
Transplantation Attack: Analysis and Prediction

Zhongwen Zhang1,2,3, Ji Xiang1,2(B), Lei Wang1,2, and Lingguang Lei1,2

1 Data Assurance and Communication Security Research Center, Beijing, China
2 Institute of Information Engineering, CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

{zwzhang,jixiang,lwang,lglei}@lois.cn

Abstract. Correspondingly, Android also becomes a common attack
target. Till now, many attacks have been detected out, such as confused
deputy attack, collusion attack, and root exploits attack. In this paper,
we present a novel attack, denoted as transplantation attack. Transplan-
tation attack, when being applied to spy on user, can make the mali-
cious behavior more stealthy. The attack can evade permission check,
evade device administration, and even evade API auditing. The premise
of carrying out Transplantation attack is that malware is able to access
resources or gain access capability. By fulfilling the premise, we do a
case study about Camera device. The result indicates that Transplan-
tation attack indeed exists. Based on these observations, we predict the
kind of system resources that may suffer transplantation attack. Defence
discussion are also presented.

Keywords: Android · Transplantation Attack · Prediction

1 Introduction

Nowadays, Android becomes the most wide spread mobile platform. In the mean-
while, it also becomes a common attack target. Many kinds of attacks towards
Android system have been detected out, e.g., confused deputy attack [5,8,9,12],
collusion attack [4], and root exploits attack [17,24]. In this paper, we will present
a novel kind of attack, and we name it as transplantation attack.

To explain what is transplantation attack, we should mention the resource
accessing procedure first. In Android system, most system resources (e.g., GPS,
camera) are accessed by system services (e.g., LocationManager Service, Camera
Service). Applications (apps), if want to access these resources, should send
request to system services via IPC (Inter-Process Communication). Then, system
services will call several system libraries (.so libraries) to talk with resource driver
and collect data and return data back to apps. When resources are accessed, two

This work is supported by National Natural Science Foundation of China grant
70890084/G021102 and 61003274, Strategy Pilot Project of Chinese Academy of Sci-
ences sub-project XDA06010702, and National High Technology Research and Devel-
opment Program of China (863 Program, No. 2013AA01A214 and 2012AA013104).

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 367–374, 2015.
DOI: 10.1007/978-3-319-23802-9 28



368 Z. Zhang et al.

processes are involved, an application’s (client) process and a system service’s
(server) process. In this case, system .so libraries run in system services’ address
space.

However, what if malware transplant system .so libraries from system ser-
vices’ address space to their own address space, and use these libraries to talk
with driver to collect data by their own? In this case, system .so libraries will
run in malware’s address space, which will lead to several security issues; and
it should be considered as an attack. We call this attack as Transplantation
Attack.

Transplantation attack enables malware accessing resources without involv-
ing IPC with system services. In transplantation attack, when resources are
accessed, only one process (app’s process) is involved, and there is nothing to do
with system services’ process. Therefore, a lot of security enforcements imple-
mented in system services can be evaded.

By starting a transplantation attack, malware can evade permission check. In
Android system, before system services respond to resource accessing request of
an app, they will check the app’s permissions first. If the app does not have the
required permission, system services will not provide service. In transplantation
attack, malware do not depend on system services to get data, instead, they
collect data by their own. Therefore, the permission check process initiated by
system services can be evaded in transplantation attack.

By starting a transplantation attack, malware can evade device adminis-
tration. Android framework provides several special Android APIs, which are
called Device Administration APIs. They could be used by device admin apps
to configure a phone. Device administration is usually enforced in enterprises, in
which phones are used to do business. Usually, enterprise administrators install
device admin apps on these phones to protect commercial benefit. Transplan-
tation attack will make these admin apps fail to be effective. That is because,
the device administration is also implemented in system services which are not
called in transplantation attack.

By starting a transplantation attack, malware can evade API auditing.
Android API auditing is important to both enterprise environments and indi-
vidual users. In enterprise environments, deploying API auditing on employee
phones helps to decrease security risk. For individual users, API auditing helps
to detect spyware. API auditing can be done when permissions are checked.
Since there is no permission check step in transplantation attack, malware can
evade API auditing as well.

As a result, transplantation attack, when being applied to spy on user, can
make malicious behavior much more stealthy and much more difficult to detect.
We have searched the CVE (Common Vulnerabilities and Exposures) list [1].
Among the 448 CVE entries that match the keyword Android, we find there was
no such kind of attack happened before.

In this paper, we will give an overview about transplantation attack. First
we will describe the premise to start transplantation attack. Then, by fulfilling
the premise, we carry out a transplantation attack towards Camera device as



Transplantation Attack: Analysis and Prediction 369

a case study. The case study verifies that transplantation attack indeed exists,
and cannot be detected out by Antivirus. Base on these observations, we predict
that other resources may also suffer transplantation attack. Moreover, we discuss
potential solutions against this attack.

2 The Premise of Transplantation Attack

Transplantation attack is to transplant system libraries from system services’
address space to malware’s address space, and then malware can collect data in
its own address space.

A big premise for the transplantation attack to be carried out is that the
system libraries are designed to be called by everyone. However, that malware
can call system libraries does not mean the malware can successfully access
resources (e.g., hardware drivers, database files). Another premise of transplan-
tation attack is that the malware itself should be able to access resources or can
gain access capability.

System resources can be divided into two types: hardware resources and
software resources. The way to achieve the premise of the attack towards the
two kind resources is different.

Hardware Resources. To access hardware resources, e.g., GPS, Camera, mal-
ware should be able to access hardware drivers. Hardware drivers subject to
Linux file system access control. To access a hardware driver, a user (app) should
be the owner or be a member of the hardware’s group. In Android system, an
app could be a member of a hardware’s group, aka., the app could be assigned
with the hardware’s group id (GID).

Apps could become a group member of some hardware through obtaining
a certain permission. That is because, Android has bound some permissions
with some groups, which are recorded in a metadata file (platform.xml). If a
permission has been bound to a group, then once this permission is granted to
an app, the app will be automatically set as a member of the group. By applying
a permission, an app can gain the corresponding GID. After gaining the GID, an
app could access the corresponding hardware driver. Once an app could directly
access a hardware driver, it can start transplantation attack.

Software Resources. Most software resources, e.g., SMS, Contact, social net-
work data, exist in the form of database files or in shared memories, which are
files, too. These files are owned by system apps (e.g., SMS app, Contact app)
or third party apps. To access these files, malware should become a shared user
with the owner of these files, aka, the malware should share UID with the owner.

Sharing UID with a system app cannot be achieved except exploiting system
vulnerabilities. Nowadays, two vulnerabilities towards signature verification have
been detected out in Android system [18,21]. Exploiting them, malware is able
to share UID with a system app, or a third party app. To share UID with a
third party app, collusion attack also is an optional way. Once an app becomes
a shared user of the file owner, it can access the file. As long as malware can
access resource files, it can start transplantation attack.



370 Z. Zhang et al.

Others. In one case that malware neither need to become a group member nor
need to become a shared user. That is, a file, either a device file or a regular file,
is publicly accessed. For example, the file’s access rule is set as 666 (rw-rw-rw-)
or 777 (rwxrwxrwx).

An advantage of attacks towards software resources is that malware does not
need to apply any permission for any reason. On the contrary, attacks towards
hardware resources should apply permissions to get GIDs. Therefore, transplan-
tation attacks towards software resources are much more stealthy and much more
hard to detect than attacks towards hardware resources.

3 Case Study

To verify the feasibility of transplantation attack, we have done a case study
towards Camera device. We use a malicious app to carry out a transplantation
attack.

As described before, the attack just transplants necessary .so libraries from
Camera Service’s address space to the malicious app’s address space, and calls
picture taking function provided by these .so libraries to take a picture. To make
the malicious app be able to access camera driver, we should put the app into
camera group. It can be achieved by applying CAMERA permission, because
Android has bound CAMERA permission with camera group.

After going through a lot of failures, we successfully conduct a way of picture
taking inside the malicious app’s address space. Also, the malicious app is suc-
cessfully executed on Nexus S with Android version 4.0.4 and Sony LT29i with
Android version 4.1.2.

We also tested whether the malicious app can evade detection of Antivirus
and can evade enterprise device administration. The test result shows both of
them can be evaded.

4 Prediction of Transplantation Attack

The case study about Camera device indicates that transplantation attack indeed
exists. In this section, we will predict where transplantation attack may happen.

4.1 Attack Towards Hardware Resources

As described before, malware should be able to access a hardware before starting
transplantation attack. This can happens in two situations. One situation is that
the malware is able to gain the GID of a hardware. The publicly available GIDs
are recorded in the platform.xml file. The other situation is that a hardware is
publicly accessed. For example, a hardware’s access rule is 666. Hardware covered
by the two ways are vulnerable to suffer transplantation attack.

Take the platform.xml file on Galaxy Nexus of version 4.1.2 as an example,
available GIDs are net bt admin, net bt, inet, camera, log, sdcard r, sdcard rw,



Transplantation Attack: Analysis and Prediction 371

media rw, mtp, net admin, cache, input, diag, net bw stats, net bw acct; and 15
of them in total. Hardwares involved in these GIDs are vulnerable to suffer
transplantation attack, such as Bluetooth (GID: net bt admin, net bt), Internet
(GID: inet), Camera (GID: camera). The GPS’ group id is not publicly available,
so GPS does not suffer this attack.

Taking advantage of the transplantation attack, malware could enjoy Blue-
tooth stealthily. Nowadays, Bluetooth is commonly used in e-health area such
as blood pressure monitor, glucometer, and wearable devices such as watches,
glasses. Malware may steal this kind of high sensitive data without leaving any
record.

Sometimes, vendors mistakenly configure a phone [23]. For example, on Sam-
sung GT-I9300 phone, the GID radio is recorded in the platform.xml file as well.
By gaining the GID inet and radio, malware may be able to use Internet without
being detected. Attacks towards Internet will lead to users’ financial lose.

Besides hardware whose GID can be applied may suffer the attack, mistakenly
configured hardware may suffer the attack, too. According to [23], vendors set
access rules of some hardware drivers on some phones as 666, which means all
users can read and write these drivers. On these phones, malware can directly
access those mistakenly configured hardware drivers without gaining their GID,
aka, without applying any permission.

4.2 Attack Towards Software Resources

Software resources like private database files or shared memories are owned by
apps. The GID of these files are not bound with permissions. Therefore, unless
these files can be publicly accessed, malware should become a shared user to
initiate attacks on them. It is designed that shared users can access each other’s
data, and, if desired, run in the same process. So, once malware becomes a shared
user, it seems that it is not necessary to do transplantation attack.

However, regular access way may leave auditing record. For example, data-
base files are regularly accessed via Content Provider, which can be used to do
API auditing. Moreover, other shared users may do extra access control or do
auditing inside their execution flows, too. These obstacles may become a moti-
vation of carrying out a transplantation attack towards software resources.

In case of malware sharing UID with other apps contain private data, we
predicate that transplantation attack may happen.

5 Defence Discussion

There may be several ways to defend the transplantation attack, but some of
them may not work out. For example, forbidding the usage of system libraries
may sound a good idea to defend the attack. However, as apps can ship their
own copy of the required system library, this way may not work out. Here, we
discuss two possible ways as follows.



372 Z. Zhang et al.

5.1 Breaking the Binding Between Permission and Group ID

The transplantation attack should get the capability of accessing a hardware
device. To gain this capability, the malicious app should be assigned with the
hardware’s group ID by applying corresponding permission. Noticing this, a
defence is that we could break the binding between permission strings and group
ids. Taking Camera device as an example, breaking the binding between camera
permission and camera group id will not affect the normal apps to take pictures.
That is because Camera device has a daemon process (mediaserver process, in
which Camera Service runs) in charge of taking pictures. Apps just need to send
request to the daemon process, and the process will handle the picture taking.
One weakness of this defence is that when the hardware has zero daemon process
(e.g., Sdcard) or more than one daemon processes, it is possible to result in
denying of services.

5.2 Using SEAndroid Policy

SEAndroid enforces mandatory access control to every process (user) under a
fine-grained access control policy. Every process belongs to a domain (type).
Here, third-party apps are classified into the untrusted app domain, which will
be blocked when directly access protected files (device files, regular files).

Although SEAndroid can block the access to protected files, it has a rather
limited enforcement range. SEAndroid [20] is merged into AOSP since version
4.3 and enforced since version 4.4. According to Google’s survey [14], the phones
shipped with version 4.3 and 4.4 each accounts for 8.5 % of the total at the
beginning of May, 2014. That a phone shipped with 4.3 version of Android does
not mean that the SEAndroid is enforced. So, nearly 90 % of the Android phones
in the wild are however not protected by SEAndroid. Among the phones used
by our labmates, 93 % of them without SEAndroid. It may take a long period of
time before SEAndroid can be widely deployed in the wild. During this period
of time, many users may suffer from the spy-on-user attack.

Besides the distribution range limitation, SEAndroid has weakness as well.
Pau Oliva shows three weaknesses of SEAndroid and gives out four ways to
bypass SEAndroid [22]. We did an experiment, in which we change SEAndroid
from enforce mode to permissive mode via PC terminals. The same principle
could be applied to apps. The experiment shows that SEAndroid can indeed be
bypassed.

6 Related Work

Confused Deputy Attacks. Confused deputy attack means a malicious app
without permission P exploits the unprotected interfaces of other apps with
permission P to perform a privileged task for itself. To detect whether an app
has unprotected interfaces, a number of detection tools have been proposed
[2,6,11,13]. These static analysis tools are likely to be incomplete, as they can-
not completely predict the actual confused deputy attack occurring at runtime.



Transplantation Attack: Analysis and Prediction 373

To address this issue, some framework extension solutions [9,12] have been pro-
posed.

Collusion Attacks. Different from the confused deputy attacks, the collusion
attacks concern malicious apps that collude to combine their permissions. So,
one malicious app does not need to apply all permissions, which can evade the
detection of Kirin [10]. To address the collusion problems, [3,4,15] are proposed.
These solutions can confront both the deputy attacks and the collusion attacks.

Root Exploits Attacks. According to [24], attacks exploiting root privilege
play a significant role in compromising Android security. Among the root exploit-
ing malware, the DroidKungFu [17] is a typical example. Attacks exploiting
root privilege could break the boundary of Android sandbox and could access
resources without applying permissions. The root exploits attacks could be
blocked by SEAndroid [20]. By introducing SEAndroid, processes even running
with root privilege cannot access the protected files and devices.

Security Enhancements. Some framework security extension solutions [7,16,
19,25] enforce runtime permission control to restrict apps’ permissions at run-
time. These solutions aim at providing a fine-grained access control for IPC.
The novel transplantation attack does not call Android APIs or does not involve
IPC. Therefore, these solutions cannot block the transplantation attack.

7 Conclusion

In this paper, we give an overview about the transplantation attack, which can
make malicious behavior much more stealthy when being applied to spy on user.
We first describe the premise of the attack, then we do a case study on Camera
device, which verifies the attack indeed exists. Based on the premise and case
study result, we predict that there are other resources may suffer transplantation
attack. At last, we discuss potential defences towards the attack.

References

1. CVE: Common vulnerabilities and exposures. http://cve.mitre.org/
2. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-

mission specification. In: ACM CCS (2012)
3. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R.: XMandroid: a new

android evolution to mitigate privilege escalation attacks. Technische Universität
Darmstadt, Technical Report TR-2011-04

4. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.R., Shastry, B.:
Towards taming privilege- escalation attacks on android. In: 19th NDSS 2012
(2012)

5. Chan, P.P., Hui, L.C., Yiu, S.: A privilege escalation vulnerability checking system
for android applications. In: 2011 IEEE 13th International Conference on Commu-
nication Technology (ICCT), pp. 681–686. IEEE (2011)

6. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: 9th MobiSys 2011 (2011)

http://cve.mitre.org/


374 Z. Zhang et al.

7. Conti, M., Nguyen, V.T.N., Crispo, B.: Crepe: context-related policy enforcement
for android. In: Information Security (2011)

8. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) Information
Security. Lecture Notes in Computer Science, vol. 6531, pp. 346–360. Springer,
Heidelberg (2011)

9. Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., Wallach, D.S.: Quire: lightweight
provenance for smart phone operating systems. In: USENIX Security (2011)

10. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: 16th ACM CCS, pp. 235–245. ACM (2009)

11. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: 18th ACM CCS, pp. 627–638. ACM (2011)

12. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: attacks and defenses. In: USENIX Security Symposium (2011)

13. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: automated security certifica-
tion of android applications. University of Maryland, Manuscript (2009)

14. Google: Dashboard, March 2014. http://developer.android.com/about/
dashboards/index.html?utm source=ausdroid.net#Platform

15. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks
in stock android smartphones. In: 19th NDSS (2012)

16. Nauman, M., Khan, S., Zhang, X.: Apex: extending android permission model and
enforcement with user-defined runtime constraints. In: 5th ACM CCS (2010)

17. NC State University: security alert: New sophisticated android malware droid-
kungfu found in alternative chinese app markets (2011). http://www.csc.ncsu.edu/
faculty/jiang/DroidKungFu.html

18. NIST: Cve-2013-4787 (2013). http://web.nvd.nist.gov/view/vuln/detail?
vulnId=CVE-2013-4787

19. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. Secur. Commun. Netw. 5(6), 658–673
(2012)

20. Smalley, S., Craig, R.: Security enhanced (se) android: bringing flexible MAC to
android. In: NDSS (2013)

21. Squad, A.S.: Bug 9695860 (2013). http://blog.sina.com.cn/s/blog be6dacae0101
bksm.html

22. viaForensics: Defeating SEAndroid C DEFCON 21 Presentation.
https://viaforensics.com/mobile-security/implementing-seandroid-defcon-21-pres
entation.html. Accessed August 3, 2013

23. Xiaoyong, Z., Yeonjoon, L., Nan, Z., Muhammad, N., XiaoFeng, W.: The peril of
fragmentation: security hazards in android device driver customizations. In: 35th
IEEE Security and Privacy, pp. 1–18. IEEE (2014)

24. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: Security and Privacy (SP), pp. 95–109. IEEE (2012)

25. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011)

http://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net#Platform
http://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net#Platform
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4787
http://blog.sina.com.cn/s/blog_be6dacae0101bksm.html
http://blog.sina.com.cn/s/blog_be6dacae0101bksm.html
https://viaforensics.com/mobile-security/implementing-seandroid-defcon-21-presentation.html
https://viaforensics.com/mobile-security/implementing-seandroid-defcon-21-presentation.html

	Transplantation Attack: Analysis and Prediction
	1 Introduction
	2 The Premise of Transplantation Attack
	3 Case Study
	4 Prediction of Transplantation Attack
	4.1 Attack Towards Hardware Resources
	4.2 Attack Towards Software Resources

	5 Defence Discussion
	5.1 Breaking the Binding Between Permission and Group ID
	5.2 Using SEAndroid Policy

	6 Related Work
	7 Conclusion
	References


