
KEMF: Key Management for Federated Sensor
Networks

Piers O’Hanlon1(B), Joss Wright1, Ian Brown1, and Tulio de Souza2

1 Oxford Internet Institute, University of Oxford, Oxford, UK
{piers.ohanlon,joss.wright,ian.brown}@oii.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
tulio.de.Souza@cs.ox.ac.uk

Abstract. We present a lightweight key management protocol that pro-
vides secured device registration and communication in federated sensor
networks. The protocol is designed for zero configuration and use in
small packet low power wireless networks; protocol messages may fit into
single packets. We use the Casper security protocol analyser to exam-
ine the behaviour and security properties of the protocol model. Within
the assumptions of the model, we demonstrate forward secrecy, security
against man-in-the-middle attacks, and local network key protection,
comparing favourably with related protocols. Our experimental analy-
sis shows that the protocol may feasibly be deployed on current sensor
platforms with 256-bit elliptic curve cryptography.

Keywords: Privacy · Security · Sensor networks · Key management ·
IoT

1 Introduction

There are countless uses for devices that form the fabric of the Internet of Things
(IoT) and sensor networks. Wireless sensor networks occur with varying degrees
of complexity, the simplest wireless sensor networks have tended to be standalone
systems running a single application that defines both the constituent nodes and
all other aspects of the network. Increasingly, however, wireless sensor networks
are being deployed in a multi-application structure comprising nodes running a
common middleware that allows one or more applications to run on the same
infrastructure operated by a single provider. The use of middleware, such as
Senshare [6], offers a flexible abstraction of the low-level characteristics of the
hardware, allowing data from each node to serve a number of applications.

The sharing model can be extended further by allowing federation of the
infrastructure. A federated network is composed from many devices, which may
be sourced from a number of different providers, and allows different entities to
deploy nodes into the network and potentially run multiple applications across a
common middleware. Federated sensor networking provides an economic benefit,
and can lead to longer-term deployments offering a range of sensing options, but
also raises privacy concerns for those individuals in the sensing environment [4].
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 17–24, 2015.
DOI: 10.1007/978-3-319-23802-9 3



18 P. O’Hanlon et al.

We propose a novel protocol, KEMF, for secured device registration and key
management for federated sensor and IoT networks. The protocol allows a newly
connected device to automatically and securely obtain a network access key from
the local gateway to enable secure and private communication. This is facilitated
by a pre-arranged agreement between the entity which hosts the gateway and
the organisation that provides the devices. However, KEMF does not require the
exchange of any device specific secrets before the node enters the network.

We utilise the Casper [8] security protocol analyser to model its behaviour
and examine its security properties. We also model another related protocol to
provide for a comparison, and to highlight the benefits provided by KEMF.

2 Related Work

Whilst the core security primitives utilised by sensor and IoT networks are drawn
from existing techniques and protocols, there are still new mechanisms required.
There is a large body of research work in this field [2,12], though less of it has
an emphasis on federated operation. Despite all the research work, the Internet
Engineering Task Force (IETF) is has only recently formed the new ACE working
group to tackle security issues in IoT and sensor networks.

There are many sensor systems, though there are less that aim to support
federated operation with multi-application and multi-party ownership capabil-
ities. One such system is SenShare [6], which is a platform that attempts to
address the technical challenges in transforming sensor networks into open access
infrastructures capable of supporting multiple applications.

The origins of modern day authentication and key management go back to the
late 1970s when the Needham-Schroeder protocol was invented. In 1995 Gavin
Lowe developed his advanced security analysis techniques based on Hoare’s Com-
municating Sequential Processes (CSP) [3] and its model checker Failures Diver-
gences Refinement (FDR2) [11], finding an attack [7] on the Needham-Schroeder
protocol, and proposing the fixed Needham-Schroeder-Lowe protocol.

There have been many key management schemes developed for use with
existing sensor networks [2,12], but few that aim to tackle the area of feder-
ated deployments [5,10]. MASY [10] is one of the few schemes that is aimed at
federated network deployments, but it has its problems as we show in Sect. 4.

3 KEMF Security Protocol

The protocol provides for secure delivery of a network access key, from a local
access control gateway, on to a new smart device in a federated network. It
is assumed that the device has been distributed with a unique pre-installed
asymmetric key, imprinted by its provider. This key is used only to provide for a
secured request of its appropriate network access key. The delivery of the actual
network access key is secured using a separate locally generated symmetric key.
Whilst the protocol does involve communication with the device’s provider server



KEMF: Key Management for Federated Sensor Networks 19

1

4

2

3
Device (A) Gateway (B)

Provider Server (S)

Fig. 1. System Actors and protocol steps

the local network key is not shared with the provider thus not compromising the
privacy and security of the local network and allaying pervasive monitoring.

We employ asymmetric cryptography in an atypical fashion by requiring both
halves of the keypair to be kept secret, rather than one key being made public and
the other kept private. This approach allows the protocol to provide for improved
security properties, and in particular forward secrecy. As the public key allows
only for encryption of messages, subsequent compromise of the public key by an
intruder does not allow compromise of previously sent messages. This approach
therefore provides an improvement over the use of a single symmetric key, which
could potentially lead to decryption of any previous or future messages. It should
also be noted that, whilst we propose that both keys are kept secret, they are still
used in the conventional manner whereby the ‘public’ key is used for encryption
and the ‘private’ key is used for decryption.

Typically sensor and IoT devices are low power and minimally resourced enti-
ties. Thus for normal communications it is only feasible to use symmetric encryp-
tion, such as the Advanced Encryption Standard (AES). Whilst most mod-
ern devices are capable of performing the more onerous computation required
for conventional asymmetric cryptography, they can be prohibitively slow even
for basic operations. However Elliptic Curve Cryptography (ECC) which was
developed by Koblitz and Miller, provides for asymmetric keys with signifi-
cantly reduced computational requirements, and smaller key sizes. Specifically
we employ the Elliptic Curve Integrated Encryption Scheme (ECIES).

We now introduce the details of the KEMF protocol. The three actors in the
protocol and their interactions are outlined in Fig. 1, with the key terms defined
in Table 1. We begin by defining the roles of the three actors:

Device(A): The sensor device to be registered on, and securely connected to,
the network with its imprinted secret asymmetric ‘public’ key K+

S(A).
Gateway(B): The local gateway which provides for local key distribution and

liaison with the provider server.
Provider Server(S): The cloud-based server that provides for authentication

and authorised use of its devices on registered networks.

Device(A) is imprinted with its secret asymmetric public key, K+
S(A), by

the provider allowing it to securely communicate with the provider server(S),
which shares the corresponding asymmetric private key K−

S(A). The protocol



20 P. O’Hanlon et al.

Table 1. KEMF Protocol key terms

K+
S(A) S(A)’s ‘public’ asymmetric imprinted key

K−
S(A) S(A)’s ‘private’ asymmetric key

kA A’s generated symmetric session key

kBS Symmetric key agreed between B and S

knet
A A’s local network access symmetric key

Table 2. KEMF Protocol steps and message sizes (in Bytes)

Step Message Size

1. A → B : S, {A, kA}
K+

S(A)
48 B

2. B → S : {A, {A, kA}
K+

S(A)
}kBS 48 B

3. S → B : {A,B, kA,K
−
S(A)}kBS 64 B

4 B → A : {A,B, knet
A }kA 32 B

assumes that a preconfigured trust relationship exists where the provider server
has securely agreed, over a conventional secure channel (e.g. D/TLS), a session
key, kBS , with the gateway(B).

The steps of the protocol are outlined in Table 2, which we detail here:

1. The device(A) is switched on within range of a trusted gateway(B). At this
stage B’s address is unknown to A so it broadcasts out the initial registration
message. The registration message is encrypted with A’s public key, K+

S(A),
and contains A’s identifier (e.g. EUI-64 address), and its dynamically gener-
ated symmetric key kA.

2. The gateway(B) receives the registration message, and after verifying that
it has a pre-established relationship with provider server(S), it forwards the
message to S using their agreed symmetric session key kBS .

3. The provider server(S) receives the registration request and after verifying
that device(A) belongs to gateway(B) it then decrypts the message and sends
A’s private key, K−

S(A), and generated symmetric key, kA, to B using kBS .
4. Once gateway(B) receives the message from provider server(S) it encrypts

device(A)’s local network access key, knetA , using A’s symmetric key, kA. In
this way B has the option to provide a separate network key to each device.

The protocol may also be broken down into two phases. Firstly the registration
phase, which involves steps 1–3, only needs to occur once for each device after
which B has obtained A’s private key, K−

S(A), which then allows it to verify
subsequent messages from A. Secondly there is the (re)keying phase which, after
the registration phase has completed, only requires steps 1 and 4, thus freeing
the provider server of further work, providing for reduced latency operation, and
allowing autonomy for the local gateway to manage keys. To protect against



KEMF: Key Management for Federated Sensor Networks 21

replay attacks in the rekeying phase the device retains all previous keys (knetA )
so to avoid replays of step 4 containing old, potentially compromised, keys. The
number of keys retained may be controlled by having the devices periodically
utilise step 1 with a new kA. We have kept the device message sizes within the
limits of common low power wireless protocols such as IEEE 802.15.4, without
making any compromises on addressing or key sizes. Typically the maximum
payload size is around 90 bytes and if one utilises UDP over 6LowPAN then this
can go down to 50–60 bytes.

4 Security Analysis

We take a theoretical approach to analysing KEMF by representing the protocol
in a security protocol analyser to examine it for potential weaknesses and attacks.
Our threat model, which is standard for wireless systems such as IoT and sen-
sor networks, is largely similar to the commonly assumed Dolev-Yao model [1],
where the attacker is assumed to have complete control over the communications
channel, and may attempt to read any message, remove and change existing mes-
sages, or inject new messages. Although not strictly within the Dolev-Yao model
we consider some situations with end system compromise.

We assume that the local gateway and provider server are trusted, whilst the
sensor devices are potentially susceptible to compromise. Furthermore both the
gateway and provider server trust one another, though the provider server has
ultimate trust. The trust relationship between the server and gateway means
that the server will only provide services for a predefined range of devices, thus
limiting damage in the case of gateway compromise. The main threat to the
system is for an intruder to obtain A’s secret public key, K+

S(A) as the sensor
nodes are typically more vulnerable as they are harder to physically secure.

We modelled KEMF using Gavin Lowe’s Casper (Compiler for the Analysis
of Security Protocols) [8]. Casper is implemented in Haskell and employs the
process algebra CSP [3], in conjunction with its model checker FDR2 [11]. Lowe
originally utilised CSP and FDR2 to develop a novel method for analysing secu-
rity protocols, which proved to be remarkably successful in finding attacks upon
a number of well known protocols [7,9]. Casper may be used not only model each
actor in the protocol but to also explicitly model a malicious agent or intruder.

We firstly model the attacker without any knowledge of the device keys and
Casper does not find any attacks on KEMF. Secondly we see that the protocol
resists some attacks when A’s public key, K+

S(A), is compromised. The KEMF
protocol can resist a passive attack as an intruder cannot read the contents of
the messages from A due to the use of asymmetric cryptography, nor can he read
the messages from B due to the protection by A’s session key, kA. This compares
well against MASY [10] which cannot resist these attacks.

However an active intruder that has effectively taken control of device(A) and
obtained its public key, K+

S(A), may pose as A and obtain A’s key to the network.
Provided the attack does not occur before a non-compromised registration phase,
an intruder node cannot maliciously inject a new key to be used by that or any



22 P. O’Hanlon et al.

other node. Furthermore due to the fact that A’s public key, K+
S(A) protects

the transport of its internally generated key, kA, any later compromise of K+
S(A)

does not allow an intruder to decrypt any previous messages thus affording the
node forward secrecy. Once such a key compromise has been detected it can be
excluded from the network without affecting the future security of other devices
on the network. Finally when both the device’s private and public keys are
compromised then the system is open to a number of attacks.

We also modelled MASY in Casper to understand its behaviour both with
and without key compromise. The MASY protocol utilises an approach where
the device is imprinted, by a ‘company’, with its IP address and symmetric key to
provide for secured registration and enrollment on a network. Whilst the MASY
provides for a key management solution it suffers from a number of problems.
The compromise of the company symmetric key, from such a device, would lead
to a general failure of the protocol as an intruder entity could both inject and
read any messages from the past or future.

In summary, the KEMF protocol has the following security properties:

Forward Secrecy: The protocol provides for partial forward secrecy of the
messages exchanged between the device and the gateway, which holds if
either the ‘public’ asymmetric key, or one of A’s existing session keys, is
compromised. This is due to the protection of A’s session key, kA, by its
public key, K+

S(A), and the use of a suitable KDF for A’s session key. However
if A’s private asymmetric key, K−

S(A), is compromised then forward secrecy
fails.

MitM Prevention: A Man in the Middle attack, between A and B, is prevented
as the communication from A, via B, to S (or directly to B in a rekeying
phase) is encrypted using A’s imprinted asymmetric public key, K+

S(A), and
communication from B to A is encrypted using A’s session key kA.

Local Network Key Protection: The local network access symmetric key,
knetA , sent from B to A, is protected by A’s session key kA, which in turn is
encrypted using A’s public asymmetric key K+

S(A).
Replay Attack Protection: With no key compromises there is protection

against replay attacks as an adversary cannot maliciously reuse subsections
of the protocol due to the retention and non-reuse of old kA’s by A.

5 Experimental Analysis

We analysed the KEMF protocol on an embedded sensor node platform, the
iMote2 from MEMSIC Inc, which runs linux-2.6 on a 419 MHz ARMv5. For
ECIES, which is a hybrid elliptic curve asymmetric key algorithm, we utilised
an implementation, based upon the OpenSSL library, of the SECG standard,
using the ‘secp256k1’ elliptic curve in combination with 128-bit AES in cipher-
block chain (CBC) mode, and the SHA512 hash function. The initial message (1),
from Table 2, is 48 bytes long, which consists of a 32 byte encrypted payload plus
the 16 bytes server ID. With this configuration the iMote2 encrypted the 32 byte



KEMF: Key Management for Federated Sensor Networks 23

payload in an average of 41.5 ms, which means that the protocol is quite feasible
on such a platform. The final message (4) sent to the device, to be decrypted
by the iMote2, consists of an encrypted payload of the node ID (8 bytes), the
gateway ID (8 bytes), and the node’s network key (16 bytes). The 32 byte payload
is decrypted using the 128-bit AES key, which is far quicker than the ECIES
encrypted initiation message, taking an average of 3.9µs.

Our implementation analysis shows that the protocol is feasible on current
sensor platforms using asymmetric ECC based cryptography. The messages sent
between the gateway and provider server are also small but are of less concern
as they often use link layer technologies with larger MTUs.

6 Conclusions

We have detailed and evaluated KEMF a new device registration and key man-
agement protocol for federated networks that provides for low overhead oper-
ation. We have utilised the Casper security protocol analyser to show KEMF
to be secure within our threat model. It provides for forward secrecy, even if
the device’s public key is compromised, protection against man in the middle
attacks, and local network key security and privacy. It provides for better pro-
tection against key compromise than MASY, another similar protocol.

Our experimental analysis has shown that the protocol may feasibly be
deployed on a current sensor platform, providing for good performance when
using asymmetric elliptic curve cryptography. We also show that the protocol is
suited for use in LowPANs where message sizes are very limited.

Acknowledgments. We would like to acknowledge funding from the EPSRC for the
FRESNEL (EP/G070687/1), and Being There (EP/L00416X/1) projects.

References

1. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

2. Simplicio, M.A., Barreto, P.S.L.M., Margi, C.B., Carvalho, T.M.B.: A survey on
key management mechanisms for distributed wireless sensor networks. Comput.
Netw. 54(15), 2591–2612 (2010)

3. Hoare, C.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

4. Huygens, C., Joosen, W.: Federated and shared use of sensor networks through
security middleware. In: ITNG, pp. 1005–1011 (2009)

5. Khan, S.U., Lavagno, L., Pastrone, C., Spirito, M.: An effective key management
scheme for mobile heterogeneous sensor networks. In: i-Society (2011)

6. Leontiadis, I., Efstratiou, C., Mascolo, C., Crowcroft, J.: SenShare: transform-
ing sensor networks into multi-application sensing infrastructures. In: Picco, G.P.,
Heinzelman, W. (eds.) EWSN 2012. LNCS, vol. 7158, pp. 65–81. Springer,
Heidelberg (2012)



24 P. O’Hanlon et al.

7. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

8. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: Computer
Security Foundations Workshop, pp. 18–30 (1997)

9. Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN protocol. IEEE
Trans. Softw. Eng. 23, 659–669 (1997)

10. Maerien, J., Michiels, S., Huygens, C., Joosen, W.: MASY: MAnagement of Secret
keYs for federated mobile wireless sensor networks. In: IEEE WiMob (2010)

11. Roscoe, A.W.: Model-checking CSP, Chap. 21. Prentice-Hall, Englewood Cliffs
(1994)

12. Xiao, Y., Rayi, V.K., et al.: A survey of key management schemes in wireless sensor
networks. Comput. Comm. 30, 2314–2341 (2007)


	KEMF: Key Management for Federated Sensor Networks
	1 Introduction
	2 Related Work
	3 KEMF Security Protocol
	4 Security Analysis
	5 Experimental Analysis
	6 Conclusions
	References


