
A New Trust Chain Security Evaluation
Model and Tool

Wei Hu, Dongyao Ji(B), Ting Wang, and Gang Yao

State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

jidongyao@is.ac.cn

Abstract. We’ve build a model of trust chain, and developed TCSE,
a tool for estimating the security properties of the trust chain. The
highlight of TCSE is that it can generate a probabilistic finite state
automaton and verify or calculate four security properties of a trust
chain following our algorithms. These properties are: credibility, usabil-
ity, restorability and conformity. With these four values of a trust chain,
we can estimate the security of a trusted computer (a computer with a
trusted computing module). Using this tool, an ordinary user with the
help of the Common Vulnerability Scoring System (CVSS) from which
one can easily get the needed parameters can figure out these four prop-
erties quickly. This tool can be used in the area where the security of
trusted computers are needed to be precisely quantized.

Keywords: Trusted computing · Trust chain · Model checking · Prob-
abilistic finite state automaton · Probabilistic computation tree logic

1 Introduction

Trusted computing is a trend of information security technology and it has been
used on a large scale at present. One key aspect of trusted platform is its ability to
record the trust relationship among components that make-up the trusted plat-
form. Trust is the expectation that a device will behave in a particular manner for
a specific purpose. When one trusted component measures the trustworthiness
of a second component, trust is transferred transitively from the first component
to the second. That’s the principle of the trust chain and an example is showed
in Fig. 1. The implementation of the trust chain is up to its vendors, so it’s pos-
sible that the implementation of it doesn’t conform to its specifications and may
lead to some security problems. The key technology of trust chain testing is the
conformance testing. Xu [1] focused on the behavior characters of specifications
of trust chain, and proposed a conformance testing framework for it based on
labeled transition system. Fu [2] built a formal model of trust chain specifications
based on finite state machines and analyzed the test sequence generation proce-
dure with unique input/output sequence. Zhan [3] gave a conformance testing
model of TPM based on state machine model. But there is no model that based
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 382–391, 2015.
DOI: 10.1007/978-3-319-23802-9 30

A New Trust Chain Security Evaluation Model and Tool 383

Fig. 1. Example of trust chain emanating from the trust root

on probabilistic finite state automaton to describe trust chain, and there is no
tool that can calculate the values of the security properties of the trust chain.

We build a model of a trust chain with PFSA (probabilistic finite state
automaton) and give four security properties in the form of PCTL (probabilis-
tic computation tree logic), and present TCSE, a tool for estimating the trust
chains on trusted computers. We analyse four characteristics of the trust chain:
credibility, usability, restorability, conformity and invoke PRISM [4] (Probabilis-
tic Symbolic Model Checker) to calculate the values of them. The reason why
we choose these four properties to be verified and calculated is that they play
the most important roles in the security of the trust chain. This paper describes
the complete tool features and the implementation details of TCSE developed
by us.

2 Formal Model of Trust Chain

2.1 Probabilistic Finite State Automaton

Markov chains [5] is a kind of probabilistic finite state automaton, it behaves as
transition systems with the only difference that nondeterministic choices among
successor states are replaced by probabilistic ones. That is to say, the succes-
sor state of state s, say, is chosen according to a probability distribution. This
probability distribution only depends on the current state s, and not on, e.g.,
the path fragment that led to state s from some initial state. Accordingly, the
system evolution does not depend on the history (i.e., the path fragment that
has been executed so far), but only on the current state s. This is known as the
memoryless property. A (discrete-time) Markov chain is a tuple M = (S, P, linit,
AP, L) where:

– S is a countable, nonempty set of states,
– P: S× S→ [0, 1] is the transition probability function such that for all states

s′:
∑

s′⊂S

P (s, s′) = 1,

– linit: S→ [0,1] is the initial distribution, such that
∑

s⊂S

linit(s) = 1, and

384 W. Hu et al.

– AP is a set of atomic propositions and
– L: S→ 2AP a labeling function.

Markov chains’ ability of expression is very strong, so we use Markov chains
to model trust chain, Fig. 2 is a markov model we built for the trust chain.
Considering many aspects that can affect the properties we considered, we use
variables to describe the probabilities.

Fig. 2. The PFSM of a trust chain

In Fig. 2 showed above, there are 17 states in it. These states are described
below. S1:system boot, S2:CRTM power-on self-test, S3:BIOS measurement,
S4:BIOS user authentication, S5:key component and configuration measured by
BIOS, S6:measurement of MBR and OS Loader, S7:measurement of OS ker-
nel and drivers and system files, S8:OS user authentication, S9:BIOS recov-
ery, S10:core component and configuration recovery, S11:recovery of MBR and
OSLoader, S12:recovery of OS kernel and drivers, S13:static integrity measure-
ment of applications, S14:dynamic integrity measurement of applications,
S15:dynamic recovery of applications, S16:untrusted state, S17:trusted state,
S18:static recovery of applications. We can get the state transition probabili-
ties of the model from CVSS, since the semantics of these transitions are very
clear. CVSS is is a vulnerability scoring system designed to provide an open and
standardized method for rating IT vulnerabilities. With the help of it, we can
achieve the values from r1 to r32. With these parameters, we can figure out some
security property values.

2.2 Trust Chain Probabilistic Model Checking

CTL is an important branching temporal logic that is sufficiently expressive for
the formulation of an important set of system properties. It was originally used
by Clarke and Emerson and (in a slightly different form) by Queille and Sifakis

A New Trust Chain Security Evaluation Model and Tool 385

[6] for model checking. More importantly, it is a logic for which efficient and
as we will see rather simple model-checking algorithms do exist. It has a two-
stage syntax where formulae in CTL are classified into state and path formulae.
The former are assertions about the atomic propositions in the states and their
branching structure, while path formulae express temporal properties of paths.
Compared to LTL formulae, path formulae in CTL are simpler: as in LTL they
are built by the next-step and until operators, but they must not be combined
with Boolean connectives and no nesting of temporal modalities is allowed.

Probabilistic computation tree logic (PCTL, for short) is a branching-time
temporal logic, based on the logic CTL. A PCTL formula formulates condi-
tions on a state of a Markov chain. The interpretation is Boolean, i.e., a state
either satisfies or violates a PCTL formula. The logic PCTL is defined like CTL
with one major difference. Instead of universal and existential path quantifica-
tion, PCTL incorporates, besides the standard propositional logic operators, the
probabilistic operator PJ(ϕ) where ϕ is a path formula and J is an interval of
[0, 1]. The path formula ϕ imposes a condition on the set of paths, whereas J
indicates a lower bound and/or upper bound on the probability. The intuitive
meaning of the formula PJ(ϕ) in state s is: the probability for the set of paths
satisfying ϕ and starting in s meets the bounds given by J. The probabilistic
operator can be considered as the quantitative counterpart to the CTL path
quantifiers ∃ and ∀. The CTL formulae ∃ϕ and ∀ϕ assert the existence of cer-
tain paths and the absence of paths where a certain condition does not hold
respectively. They, however, do not impose any constraints on the likelihood of
the paths that satisfy the condition φ. Later on in this section, the relationship
between the operator PJ(ϕ) and universal and existential path quantification is
elaborated in detail.

PCTL state formulae over the setAP of atomic propositions are formed
according to the following grammar:

φ :: = true|a|¬φ|φ1 ∧ φ2|P�p(ϕ)

where a ∈ AP, ϕ is a path formula and J ⊆ [0, 1] is an interval with rational
bounds. PCTL path formulae are formed according to the following grammar:

ϕ :: = ©φ|φ1

⋃
φ2

Let a ∈ AP be an atomic proposition, M=(S, P, linit, AP, L) be a Markov chain,
state s ∈ S, Φ, Ψ be PCTL state formulae, and ϕ be a PCTL path formula. The
satisfaction relation |= is defined for state formulae by

s |= a iff a ∈ L(s)
s |= ¬φ iff not(s |= φ)
s |= φ ∧ ψ iff s |= φ and s |= ψ
s |= P�p(ϕ) iff Prob(s |= ϕ) � p

With PCTL we can describe the four security properties. The formulas used
below are based on: Prob(s � ϕ) = Pr{π ∈ Paths(s)|π � ϕ}, Paths(s) stands
for paths which use state s as the initial state. We provide four formulas and use
PRISM to calculate these security property values.

386 W. Hu et al.

2.3 The Computational Formulas of the Four Security Properties

Credibility. In the calculation of credibility, we need to use cylinder set. Let
π′ = s0 · s1 · · · · · sn ∈ Pathsfin(M) the cylinder set of π′ is defined as:

Cyl(π′) = {π ∈ Paths(M)|π′ ∈ pref(π)}
The cylinder set spanned by the finite path π′ thus consists of all infinite paths
that start with π′. the probabilities for the cylinder sets Pr(Cyl(s0 ·s1 ·· · ··sn)) =
P (s0 · s1 · · · · · sn), where P (s0 · s1 · · · · · sn) =

∏
0≤i<n P (si, si+1).

According to Fig. 2 state s17 is the final trusted state. So the credibility of
the trust chain can be described as Pr(s17). The following formula is used to
calculate credibility. We use Pr(B) to stand for credibility of the trust chain
and B stands for the final state that we expect the system to reach.

Pr(B) =
∑

s0···sn∈Pathsfin(M)∩(S\B)∗B Pr(Cyl(s0 · · · sn))
=

∑
s0···sn∈Pathsfin(M)∩(S\B)∗B P (s0 · · · sn)

In the formula above, we use s0...sn to stand for paths in M (our trust chain
model) and s0...sn−1 /∈ B, sn ∈ B. So these paths can be expressed as:

Pathsfin(M) ∩ (S \ B)∗B.

Cyl(s0...sn) is the cylinder set [6] of finite path s0...sn. According to the defini-
tion of cylinder set, we have Cyl(s0...sn) = {π ∈ Paths(M)|s0...s(n) ∈ pref(π)}.
According to this formula we can calculate the value of credibility.

Usability. Some kinds of attacks can make the trust chain lose its function. For
example, in TOCTOU [8] (Time Of Check to Time Of Use) attack, an adversary
can exploit the time difference between when software is measured and when it
is actually used, to induce run-time vulnerabilities. We notice that the current
TCG architecture only provides load-time guarantees. Integrity measurements
are taken just before the software is loaded into memory, and it is assumed
that the loaded in-memory software remains unchanged. However, this is not
necessarily true. Another attack called the Cuckoo attack [9] happens when
malware on the local machine may forward the user’s messages to a remote
TPM that the adversary physically controls. Thus, the user cannot safely trust
the TPM’s state, and hence can’t trust the computer in front of him. Both of
these attacks can make some measurements through the trust chain bypassed.
Specific to these attacks, we build a new model that can take these situations
into count. Then we can handle this probabilistic automation and figure out the
usability.

Restorability. In the TCG specification, a trusted computer should provide
a component to help it recover from bad states. For example, an OS Loader’s
backups can help it recover from damages. But in practice many manufacturers
omit these components for the sake of cost reduction. So we figure out the final
reliability differentials between the model in specification and the model of the
user to gain the restorability value.

A New Trust Chain Security Evaluation Model and Tool 387

Conformity. In a complete trust chain, there are a lot of components to be
measured, for example, CRTM, BIOS, OS Loader and so on. But some trusted
computers may leave out some of these components and we don’t know how much
it influences our computers’ security. So we use PPTL [10,11] (Propositional
Projection Temporal Logic) to calculate this value. Let Prop be a countable
set of atomic propositions. The formula P of PPTL is given by the following
grammar:

P ::= p| © P |¬P |P1

∨
P2|(P1, ..., Pm)prjP

where p ∈ Prop, P1,..., Pm and P are all well-formed PPTL formulas, ©(next)
and prj (projection) are basic temporal operators. The abbreviations true, false,

∧, → and ↔ are defined as usual. In particular, true
def
= P∨¬P and false

def
=

P∧¬P for any formula P. Also we have the following derived formulas:

where
⊙

(weak next), �(always), 	(sometimes), and ;(chop) are derived tem-
poral operators; ε(empty) denotes an interval with zero length, and ε̄(more)
means the current state is not the final one over an interval. Prj projection
operation allows the characterization of different time granularity calculation
process. To explain (P1, ..., Pm) prj Q, requires two different time granularity
state sequence: one is executed P1, ..., Pm of the local sequence, and the other is
the Q of the overall sequence of parallel execution. Visually speaking, Q and P1,
..., Pm parallel execution on an interval and the interval Q state is only P1, ...,
Pm each interval the initial state and final state, as shown in Fig. 3, projection
operation Allow Q, P1, ..., Pm each independently, have the right to define its
execution interval.

In order to figure out this value, we should first transform PPTL’s properties
into NF (Normal Form), and then make out the NFG (Normal Form Graph). If
the NFG is an NFA (Nondeterministic Finite Automaton), we should transform

Fig. 3. Semantics of (P1, P2, P3, P4) prj Q

388 W. Hu et al.

it into a DFA (Deterministic Finite Automaton). Then we can calculate the
conformity with the inputs which should be the product of the model and its
property which is the product of a Markov chain and a DFA..

The product of Markov chain and DFA is showed as follows:
Suppose M = (S, P, s0, AP, L) is a Markov chain, A = (Q, 2AP , δ,q0, F) is a

DFA, so the product of M and A M⊗A is a Markov chain: M⊗A = (S × Q, P′,
s′
0, {accept}, L′) and in it:

L′(〈s, q〉) =

{
{accept}, if q ∈ F

∅, else

s′
0 =

{
〈s0, q〉, if q = δ(q0, L(s0))
0, else

P ′(〈s, q〉, 〈s′, q′〉) =

{
P 〈s, s′〉, if q′ = δ(q, L(s′))
0, else

The path of M⊗A: π =< s0, q1 >< s1, q2 >... is the combination between
path of M: s0s1.. and the path of A: q1q2... In order to calculate the probabilis-
tic of the path in the Markov chain M that satisfy the property of Q, which
is PrM (s0 � Q), the property Q of PPTL should be changed into NF(Normal
Form), then the NFG(Normal Form Graph) can be drawn. Since the NFG is not
a NFA, so it should be changed into a DFA. In order to calculate PrM (s0 � Q),
we can get the product of M and A, which is M⊗A. Then we can get the final
formula as: PrM (s0 � Q) = PrM⊗A(s′

0 	 accept)

3 Main Features and Implementation of TCSE

Figure 4 illustrate the architecture and the components of TCSE, the core fea-
tures of it will be described detailedly below.

The Graphical User Interface (GUI). The GUI of TCSE provides users
with functions to calculate their trusted computers’ security properties. Users
can refer to the CVSS [7] to ascertain the values of the parameters which are
shown on the interface of TCSE. The GUI is designed with VC++6.0, and we

Fig. 4. The architecture of TCSE

A New Trust Chain Security Evaluation Model and Tool 389

Fig. 5. The property of credibility

Fig. 6. The property of conformity

use a skin library to make the interface more artistic. We give a standard model
of a trust chain provided in the TCG (Trusted Computing Group) specification
with all sides considered. So users can compare their trust chains with this model
and then get the parameters from the CVSS, these parameters are used to make
up the PFSM (Probability Finite State Machines). After these parameters are
given, users can verify or calculate any expressions in the form of PCTL.

Implementation of TCSE. We use four classes derived from class CProper-
tyPage in MFC (Microsoft Foundation Class) to deal with each property. Each

390 W. Hu et al.

property page (is also a kind of dialog box in MFC) provides interface with
users and users can get the results and some detailed calculation information
from the interface. The system can also produce state translation graphs and
some explanations to describe them, so that users can understand the models
established by us following the specifications of TCG. By supplying the para-
meters (including the states and state transition values), the new trust chain
model is then established and that’s the model of the user’s own computer’s
trust chain. Our calculation and analysis are based on the new model. We make
use of PRISM to make our algorithms and realization simple. An overview of
the standard perspective of the tool can be seen in Figs. 5 and 6 as follows.

4 Conclusion and Future Work

The security of trust chain is very important in trusted computing, but there
are no tools that can quantify it. Formal methods of modeling the trust chain
and verifying its security properties have been put forward by many scholars,
but these methods are hard to put into practice. We develop this tool to help
users to figure out some security parameters, so as to get a clear understanding
of the security situation of their trusted computers. For future work, we plan to
integrate our recent work on trust chain security properties measurement, and
composite our results to evaluate the security of trust chain, and we are also
interested in extending our trust chain model to expand its applicability.

References

1. Xu, M., Zhang, H., Yan, F.: Testing on trust chain of trusted coputing platform
based on labeled transition system. Chin. J. Comput. 32(4), 635–645 (2009)

2. Fu, L., Wang, D., Kuang, J.: Conformance testing for trust chain of trusted comput-
ing platform based on finite state machine. J. Comput. Inf. Syst. 7(8), 2717–2724
(2011)

3. Zhan, J., Zhang, H.: Automated testing of the trusted platform module. J. Comput.
Res. Dev. 46(11), 1839–1846 (2009)

4. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

5. Ching, W.-K., Huang, X., Ng, M.K., Siu, Tk: Markov Chains: Models, Algorithms
and Applications, vol. 189. Springer, Heidelberg (2013)

6. Christel, B., Joost, P.K.: Principles of Model Checking, pp. 757–765. The MIT
Press, Cambridge (2008)

7. CVSS. http://www.first.org/cvss
8. Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: TOCTOU, traps, and trusted

computing. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 14–32. Springer, Heidelberg (2008)

9. Bryan, J.P.: Trust extension as a mechanism for secure code execution on com-
modity computers. Ph.D.thesis, School of Electrical and Computer Engineering
Carnegie Mellon University, April 2010

http://www.first.org/cvss

A New Trust Chain Security Evaluation Model and Tool 391

10. Zhen, H.D., Cong, T., Li, Z.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

11. Tian, C., Duan, Z.: Model checking propositional projection temporal logic based
on SPIN. In: Butler, M., Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 246–265. Springer, Heidelberg (2007)

	A New Trust Chain Security Evaluation Model and Tool
	1 Introduction
	2 Formal Model of Trust Chain
	2.1 Probabilistic Finite State Automaton
	2.2 Trust Chain Probabilistic Model Checking
	2.3 The Computational Formulas of the Four Security Properties

	3 Main Features and Implementation of TCSE
	4 Conclusion and Future Work
	References

