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Abstract. Prefix hijacking is a major security threat to the global Inter-
net routing system. Concurrent prefix hijack detection has been proven to
be an effective method to defend routing security. However, the existing
concurrent prefix hijack detection scheme considers no prefix ownership
changes, and online concurrent prefix hijack detection endures seriously
false positive. In this paper, we study the possible characters to filter
out false positive events generated online by machine learning, and apply
such characters in the online detection. Our result shows that our refined
online concurrent prefix hijack detection can detect all offline detected
events with no false positive. We also confirm that (1) neighboring ASes
seldom hijack each other’s prefixes; (2) large ISPs seldom suffer from
prefix hijacks or conduct hijacks.
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1 Introduction

Internet is composed of tens of thousands of ASes (Autonomous Systems),
which uses BGP (Border Gateway Protocol) to exchange the routing informa-
tion towards prefixes. Because BGP doesn’t consider security, no authentication
is required when exchanging routing information. As a result, an AS is able to
announce any prefix without authentication (called prefix hijacks), and broad-
cast it to the rest of the world. Nowadays, prefix hijacking has been the most
popular cyber attacks, and widely applied in man in the middle (MITM), phish-
ing scams, and DDOS attacks towards SpamHaus and cloudflare. The traffic to
victim prefixes are redirected to attacking networks by such attacks. Attackers
may blackhole the victim prefix, impersonate the victim prefix to communicate
other entities, or conduct MITM attacks.

To enable authentication, existing proposals [5,6,9,10] require to change
BGP, i.e. they require to change existing network configurations and opera-
tions which are hard to deploy. Other proposals devote to detect prefix hijacking
[3,7,8,11]. Such works collect routing messages and compare them with prefix
ownership. The prefix ownership is known as priori [2,7] or inferred from col-
lected routing information [4,8]. However, an up-to-date and complete priori
prefix ownership need collaborative works, which is hard to deploy. Approaches
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based on ownership inference also suffer seriously from false positive alarms
because prefix hijacks and some legitimate operational practises have similar
behaviors. Our previous work [1] develops a off-line scheme that detects con-
current prefix hijacks which greatly reduce the risk of false positive alarms. In
this paper, we propose an improvement on their detection algorithm in online
scenarios.

Our previous concurrent prefix hijack detecting scheme relies on the life-
time of prefix announcement to infer prefix ownership. When an AS is observed
announcing a prefix for more than one day, it is inferred as an owner. However,
in online environment, lifetime cannot reveal prefix ownership changes immedi-
ately, e.g. when an AS is a new owner of a prefix, its announcements’ lifetime is
short, and our previous scheme would treat its announcements as prefix hijacks.
Consequently, our previous scheme endures more false positive in online envi-
ronment.

Towards minimizing the false positive generated online, we analyse the poten-
tial characters of false positive alarms. Our idea is based on the assumption that
offenders always tend to hijack prefixes effectively at little cost. In cases that
the prefix owner can easily detect the routing announcement of the offender, or
can easily tackle with the hijack, the prefix hijack is probably a false positive. In
practise, we focus on the offender, the offending target (i.e. prefix owner), and
the distance between them. As a offender, a transit provider takes risks to hurt
its business interest once its customers realize the hijack; large ISPs (Internet
service provider) invest more resource into the network security than stub ASes,
hijacks towards their prefixes turn out to be bad ideas; hijacking neighboring
ASes’s prefixes can also be detected and tackled with easily. We look into the
offline detection and false positive generated online. Our analysis shows that
the prefix hijacks between neighboring ASes and large ISPs seldom occur, but a
non-trivial number of false positives fall into the above two cases. Applying the
two characters in the online detection, our result shows that we manage to filter
out all false positive events. At the same time, our online detection detect the
same set of prefix hijack events as the offline scheme.

In the rest of this paper, we discuss related works in Sect. 2. In Sect. 3
we introduce concurrent prefix hijacks detecting scheme and its limitations. In
Sect. 4 we introduce our online detection scheme. In Sect. 5, we evaluate our
scheme by experimental results and conclude in Sect. 6.

2 Related Works

A number of solutions have been proposed to eliminate the problem of false
routing announcements. Such works can be categorized into two broad categories:
prevention [5,6,9,10] and detection [3,7,8,11].

The prevention techniques attempt to prevent ASes from announcing false
routes. Many prevention proposals [6,9] are difficult to deploy, because they
require extensive cryptographic key distribution infrastructure, and/or a trusted
central database. PGBGP and QBGP monitor the origin AS for each prefix
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according to BGP updates, and a router avoids using new routes if the old route
is still available. PGBGP focuses on minimizing few false negatives, however it
ends up with many false positives which causes an increase in the time to adopt
legitimate new routes. Instead, concurrent prefix hijack detection may have false
negatives but zero false positives allows traffic source networks to automate their
responses to prefix hijack events.

The detection techniques attempt to identify prefix hijack events through
monitoring the routing system, including control plane and data plane informa-
tion. Such techniques can be categorized as: (a) Traceroute based solutions and
(b) Control-plane based solutions. These detection solutions require no change
to BGP protocol and thus are more deployable. However it is important to note
that existing detection systems are geared towards protecting individual prefix
owners, i.e. safeguarding the allocated prefix block of a network against any on-
going prefix hijacks. Whereas the traffic source networks needs to protect their
entire routing table from any on-going prefix hijacking attacks in order to safe-
guard all of their data traffic. Therefore each existing detection system poses
its own practical limitations in safeguarding an entire routing table for traffic
source network, thereby making them ineffective.

Traceroute based solutions protect their prefixes by periodically probing data
paths to the protected prefixes, such as iSPY [11] and Lightweight Probing [12].
Such solutions are good to be used when the quantity of prefixes to be protected
is small. However, for traffic source networks, the protection list is too long to
utilize such traceroute based solutions.

Control-plane-based solutions [8], monitor the entire routing table passively
according to BGP data. However, due to limited vantage point locations and
legitimate reasons for anomalous updates [4], the results include too many false
positives as well as false negatives. Certain control-plane-based solutions, such
as PHAS [7] and MyASN [2], use information prefix ownership information to
filter out false positives, but then their effectiveness is limited by the number of
participating prefix owners. Furthermore, certain solutions, such as [4], combine
anomaly detection of control plane information with data-plane fingerprints to
perform joint analysis, but the detection accuracy is still limited by the vantage
points locations of both data sources. With the high false positives produced by
existing control-plane-based solutions, traffic source network could suffer from
erroneously dropping correct route updates and thus impacting Internet con-
nectivity. In contrast to existing control plane based systems, concurrent pre-
fix hijack detection correlates suspicious routing announcements along the time
dimension and thus minimizes false positives, enabling automated response to
prefix hijack attacks without requiring human intervention from traffic source
networks.

3 Offline Detection Scheme and Its Limitation

In this section, we first briefly introduce our original detection scheme, then
discuss its limitations and possible problems we may encounter when we apply
it online.
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3.1 Offline Prefix Hijack Detecting Scheme

Our previous concurrent prefix hijack detecting scheme relies on BGP routing
data to infer prefix ownership. The inference is based on prefix’s announcement
lifetime. Usually the owner AS of a prefix is expected to announce the prefix
persistently for a long duration. In our scheme, we associate every prefix with
a stable set and a related set containing ASes that probably can legitimately
announce the prefix. Stable Sets captures ASes that are likely owners of a
prefix. In practise, any AS announcing a prefix cumulatively for one day or more
within a year is included in the prefix’s stable set. Related Sets captures ASes
that are not the owner of the prefix but can legitimately announce it in operation.
We have found the following four cases useful for our detection algorithm.

First, an AS in a prefix’s stable set also belongs to related set of all its
sub-prefixes.

Second, for all ASes in a prefix’s stable set, their direct provider ASes also
belong to this prefix’s related set. For this purpose we use a simple heuristic
to identify stable provider-customer inter-AS links. We start with a list of well-
known tier-1 ASes, and given an AS path, the link from a tier-1 AS to a non-
tier1 AS is provider-customer, and any link after that is also provider-customer
due to the commonly deployed No-Valley policy. This can be considered as a
subroutine in most of the existing AS relationship inference algorithms, and
thus the accuracy in inferring provider-customer relationship should be similar,
although we do not need to infer peer-peer or sibling-sibling relationship, which
is the challenging part of general AS relationship inference.

Third, ASes participating in an Internet Exchange Point (IXP) can legiti-
mately announce the IXP’s prefixes, and similarly the IXP AS can also legiti-
mately announce the prefixes of its participating ASes.

Fourth, ASes belonging to the same organization are related and can legit-
imately announce each others prefixes. We simply infer such relation from the
domain name of the contact emails listed in the WHOIS [13] database.

Any AS not belonging to a prefix’s stable set or related set but originating
the prefix is deemed to be an offending AS, attempting to potentially hijack
the prefix. In such case, we also say that the AS is offending the prefix’s stable
set, which represents the owner of the prefix. For an offending AS, we defense
its offense value as the number of unique ASes that this AS is offending at any
given moment. The offense value captures how many other networks are being
potentially hijacked simultaneously. Based on the filtered global view of origin
changes, we compute offense value for every AS for the entire year.

Algorithm 1 summarizes the above steps. It uses one year of archived BGP
tables and updates, available at Route Views Oregon monitors, to construct
stable and related sets. Thereafter every BGP routing announcement is checked
whether it is suspicious or legitimate by checking origin AS against stable and
related set of prefix. Anytime the offense value of an AS exceeds the threshold
of 10, it is reported to be a concurrent hijack.
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Algorithm 1. Offline prefix hijack detection scheme.
Input:

StableSets(p): stable set of prefix p;
RelatedSets(p): related set of prefix p;

1: FOR all BGP routing messages
2: IF AS X announces prefix p at time t
3: IF AS X /∈ StableSets(p) or RelatedSets(p)
4: Update AS X’s offense value by StableSet(p);
5: ELSIF AS X withdraws prefix p at time t
6: IF AS X /∈ StableSet(p) or RelatedSet(p)
7: Reduce AS X’s offense value by StableSet(p);
8: Report prefix hijack event: if AS X’s offense value >= 10

3.2 Limitations

[1] has proved our offline scheme can safely detect prefix hijack events with zero-
false positive. However, we still face a few limitations when we apply it in online
scenario. And such limitation may impact the detection accuracy.

First of all, to detect prefix hijack events of a year, the offline scheme requires
to calculate stable and related sets of each prefix from the BGP routing messages
of the entire year. While, in online scenarios, we have no access to the BGP
messages which are generated after current time.

Second, the offline detection scheme considers no dynamical factors when
inferring stable and related sets. However, prefix ownership, AS topology, and
other dynamical factors change over time. So prefix announcement lifetime may
mistakenly reflect prefix ownership, especially in online scenarios. Actually, ASes
with a short announcement lifetime may legitimately announce a prefix when the
above dynamical factors happens. When we observe announcements from such
a legitimate announcer, our detecting scheme may report it as a prefix hijack
announcement, which is a de facto false positive. For instance, AS A is an owner
of prefix p, and we can persistently observe its announcement. So we take the
announcement of AS A for granted. At time t, AS B becomes another owner
of prefix p. However, we can not infer AS B as an owner until one day after t
according to the lifetime. And during that period, we get a false positive.

The above two limitations make us lack the knowledge of whether our detec-
tion is suffering from Internet dynamics, i.e. when we observe an announcement
originated from an inexperienced AS online, we cannot tell whether this is a
prefix hijack or a legitimate announcement because we have no idea of what
BGP messages are to be announced.

4 Online Prefix Hijack Detection Scheme

Based on the offline detection scheme, we now design the online detection scheme.
Our principle is to minimize the false negative with assurance of no false positive.

To consider dynamical factors, we perform the online detection scheme over
a moving observation window [t − T, t) worth of BGP routing messages where
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Algorithm 2. Online prefix hijack detection scheme.
Input:

t: current time, t0 = t: time to update Stable and Related sets;
N : the interval to refresh the observation window;
T : size of observation window;

1: Initialize the observation window;
2: FOR all BGP routing messages in window (t − T, t)
3: Track duration of prefix-origin AS and AS relation;
4: Initialize Stable and Related Sets of every prefix;
5: For all online observed BGP routing messages
6: Put this message into the observation window;
7: t=time stamp of this BGP message;
8: IF AS X announces prefix p at time t
9: IF AS X /∈ StableSets(p) or RelatedSets(p)

10: Update AS X’s offense value by StableSet(p);
11: ELSIF AS X withdraws prefix p at time t
12: IF AS X /∈ StableSet(p) or RelatedSet(p)
13: Reduce AS X’s offense value by StableSet(p);
14: Report prefix hijack event: if AS X’s offense value >= 10
15: IF t >= t0 + N
16: Update duration of prefix-origin and AS relation;
17: Update Stable and Related Sets of every prefix;
18: t0 = t;

t is the current time and T is the size of observation window. For the offline
detection scheme, one year worth of training data is used to construct the initial
stable and related sets for each prefix. Considering the stable and related sets
for every prefix can not remain static, we need to dynamically update the stable
and related sets with the movement of observation window. The duration of
every prefix-origin AS pair and duration of every AS relation pair is updated
by tracking the announcement and withdrawal BGP routing messages. With a
certain frequency, aforementioned announcement durations are re-evaluated and
the stable and related sets of every prefix are updated as shown in Algorithm2.

Following the offline detection scheme described in Algorithm 1, we check
each in-coming BGP routing message online to detect prefix hijack events. Since
no future can be observed from the observation window, we require prediction
in our online detection. Our idea is to look for characters of prefix hijack events
to label false positive out. In the rest of this section, we first discuss the size
and recalculating frequency of the observation window. Then we evaluate the
seriousness of caused false positive online. Next, we discuss the strategies to
filter out such false positives. Finally, we refine the above detection scheme.

4.1 Configuration

We first discuss the size of the observation window. Generally, more considered
routing information generates more prefix ownership. However, prefix ownership
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changes over time, thus our inference may includes outdated prefix ownership.
So a bigger observation window in size generates more prefix ownership including
more outdated prefix ownership. More prefix ownership helps us to detect more
de facto prefix hijacks, while we take more risk with more outdated prefix own-
ership. Consequently, the size of the observation window is a tradeoff between
false positive and false negative.

Fig. 1. # prefix ownership over time.

In Fig. 1, we show the total quantity of prefix ownership inferred from the
routing information in the observation window during the year of 2011. Consid-
ering that the routing table itself is growing in size, we filter out the prefixes
which cannot be observed according to the routing data before 2011 (i.e. new
prefixes). The x-ray represents the size of the observation window, the y-ray rep-
resents corresponding quantity of prefix ownership inferred from the observation
window. We notice that even with one-day’s routing data, we can infer almost
360,000 (90 % of all) prefixes’s ownership. The total quantity goes up to 400,000
linearly with a growth rate around 100 prefixes per day.

We compare the prefix ownership inferred from routing data of each day,
and show the cumulated prefix ownership changes over time in Fig. 2. The x-
ray represents the observing duration, and the y-ray represents the accumulated
quantity of prefixes with a ownership change. We observe a linear growth rate
(20–30 prefixes per day), and totally there are less than 10,000 (2.5 % of all)
changing ownership prefixes.

To our surprise, neighbor prefix ownership quantity nor prefix ownership
changing rates turn out to be a bottle neck factor to the observation window
size. With a observation window in size of one day or one year, we have pre-
fix ownership for almost the entire routing table and not too many prefixes
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Fig. 2. # prefixes with ownership changing over time.

experiencing ownership changes. Considering our principle (minimizing the false
negative with assurance of no false positive) and the tradeoff between false pos-
itive and false negative, we decide to set the size as one year. This is because
we still need to involve prediction in the detection which is dedicated to filter
out false positive alarms. And we want to maximize the value of our detection
scheme.

For the frequency to update the stable and related sets, it is a tradeoff
between computation cost and outdated information caused detection inaccu-
racy including both false positive and false negative. A intensive update sched-
ule (update every hour) is unnecessary because there are only around 20–30
prefix ownership changes every day. Our program is written in perl and takes
2–5 minutes to conduct an update on one-year Oregon data. So we decide to
update the stable and related sets every day.

4.2 False Positives

Given the outline of the detection scheme, our problem now is to eliminate the
false positives generated online. To that end, we begin with depicting the false
positive. In Fig. 3, we compare the quantity of prefix hijack instances detected
by offline and online detection scheme (following Algorithm1). We refer to a
prefix hijack instance as an offending case when we observe an AS is announc-
ing other ASes’ prefix, noted as a triple (T,A,B). T refers to the time when
the prefix hijack instance happens, A refers to the offending AS who conducts
the prefix hijack instance, and B refers to the origin AS who owns the prefix.
Curve “offline” represents the prefix hijack instances observed offline, and Curve
“false positive online” represents the online prefix hijack instances which are not
observed offline.
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Fig. 3. # prefix hijack instances.

As observed in Fig. 3, online generated false positive are even more than prefix
hijack instances detected offline (besides the prefix hijack events happened in Jan
and in Oct). So online detected false positive is seriously impacting the accuracy
of our online prefix hijack detection. We also notice the linear growth rate of
the false positive which is consistent to the linear growth of the prefix ownership
changes.

4.3 Increase Threshold

One simple idea comes to us is to increase the threshold. If the offense value
of a prefix hijack event is T offline, and T ′ online. The threshold should be
increased by T ′ −T . Following the detection scheme described above, we change
the threshold and compare the generated reports with the one generated offline
for the year of 2011 on Oregon data [14] (show in Table 1).

In the offline detection, our scheme detects 12 prefix hijack events. When the
threshold is 10, we get 12 false positive events. With the threshold going up, the
quantity of false positive events gets smaller, but the detection misses more de
facto prefix hijack events. When the threshold is 67, we clear all false positive
events, but there is only 3 prefix hijack events left in the detection. Consequently,
simply increasing threshold can hardly solve the false positive problem. Since the
increasement varies among prefix hijack events, if the increasement is small, there
are still lots of false positive events; if the increasement is big, the offline detected
prefix hijack events are also filtered out.

4.4 Characters of False Positive Instances

Our further strategies to predict false positive is: analysing possible characters
which can be used to discriminate false positive instances and de facto prefix
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Table 1. Results of online detection with different threshold.

Threshold # online detected events # false positive events # false negative events

10 24 12 0

11 21 10 1

12 19 8 1

13 16 6 2

14 15 5 2

17 12 4 4

19 10 2 4

21 9 1 4

24 8 1 5

28 7 1 6

67 3 0 9

hijack instances (as described in Sect. 4.2). Such characters require to satisfy
one of the following conditions: (1) no de facto prefix hijack instance has this
character, and some false positive instances have this character; (2) all de facto
prefix hijack instances have this character, and some prefix hijack instances don’t
have this character. For the former, we ignore instances with such characters;
for the latter, we ignore without such characters. Since it is a hard job to find a
character that all de facto prefix hijack instances have, in this paper, we focus
on the characters satisfy the former condition. We analyse characters by first
assuming possible characters, then validating with actual BGP data from Oregon
in 2011. Totally, we get 12457 false positive instances, and 15786 de facto prefix
hijack instances.

Neighboring ASes. Since the information we collect to infer related sets is
incomplete, the de facto related set is bigger than the inferred one. Our scheme
may takes an AS in the de facto related set as an offender, and cause a false pos-
itive. Considering that most ASes in the related set are neighboring ASes of the
prefix owner, we assume “the offender and the prefix ownership are neighboring
ASes” as a character of the false positive instance.

In practise, among all the false positive instances during 2011, there are
1046 (8.4 % of all) false positive instances which have this character. Among
the de facto prefix hijack instances, there are only 43 (0.27 % of all) instances
which have this character. Consequently, the character “the offender and the
prefix ownership are neighboring ASes” satisfy our requirement to label the
false positive instances.

Large ISP. A number of ASes lie in the central of Internet, and provide transit
service for a lot of stub ASes. Comparing with stub ASes, such ASes controlled
by large ISPs invest much more manpower into their network’s routing secu-
rity. Consequently, prefix hijack towards such ASes are more likely detected and
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tackled with. In the meanwhile, if a large ISP conduct a prefix hijack to other
ASes’s prefix, its business interest will be badly harmed once its customer ASes
or peering ASes realize the hijack. Thus we assume “the offender or the prefix
owner belongs to a large ISP” as a character of the false positive instances.

According to the common understanding that the number of neighboring
ASes of an AS can reflect its scale, in this paper, we determine the scale of an
AS’s belonged ISP based on its quantity of neighboring ASes. In Fig. 4, we show
the CDF of offended ASes’ (i.e. prefix owners’) scale. Curve “false positive” repre-
sents false positive instances, and curve “offline” represents de facto prefix hijack
instances. We observe that the scales of offended ASes in false positive instances
are obviously bigger than the ones in de facto prefix hijack instances. Only 3.2 %
of all de facto instances’s offended AS are in a scale of more than 100 neighboring
ASes. For false positive instances, 17 % of all instances’s offended ASes fall into
that scale. As a result, we derive a more specific character “the prefix owner’s
neighboring ASes are more than 100” to label false positive instances.

Fig. 4. CDF of offended ASes’ scale.

Similarly, in Fig. 5, we show the CDF of offending ASes’ scale. As observed,
the scales of offending ASes in false positive instances are obviously bigger than
that of prefix hijack instances. Only 8.5 % of all de facto instances’s offending
AS are in a scale of more than 40 neighboring ASes. For false positive instances,
51.2 % of all instances’s offending ASes fall into that scale. As a result, we derive
a character “the offending AS’s neighboring ASes are more than 40” to label
false positive instances.

As shown in Algorithm 3, we refine our detection scheme. For each in-coming
BGP routing message online, we check if the instance has the two characters
before updating the offense value. If it has, we ignore that instance.
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Fig. 5. CDF of offending ASes’ scale.

Fig. 6. De facto prefix hijack instances online.

5 Results

In this section, we evaluate our online detection scheme. Since we study the con-
figuration and characters of false positive instances according to the Oregon data
in 2011, to prove that our scheme is independent from the data set measured,
we use Oregon data in 2012 in this section.

In Fig. 6, we show the CDF of de facto prefix hijack instances detected online.
Curve “online” represents de facto prefix hijack instances detected before apply-
ing false positive characters, and curve “refined online” represents de facto prefix
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Algorithm 3. Online prefix hijack detection scheme.
Input:

t: current time, t0 = t: time to update Stable and Related sets;
N : the interval to refresh the observation window;
T : size of observation window;

1: Initialize the observation window;
2: FOR all BGP routing messages in window (t − T, t)
3: Track duration of prefix-origin AS and AS relation;
4: Initialize Stable and Related Sets of every prefix;
5: For all online observed BGP routing messages
6: Put this message into the observation window;
7: t=time stamp of this BGP message;
8: IF AS X announces prefix p at time t
9: IF AS X is a neighboring AS of StableSets(p)

10: next;
11: ESLIF AS X has more than 40 neighboring ASes or an AS in StableSets(p)

has more than 100 neighboring ASes
12: next;
13: ESLIF AS X /∈ StableSets(p) or RelatedSets(p)
14: Update AS X’s offense value by StableSet(p);
15: ELSIF AS X withdraws prefix p at time t
16: IF AS X is a neighboring AS of StableSets(p)
17: next;
18: ESLIF AS X has more than 40 neighboring ASes or an AS in StableSets(p)

has more than 100 neighboring ASes
19: next;
20: ESLIF AS X /∈ StableSet(p) or RelatedSet(p)
21: Reduce AS X’s offense value by StableSet(p);
22: Report prefix hijack event: if AS X’s offense value >= 10
23: IF t >= t0 + N
24: Update duration of prefix-origin and AS relation;
25: Update Stable and Related Sets of every prefix;
26: t0 = t;

hijack instances detected after applying false positive characters. We notice that
about 40 % of the prefix hijack instances are filtered out after we refine the detec-
tion scheme. However, we also notice that the two curves share a similar shape.
Their cliff points are at almost the same set of time points, i.e. both curves cap-
ture the same prefix hijack events. Consequently, our refined detection scheme
can capture the de facto events at the cost of offense value decrease.

In Fig. 7, we show the CDF of false positive prefix hijack instances detected
online. Curve “false positive online” represents false positive instances detected
before applying false positive characters, and curve “false positive refined” repre-
sents false positive instances detected after applying false positive characters. Our
refined scheme labels out 80 % of the false positive instances. Moreover, our refined
scheme does not have obviously cliff points which may induce false positive events.

Actually, during the year of 2012, the offline detection scheme detects 11
prefix hijack events. The original online detection scheme detect 46 prefix hijack
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Fig. 7. False positive instances online.

events, in which 35 of them are false positive events. While the refined online
detection scheme detects 11 prefix hijack events during 2012, which matches
perfectly with the offline detection.

6 Conclusion

In this paper, we propose an online concurrent prefix hijack detection scheme. By
analysing characters of false positive instances, we manage to filter out false pos-
itive events generated online. In the meanwhile, our detection scheme captures
all the prefix hijack events offline.

In the process of studying suitable characters for filtering out false positive
instances, we also learn that attackers seldom hijack neighboring ASes’ prefixes.
Attackers also seldom hijack large ISP’s prefix, and vice versa.
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