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Abstract. To protect sensitive data from unauthorized access, encrypt-
ing data at the user end before outsourcing them to the cloud storage,
has become a common practice. In this case, the access control policy is
enforced through assigning proper cryptographic keys among collabora-
tors. However, when the access control policy needs to be updated (e.g.
new collaborators join or some collaborators leave), it is very costly for
the data owner or other parties to re-encrypt the data with a new key in
order to satisfy the new policy. To address this problem, we propose a
dual-header structure and batch revocation, which makes the overhead
for privileges grant independent of data size and significantly improves
the efficiency of privilege revocation by applying lazy revocation to cer-
tain groups of revocation requests, respectively. We also analyze the over-
head for authorization showing that our approach is able to efficiently
manage frequent policy updates.
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1 Introduction

Cloud storage has certain advantages, such as paying for only what is used,
being quick to deploy, offering easy adjustment of capacity and built-in disas-
ter recovery. Therefore, individuals and companies are resorting more to cloud
providers for storing their data and sharing them with collaborators. However,
cloud providers are generally considered as “Honest-but-Curious”, which means
that the cloud will execute some functions honestly, but might pry into the sen-
sitive data led by business interest or curiosity. To secure sensitive data and
prevent illegal visitors (including cloud providers) from unauthorized access, a
straightforward solution is to apply cryptographic techniques, so that data are
encrypted at the user end before being outsourced to the cloud. In this case, only
the data owner and authorized collaborators with knowledge of the key will be
able to access the data. Therefore, access control policies are enforced through
assigning proper cryptographic keys among collaborators.
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However, when the access control policy needs to be updated (e.g. new col-
laborators join or some collaborators leave), it can be very costly for data owners
to re-encrypt the data with a new key in order to satisfy the new policy. As the
computation overhead for re-encryption(encryption/decryption) and transmis-
sion overhead for downloading are proportional to the size of data [1], policy
updates may not propagate in real time, especially for large amounts of data.
Therefore, it is not advisable for data owners with limited ability to take the
heavy burden. An alternative solution is applying proxy re-encryption [2,3] which
migrates the burden for re-encryption from data owners to the proxy. However,
the adoption of public key cryptography impedes the wide usage of proxy re-
encryption algorithms, because of the computation overhead. Over-encryption
proposed in [1,4] is a practical symmetric encryption solution for delegating keys’
update and re-encryption to cloud servers. Nevertheless, in the “pay-as-you-go”
model of cloud computing, it is still costly for data owners to pay the cloud
for the cipher operations. Furthermore, the delay for re-encryption cannot be
ignored, especially in presence of multiple access control policy updates of large
data with replicas across multiple cloud servers.

Our approach is based on over-encryption [1,4], which implements the update
of access control policy by enforcing two layer encryption. In over-encryption,
data resources are doubly encrypted at base encryption layer (BEL) by data
owners and at the surface encryption layer (SEL) by the cloud. When access
control updates, the data just needs to invoke the cloud to update the encryp-
tion policy at SEL. However, both granting and revoking authorizations need the
cloud to encrypt over the pre-encrypted data, which brings much overhead for
re-encryption computation and has an influence on the performance when large
amounts of updating operations of access control policy concurrently happen.
In order to implement an efficient update of access control policy in crypto-
graphic cloud storage, this paper presents a dual-header structure for eliminat-
ing the need of re-encrypting related data resources when new authorizations
are granted, and proposes batch revocation for reducing the overhead for re-
encryption when revocations happen.

In our dual-header structure, data are encrypted by data owners at the base
encryption layer and then over-encrypted by cloud servers at the surface encryp-
tion layer. Each data resource is divided into the data content in the body and
the cryptographic keys of data content in the header. Before being outsourced
to the cloud, both the body and the header of data resources are pre-encrypted
by data owners. After data are uploaded to the cloud, the cloud server will first
encapsulate the header by encryption. Therefore, the header of all the resources is
initialized by a two layer encryption and always has a relatively small size. When
granting new privileges, cloud servers only need to update the small header,
instead of the body. Our dual-header structure has the following characteristics:

– High security. The dual-header structure prevents unauthorized visitors from
accessing the sensitive data. Even if the cloud server suffers attacks, the sen-
sitive data will not be divulged to unauthorized visitors.
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– Low overhead. The dual-header structure makes the overhead for granting
privileges independent of data size. With the dual-header structure, there
is no re-encryption of any data content (possibly of large size), so it offers
significant benefits in reducing the overhead when new privileges are granted.

In order to prevent the revoked user from accessing future versions of the data
with the key they possess, the overhead for re-encryption brought by revocation
operations cannot be avoided. Our batch revocation mechanism, combining lazy
revocation to a certain group of revocation requests, provides a considerable
improvement of over-encryption systems, by reducing the number of operations
on large amounts of data.

The rest of the paper is organized as follows. Section 2 introduces a basic
scheme and discusses its weaknesses. Section 3 presents our main scheme, and
Sect. 4 describes an efficient access control policy update with low overhead.
Section 5 illustrates performance analysis and security analysis. Then related
work is given in Sect. 6, and finally we conclude this paper and give our future
work in Sect. 7.

2 Preliminaries

Cryptographic cloud storage [5] is proposed to securely outsource sensitive data
resource to the “Honest-but-Curious” cloud. It can protect sensitive data against
both the cloud provider and illegal visitors, by encrypting data at the client side
before outsourcing. The security lies in appropriate key distribution to users (col-
laborators) based on the access control policy for sharing data among collabora-
tors. Keeping cryptographic keys secret from the cloud provider is essential for
those data owners with high security requirement. However, it makes it difficult
for data owners to resort to the cloud provider for updating the access con-
trol policy when the cooperative relationship changes. Additionally, data with
different access control policies should be encrypted with different keys when
fine-grained data access control is desired. This could upset the users, as they
would be required to maintain multiple keys for different data resources.

Our work is based on the over-encryption approach [1,4], which was proposed
to avoid the need for shipping resources back to the owner for re-encryption
after a change in the access control policy. On the premise of implementing fine-
grained access control, over-encryption also forces a user to keep one or two
private keys to access all the authorized resources, by subtly constructing a key
derivation structure. In over-encryption, data resources are doubly encrypted at
the base encryption layer (BEL) and the surface encryption layer (SEL). At BEL,
data are encrypted by data owners at client side and data owners are responsible
for distributing the decryption keys to users. After data are outsourced to the
cloud, the encrypted data are over-encrypted by the cloud at SEL, for updating
access control policies. Only those with keys of the two encryption layers can
decrypt the data, so the cloud provider offers additional protection to prevent
those who can obtain the keys of the base encryption layer from accessing the
data.
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When the cooperative relationship or the access control requirements of data
owners change, the access control policy should be updated as well. In over-
encryption, the data owner only needs to call the cloud servers to re-encrypt
the data at the surface encryption layer. However, re-encrypting large amounts
of data and transmitting requests across multiple servers with replicas are also
costly for the cloud when multiple access control policy updates happen. One
potential limitation of over-encryption is that the cloud might need to re-encrypt
the content of related data resources when new privileges are granted. Another
improvable point is that immediate revocation could increase the overhead for
repetitive cipher operations, when revoking privileges towards the same resources
frequently happens.

2.1 Over-Encryption

In over-encryption, if a set of data resources can be accessed by the same access
user set, they will be encrypted with the same key at the base encryption layer, or
else they will be encrypted with different keys. A user just needs to maintain one
or two private keys to access all the resources that are authorized to him. Over-
encryption is implemented by constructing a key derivation structure, where one
key can be derived from another key through public tokens.

The key derivation structure of over-encryption is based on the access control
list (ACL) of data resources. In which over-encryption divides all the users into
different access user sets and each access user set is associated with a key. Data
resources with the same access user set are encrypted with the same key. The
associated key of the access user set, can be derived by the associated key of any
subset of the access user set. It is implemented by publishing public tokens and
labels on each derivation path. For example, there are three data resources r1,
r2 and r3: the access user set of r1 is {A,B} with associated key KAB ; r2 and
r3 with the same access user set {A,B,C} are encrypted with the key KABC ;
by publishing token tAB,ABC = KABC ⊕ha(KAB , lABC), the user who possesses
KAB can derive KABC by computing KABC = tAB,ABC⊕ha(KAB , lABC), where
lABC is a publicly available label associated with KABC , ⊕ is the bita-bit xor
operator and ha is a secure hash function.

We express the key derivation structure through a graph, having the vertex
vU associated with a group of resources and keys to encrypt the resources. If
Ui is a subset of Uj and a token ti,j is published, then there exists an edge
connecting two vertices (vUi

, vUj
). For instance, Table 1 represents an example

of access control policy, where hd and ha is a secure hash function, then a key
derivation structure shown in Fig. 1 is constructed.

2.2 Limitations

In the key derivation structure, data resources with the same access user set are
encrypted with the same key in a vertex. It reduces the number of keys and
significantly simplifies key management for users. However, it might result in
re-encrypting the other data resources in the same vertex of the granted data



Towards Efficient Update of Access Control Policy 345

Table 1. An example of the implementation of access control policy

(a) Secret Keys
Resources Access User Sets Encryption Keys
r1, r9, r10 A,B hd(KAB)
r3, r4, r5 A,B,C hd(KABC )

r2, r6 C hd(KC )
r7, r8 D hd(KD)

(b) Public Tokens
Labels Tokens
lAB tA,AB = KAB ⊕ ha(KA, lAB)
lAB tB,AB = KAB ⊕ ha(KB, lAB)

lABC tAB,ABC = KABC ⊕ ha(KAB, lABC )
lABC tC,ABC = KABC ⊕ ha(KC, lABC )

Fig. 1. Key derivation structure

resource when new privileges are granted. In the example showed by Fig. 1, if
the data owner grants user D the privilege of accessing the data resource r1, the
data owner needs to provide D with the decryption key hd(KAB) instead of the
derivation key KAB , which might be used to derive the key of resources (e.g.
r3, r4, r5) in other vertices. However, it cannot prevent unauthorized D from
decrypting r9 and r10. Therefore, the cloud provider should over-encrypt r9 and
r10 at the surface encryption layer instead of shipping them back to the data
owner. In fact, re-encrypting data resources in the same vertex when granting
privileges should be avoided.

Another improvable point of over-encryption lies in revocation. In order to
prevent the revoked users from accessing future versions of the data resource with
the key they possess, the cloud should re-encrypt it at the surface layer encryp-
tion. However, the costly re-encryption operations might affect the performance
of the cloud storage service when multiple revocations happen. Moreover, as
a data resource might be accessed by a set of users, immediately revoking the
access to a certain resource will produce repetitive re-encryption operations, and
may result in a long delay when revoking the privileges on large data.

3 Main Scheme

We construct a dual-header structure based on over-encryption and propose
batch revocation to implement an efficient update of the access control policy
in cryptographic cloud storage. In order to implement fast encryption, we adopt
symmetric ciphers in our proposed scheme. Data are firstly encrypted at base
encryption layer by data owners. When the access control policy changes, data
owners will not re-encrypt the encrypted data any more. All of the cipher opera-
tions for matching the new access control policy are executed by the cloud. The
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dual-header structure makes the overhead for granting privileges independent
of data size. Therefore, the cloud just needs to update a small header of the
granted resource, instead of the large content of other resources encrypted with
the same key of the granted resource.

3.1 Dual-Header Structure

We divide each data resource into two parts: keys in the header and the data
content in the body. At the initialization phase (before uploading), the data con-
tent in the body is encrypted with the key in the header by the data owner at
the base encryption layer. In our scheme, each resource uses a different key to
encrypt its content. In order to prevent the cloud provider and unauthorized vis-
itors from obtaining the secret key, the key in the header at the base encryption
layer is encrypted by the data owner. When data resources in header/body form
are uploaded to the cloud servers, the cloud needs to over-encrypt the header at
the surface encryption layer. Therefore, the two layer encryption is imposed on
the header of all the resources and we call it dual-header structure.

There are four types of keys in our dual-header structure.

– Data Content Key: dek. This is a symmetric key used in the base encryption
layer to encrypt the data content in the body. It is generated and encrypted
by the data owner and stays invariant in the header in the cloud. Each data
resource has a different data content key. This key is stored in the header in
encrypted form and requires no distribution.

– Surface Content Key: sek. This is a symmetric key used in the surface encryp-
tion layer to encrypt the already encrypted data content in the body. At
the initialization phase, it is null. When the revocation of the data resource
happens, the cloud will set a new surface content key and encrypt the pre-
encrypted data content with it in the body. The keys of separate data resources
are also different and will be changed when revocations happen. This key is
stored in the header in encrypted form and requires no distribution.

– Base Head Key: BKU . This symmetric key is used to encrypt the data content
key in the header. The data owner also generates it before uploading the
header to the cloud and it will also stay invariant in the cloud. It might be
used to encrypt a set of resources with the same access control policy. This key
is distributed to all the authorized users of set U , by constructing derivation
paths from their private keys to BKU .

– Surface Head Key: SKU . This symmetric key is used in the surface encryption
layer to encrypt the pre-encrypted data content key and surface content key in
the header. The cloud generates it and it will change when the access control
policy updates. Data resources with the same access control policy share the
same surface head key. This key is also distributed to the authorized users of
set U , by constructing derivation paths from their private keys to SKU .

We use the four types of symmetric keys at the two encryption layer to
protect the outsourced data. As the access control policy might update, the
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status of the data stored in the cloud is not immutable. After the data resource
is uploaded to the cloud at the initialization phase, the data resource is in the
initial status expressed in Table 2. When the access control policy of the data
resource updates, the status of the data will change into the common status
showed in Table 3.

Table 2. Initial status of data resource

Id Header Body

Id(r) ESKUi
(EBKUi

(dek), null) Edek(data)

Table 3. Common status of data resource

Id Header Body

Id(r) ESKUj
(EBKUi

(dek), sek) Esek(Edek(data))

At the initialization phase, the data owner first encrypts the data resource
with data content key dek and generates the body Edek(data), then encrypts
dek with the base head key BKUi

and achieves the header EBKUi
(dek), and

finally uploads Id(r) (the identifier of the data resource r), Edek(data) and
EBKUi

(dek) to the cloud. After the cloud receives the data, the cloud first
encrypts EBKUi

(dek) in the header with the surface head key SKUi
, and gets

ESKUi
(EBKUi

(dek), null) (null means that the cloud has not over-encrypted
Edek(data)). Then the data resource is stored in the initial status.

When the access control policy changes, the data owner should prevent the
users who own dek from accessing the data. If data owners are unwilling to
download the data resource and re-encrypt it by themselves, they can invoke
the cloud to over-encrypt it. If the data resource is still in the initial status, the
cloud needs to generate a surface content key sek and a new surface head key
SKUj

, then over-encrypt Edek(data) with sek and re-encrypt (EBKUi
(dek), null)

with the new SKUj
. Then the status of the data will change into the common

status. If the data resource is in the common status, the cloud will decrypt
Esek(Edek(data)) with the old sek and re-encrypt it with a new sek.

Our work assumes that each data resource has an access control list ACL. In
order to enforce fine-grained access control through reasonably assigning keys,
we define the key derivation function KeyDerivation(U) to generate encryp-
tion keys, distribute keys to shared users and publish tokens to derive keys for
authorized users. For the detailed algorithm code of KeyDerivation(U) refers
to [4].

Definition KeyDerivation(U) −→ (K,T,L):

– Access User Sets U : U is the family of subsets of all the users which derives
from the access control lists of all the data resources. For instance, if the access
control list of data resource ri regulates that users {A,B,C} can read it, then
Ui = {A,B,C}(Ui ∈ U) is the access user set of ri.
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– Keys K: K can be the set of all the keys used to derive the keys of the header
(base head key BKUi

or surface head key SKUi
). At the base encryption layer

at the initialization phase, ∀Ui ∈ U,∃KUi
associated with the access user set

Ui, where BKUi
= hd(KUi

). At the surface encryption layer, ∀Ui ∈ U,∃SKUi

associated with the access user set Ui.
– Public tokens T and labels L: T is the set of all the public tokens which are

used to derive keys for the users. L is the set of all the labels which are used
to mark access user sets. If ∃Uj ∈ U and Ui is the largest subset of Uj among
U, then it must exist a token tUi,Uj

= KUj
⊕ ha(KUi

, lUj
) (lUj

) is the label of
access user set Uj .

3.2 Batch Revocation

There are two revocation approaches in cryptographic cloud storage, depending
on when the re-encryption operations are executed. In an active revocation app-
roach, the revoked data resource is immediately re-encrypted with a new key
after a revocation takes place. This is costly and might cause disruptions in the
normal operation of cloud storage. In the alternative approach of lazy revoca-
tion [6], re-encryption happens only when the data resource is modified for the
first time after a revocation.

We propose batch revocation combining lazy revocation to achieve better
user experience and reduce the overhead for revocation. In the general scheme,
when data owners need to prevent revoked users from accessing their resources,
they can invoke the cloud provider to re-encrypt data after a revocation. In this
case, revocation operations must involve reading data from the disk, decrypting
them and re-encrypting them, so the overhead for revocation cannot be ignored,
especially for the data of large size. In our scheme, the cloud can delay the revo-
cations to the time when the predefined conditions are satisfied. The predefined
conditions and the final time of revocation can be set by data owners according
to their requirements. For example, the cloud can select to delay the revoca-
tions on the data of large size to the next read access, which are not frequently
accessed. As the base head key is not updated when the data resource is modi-
fied, the data owner will use a new data content key to encrypt the content when
the data owner modifies it, and the cloud just needs to re-encrypt the header
without encrypting the content in the body (the data resource is stored in the
initial status). In this case, the cloud can delay the revocations to the next write
access in the scenario where multiple revocation operations frequently happen.

4 Access Control Policy Updates

There are two types of access control policy update operations in most storage
systems: (1) Grant new privileges to users and (2) Revoke privileges. The priv-
ileges can be referred to as read privilege or write privilege. Our target is to
protect the sensitive data from being disclosed to unauthorized visitors, and we
restrict ourselves to the consideration of read privileges in this paper.
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Policy update operations are often executed in most network applications
or systems. For instance, according to the data given in [7], there are 29,203
individual revocations of users from 2,916 different access control lists extracted
from seven months of AFS protection server logs. If the updating of access con-
trol policies requires heavy overhead, it will have a negative influence on the
performance. In over-encryption, both granting and revoking involve reading
data from the disk, encrypting data resource and decrypting data resource, so
it results in large transmission overhead and computation overhead. Our dual-
header structure can efficiently reduce the overhead when new privileges are
granted, by operating on the small header of the granted resource, instead of
the data content with large size. As for revocation, our scheme applies batch
revocation to reduce the overhead for repetitive re-encryption operations.

4.1 Granting Privileges

We define the function Grant(u, r) to authorize a user u to access the data
resource r in cryptographic cloud storage systems. Privileges grant in our scheme
is implemented by assigning the related keys to the authorized users. In the pre-
vious work of over-encryption, grant in both Full Sel and Delta Sel [4] methods
involves encryption and decryption operations on the data resource content and
other related resources encrypted with the same keys of r. However, we require
no re-encryption of the content and just require the cloud to re-encrypt the
header of r.

When executing Grant(u, r), the data owner firstly updates the access user
set r.USet of r, then gets the derivation key K according to r.USet and computes
the base head key r.BK of r by hashing K. As resources with the same privileges
at the initialization phase are encrypted with the same base head key, which is
not changed with the access control policy, r.BK may be derived from the private
key Ku of u . If the base head key of r is not included in the set of keys KSet
which can be derived by u, the data owner has to add token from Ku to r.BK,
in order to ensure that u can derive r.BK. Then the data owner invokes the
cloud to over encrypt the header of r to make sure that only the new access user
set r.USet can decrypt the header of r. When the cloud receives the request,
the cloud needs to decrypt the header of r with the old surface head key, re-
encrypt the header and add tokens to ensure that all the authorized users in
the access user set of U can decrypt the header at the surface encryption layer,
which is implemented by calling the function ReEncryptHeader(header, U).
The detailed steps can be seen in Fig. 2.

For the sake of simplicity, we assume that the function Grant(u, r) is referred
to a single user u and a single resource r. The extension to sets of users and
resources is easy to implement. The main overhead of Grant(u, r) lies in decrypt-
ing and re-encrypting the small header of r: DecryptHeader(r, r.SK) and
ReEncryptHeader(r.Header, Unew) in Fig. 2.
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Granting new privileges Revoking privileges
Data Owner:Grant(u, r) Data Owner:Revoke(U, r)
1.r.USet ← r.USet {u} 1.r.USet ← r.USet − U
2. KUi

← GetKey(r) 2. OverEncryptResource(r, r.USet)
3. r.BK ← Hd(KUi

) Cloud:BatchRevoke(r, Unew)
4. KSet ← FindAllKey(Ku) 1. r.USet ← Unew

5. If r.BK KSet 2. If Tcurr RevocationTime(r)
Then AddToken(Ku, r.BK) or the predefined conditions are satisfied

6. OverEncryptHeader(r, r.USet) Then r.SK ← GetKey(r)
Cloud:OverEncryptHeader(r, Unew) r.Header ← DecryptHeader(r.Header, r.SK)
1. If r.USet = Unew If r.Header.sek = null

Then Then sekold ← r.Header.sek
r.SK ← GetKey(r) r.Body ← DecryptBody(r.Body, sekold)
r.Header ← DecryptHeader(r, r.SK) r.Header.sek ← GenNewKey()
ReEncryptHeader(r.Header, Unew) EncryptBody(r.Body, r.Header.sek)

ReEncryptHeader(r.Header, Unew)
3.Else Wait...

Cloud:ReEncryptHeader(header, U)
1. If ∃Ui is an access user set and Ui = U

Then SK ← GetSurfaceHeadKey(Ui)
2. Else SK ← GenNewKey()
3. EncryptHeader(header, SK)
4. While U = null % Ensure all the users in U can decrypt the header

Umax ← MaxSubUset(U) % Find the maximal access user set Umax, Umax U
SKUmax ← GetSurfaceHeadKey(Umax)
AddToken(SKUmax , SK)
U ← U − Umax

Fig. 2. Algorithms for granting and revoking authorizations

4.2 Revoking Privileges

Revocation in our scheme is implemented by updating the keys and re-encrypting
the resource at the surface encryption layer. Users whose privileges will be
revoked, might preserve the keys of the related resources locally, therefore the
revoked resource should be re-encrypted with new keys. As the cloud could not
change the base layer encryption data, we need the cloud to re-encrypt the
resource at the surface encryption layer.

We define the function Revoke(r, U) at the client side to revoke a set of
users U(|U | >= 1) the access to a resource r. At the cloud side, we define the
function BatchRevoke(r, Unew) to revoke a set of users not in Unew on r. When
executing Revoke(r, U), the data owner updates the access user set r.USet of r
by deleting the revoked users U from r.USet, invokes the cloud to over-encrypt
r and requires the cloud to ensure that only users in r.USet can access the new
decryption keys by executing OverEncryptResource(r, r.USet). When receives
the request, the cloud will record the freshest access user set of r and wait for
the revocation time to execute the function BatchRevoke(r, U). The data owner
can define a time period for resources to execute revocations, then the cloud
must execute revocations when the final time arrives. The data owner can also
predefine conditions to require the cloud execute re-encryption. When the cloud
needs to execute re-encryption for revoked resource r, it has to decrypt the
header of r and extract the surface content key sekold of r. If sekold is null, it
means that the body of r has not been over-encrypted by the cloud. Or the cloud
should decrypt the body of r with sekold. Finally, the cloud should encrypt the
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body of r with a new surface content key and re-encrypt the header to ensure
only the authorized users in the access user set Unew can decrypt the header of
r. The details are given in Fig. 2.

The main overhead for revocations lies in the two functions DecryptBody
and EncryptBody. For the data resources of large size, the overhead cannot be
ignored. However, batch revocation can reduce the number of cipher operations
on the resource, which will be illustrated in Sect. 5.1.

5 Analysis

5.1 Performance Analysis

In cryptographic cloud storage systems, the keys to encrypt data resources need
to be updated and re-encryption might be required in order to match the new
access control policy. However, the overhead for re-encryption could not be
ignored, especially for large amounts of data resources in the cloud. For example,
encrypting data with the size of 1 GB will consume 7.15 s by applying OpenSSL
0.9.8 k with a block size of 8 KB (AES-256, encoding rate: 143.30 MB/s) [8].
Therefore, our scheme targets at reducing the overhead for re-encryption after
the access control policy changes.

The overhead for privileges grant. The overhead for privileges grant in
our dual-header structure, always involves token retrieval and key derivation,
reading data from the disk and encryption/decryption. At the client side, the
dominant computation overhead is the retrieval of tokens and key derivation to
distribute keys to the new authorized users when new privileges are granted.
At the cloud side, the cloud servers have to find the key of related resources by
retrieving tokens and deriving keys, read the related resources from the disk and
re-encrypt them.

According to the performance evaluations of over-encryption in the extension
work [1], the time for retrieving tokens, independent of resource size, is much
lower than that for downloading and decrypting large data resources. However,
the time required to transfer and decrypt the resource in [1], dominates in the
overhead for authorization on resources of size larger than 1 MB in its local
network configuration. The time also grows linearly with the increase in the
resource size. Although the cloud does not transfer data resources back to the
client, the cloud is required to read the resource from the disk, re-encrypt it and
sometimes might transfer re-encryption request among different cloud servers
with replicas. Therefore, reading data from the disk, decrypting and encrypting
data dominate in the overhead for access control policy updates. As the time for
reading data from the disk, decrypting and encrypting data is proportional to
the size of data resources, our approach that operating on small (about KB level)
header rather than operating on data content (perhaps MB/GB/TB level), has
significant benefits in reducing the overhead.

The overhead for revocation. We find that the number of operations of
cloud servers on data resources is different between revoking a group of users
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Table 4. Comparison of the number of operations on data resource content

Example–Access policy updates :{A,B,C,D,E,F} can read r −→ {A,E, F} can read r

Re-encrypt the header or the body of r with a new surface key: KU , U is the access user
set of r

Function Main operations

Revoking one by one Revoke(B, r) Read(r)

Decrypt(r,KABCDEF )

Encrypt(r,KACDEF )

Revoke(C, r) Read(r)

Decrypt(r,KACDEF )

Encrypt(r,KADEF )

Revoke(D, r) Read(r)

Decrypt(r,KADEF )

Encrypt(r,KAEF )

Batch revocation Revoke({B,C,D}, r) Read(r)

Decrypt(r,KABCDEF )

Encrypt(r,KAEF )

on a resource one by one and batching the revocations of the group of users
on the resource. This is due to data resources with the same ACL encrypted
with the same keys. We assume the header or the body of a data resource r is
encrypted with a key KABCDEF at the surface encryption layer by the cloud,
which means it can be read by a set of users {A,B,C,D,E,F} and now r just
can be accessed by {A,E,F} after a series of revocations. We give a comparison
between revoking {B,C,D} one by one and batching these revocations in Table 4.
We can see that a reduction in the number of repetitive operations on the data
resource by applying batch revocations. It can significantly lower much overhead
for transmission and cipher operations, especially for the data resource of large
size when re-encrypting the content in the body.

5.2 Security Analysis

Access control of sensitive data in our scheme is implemented by reasonably
distributing keys of the two encryption layer (BEL and SEL). In the “Honest-
but-Curious” model, protecting sensitive data against both unauthorized visitors
and the cloud is difficult to implement when re-encryption for the update of
access control policy relies on the cloud. Therefore, the security of our scheme
lies in the distribution of the cryptographic keys over the two levels, which is
executed by the data owner and the cloud provider by appropriately publishing
public tokens to construct derivation paths.

In order to prevent sensitive data from unauthorized access, data resources
are firstly encrypted with the data content key at the base encryption layer
enforced by data owners. Adversaries must obtain the keys (data content key
and base head key) of the base encryption layer in order to obtain the plaintext
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of the data resource. As the data content key in the header is encrypted with the
base head key, only with the base head key can the adversary decrypt the data
content in the base encryption layer. In fact, the base head key in our approach
is equal to the key at the BEL of over-encryption.

We adopt the cloud to protect the base head key of the header at the surface
encryption layer. In fact, unauthorized users might obtain the base head key in
our scheme. For example, a revoked user might locally maintain the base head
key of the revoked resource; a newly granted user might acquire the base head
key of the resource ri unintendedly, when the user is authorized to access the
resource rj , which is encrypted with the same base head key of ri. However,
unauthorized users who have got the base head key cannot decrypt the data
content because the cloud consolidates the defensive barrier. For those with just
the base head key, the cloud encrypts the pre-encrypted data content key in the
header with the surface head key. Adversaries cannot get the data content key
without the surface head key generated by the cloud. For those who have got
both the base head key and the data content key generated by the data owner
(revoked users), the cloud encapsulates the data content by encrypting it with
surface content key, and the surface content key is also protected by the surface
head key. Adversaries cannot decrypt the data content without the surface head
key. The surface head key is equal to the key to over-encrypt the pre-encrypted
data content in the SEL of over-encryption.

Therefore, the security of our scheme lies in protecting the surface head key
and the base head key, which equals to protecting keys at both the BEL and the
SEL of over-encryption. The analysis of the related collusion attack by the cloud
and the unauthorized users who have obtained the keys of the base encryption
layer can be referred to over-encryption [4].

6 Related Work

In order to protect shared sensitive data from unauthorized access in incom-
pletely trusted servers, shared cryptographic file systems which implement access
control have obtained considerable development. SiRiUS [9] and Plutus [7] are
earlier file systems, which adopt cryptographic techniques to implement access
control. SiRiUS encrypts each data file and divides each file into a meta data file
and an encrypted data content file, but the size of meta data file is proportional
to the number of authorized users. Plutus groups different files and divides each
file into multiple file blocks. Each file group uses a file lock box key and each
file block is encrypted with a unique key. However, as different file groups attach
different file lock box keys, maintaining multiple keys for a user is inadvisable.

Attribute-based encryption (ABE) which was first proposed in [10], is another
branch to share sensitive data in the cloud environment without maintaining
keys for each file or each file group. ABE is now widely researched in cloud
computing to protect sensitive data [11–13]. Shucheng Yu presents a fine-grained
data access control scheme in cloud computing [11], which combines ABE, proxy
re-encryption [14,15] and lazy encryption. It supports policy update. However,
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it cannot update a user’ s privilege on a certain specific file, and revoking of
users requires updating all the associated attributes and notifying the users who
also maintain keys of the related attributes. Our approach just updates the key
of the revoked resource.

Over-encryption [1,4] protects the shared sensitive data in “Honest-but-
Curious” cloud and implements access control policy updates. Its architecture
of access control is based on a key-derivation structure in [16], which is also
adopted by [17–19]. In the key-derivation structure, a user just needs to main-
tain private keys to derive all the keys of the authorized resources. In the previous
work of over-encryption, both granting and revoking need encrypt the related
resources. This consumes a lot of resources and time, especially for those data
of GB/TB/PB size.

To reduce the overhead of revocations, lazy revocation proposed inCepheus [20]
is widely adopted by existing cryptographic file systems [21]. Lazy re-encryption
at the price of slightly lowered security [22] delays required re-encryptions until
the next write access. Because it brings in much overhead for revocations (reading
disc, decrypting data and encrypting data), we apply batch revocation combining
lazy revocation, which reduces the overhead and improves the performance of the
cloud storage service.

7 Conclusions

With the explosive growth of data, the outsourced data scale in the cloud will
increase and be enlarged. However, security is the main obstacle in the way
of outsourcing data to “Honest-but-Curious” cloud. Encrypting the outsourced
data before uploading them to the cloud is a widely researched solution, but
it brings new challenges to update the access control policy in order to share
data. On the premise of implementing fine-grained access control, our scheme
can achieve efficient updating of the access control policy in cryptographic cloud
storage. The performance analysis shows that the proposed dual-header structure
and batch revocation can significantly minimize the overhead for authorization.
However, the collusion attack, launched by the cloud and the unauthorized users
who have obtained keys of the base encryption layer, still cannot be solved in this
paper. In order to alleviate the possibility of this collusion attack, dispersing data
resources among multiple clouds and applying secret sharing techniques might
be a selectable solution, which might be our next work. As the re-encryption on
revoked resources is inevitable in almost all the cryptographic storage systems,
efficient re-encryption on large data resource is also our next research direction.
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