud Using Cross-Layer Bayesian Networks
	1 Introduction
	2 Cloud-Level Attack Graph Model
	2.1 Logical Attack Graph
	2.2 Cloud-Level Attack Graph

	3 Cross-Layer Bayesian Networks
	3.1 Identify the Uncertainties

	4 Implementation
	4.1 Cloud-Level Attack Graph Generation
	4.2 Construction of Bayesian Networks

	5 Experiment
	5.1 Attack Scenario
	5.2 Experiment Result

	6 Related Work
	7 Conclusion and Discussion
	References

