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Abstract. We investigate the problem of creating complex software
obfuscation for mobile applications. We construct complex software obfus-
cation from sequentially applying simple software obfuscation methods.
We define several desirable and undesirable properties of such transforma-
tions, including idempotency and monotonicity. We empirically evaluate a
set of 7 obfuscation methods on 240 Android Packages (APKs). We show
that many obfuscation methods are idempotent or monotonous.
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1 Introduction

Software obfuscation is a common tool to protect software from reverse engineer-
ing, and it is particularly relevant for architectures that execute bytecode because
bytecode is much easier to decompile (and therefore to reverse engineer) than
native machine code. The Android platform is a prominent and practically rele-
vant example of such an environment. In Android, applications (or “apps”) are
shipped in the Android Package format. An Android Package (APK) contains
dex bytecode for which it is rather easy to reconstruct the original Java source
code using decompilers. There are multiple software obfuscation frameworks for
Java in general (such as Sandmark [9]) and Android in particular (such as Pro-
Guard [15]). In this paper, we focus on Pandora [19], an obfuscation framework
that contains a representative selection of obfuscating transformations specifi-
cally for Android. Pandora is based on the Soot framework [20] which is a Java
optimization tool working on source code. Therefore, Pandora has to trans-
form the dex file into a Java archive (jar) file, then applies obfuscation and
finally tansforms the resulting program back into a dex file again.

Intuitively, software obfuscation transforms a program in such a way such that

– the original program semantics are preserved (maybe with a negligible delay
in performance) and

– the resulting program is harder to understand as the original one.
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The problem of theoretical and practical definitions is to capture what it means
for a program to be “harder to understand”. While there exist some obfuscation
methods that are provably hard to reverse [3,21], the general understanding
is that strong obfuscation for general programs is impossible (for reasonable
definitions of “strong”) [1]. Despite theoretical advances of the field [13,14], we
must therefore continue to approximate the strength of practical obfuscation
methods empirically.

Most practical methods are designed with an “idea” in mind of why the
resulting program is harder to understand, but for most techniques there is no
empirical evaluation, especially in comparison to other obfuscation methods.
Emirically, the hardness to understand a piece of code can only be checked
by human experiment [4] or (as an approximation) by using specific software
complexity/quality metrics. In this paper, we focus on software obfuscation for
the Android platform and empirically evaluate the obfuscation techniques of
Pandora [19].

The research question we investigate in this paper is the following: Consid-
ering the basic obfuscation techniques of Pandora, does obfuscation improve
if we apply the same obfuscation technique multiple times? Since obfuscation
methods are usually applied only once to a piece of code this might appear as a
strange and unusual question. However, our aim is not primarily to build better
obfuscation techniques but rather to understand the behavior of existing tech-
niques better. Rephrasing the question, we ask: What are the characteristics of
software if obfuscation methods are reused?

To answer our questions empirically, we have built an Android software obfus-
cation framework that allows us to automate the task of obfuscation and software
complexity measurement. In designing this framework, we formalized the prob-
lem of building complex obfuscation methods from simpler ones. This allowed
us to identify a set of desirable properties which practical program transforma-
tions should satisfy and to classify the investigated obfuscation techniques in
this respect.

In this paper we make the following contributions:

1. We formally define what it means to apply a sequence of obfuscation methods
to a program and identify desirable and undesirable structural properties. For
example, we identify idempotency and monotony as desirable properties of
obfuscation functions.

2. We empirically evaluate 7 obfuscation methods with respect to 8 software
complexity metrics on a set of 240 Android Packages (APKs). Following our
research question, we restrict our investigation to properties inherent to a
single obfuscation function, i.e., we only investigate iterative applications of
the same obfuscation methods to a given program.

3. We show that most obfuscation methods exhibit “stable” properties when
used iteratively, i.e., they are idempotent or monotonous. However, a single
obfuscation method usually exhibits different stable properties with respect to
different complexity metric, i.e., it might be idempotent regarding one metric
and monotonous regarding a second metric.



Empirical Evaluation of Software Obfuscation 317

Related Work. According to Collberg and Nagra [7], to measure the strength of
practical obfuscation techniques, a definition is required that allows to compare
the potency of two transformations. Preda and Giacobazzi [10], for example,
give a definition that classifies a transformation as potent when there exists a
property that is not preserved by the transformation. Of course, some prop-
erties of a program must be preserved since the obfuscated program should
compute the same functionality. In practice, however, the definition of Preda
and Giacobazzi [10] only allows to compare simple transformations in isolated
environments. To compare the strength of two obfuscated real-world programs,
their framework cannot be applied.

Seminal work of Collberg et al. [8] surveyed different obfuscation techniques
and classified them mainly into three categories: data obfuscations, control obfus-
cations, and layout obfuscations. They also investigated the effect of single obfus-
cation steps on different software metrics and even proposed a Java obfuscation
framework (named Kava [8, Sect. 3]) designed to systematically obfuscate a pro-
gram such that certain quality criteria are satisfied. We are, however, not aware
of any empirical evaluation of the framework.

Outline. This paper is structured as follows: We first give some background in
Sect. 2. We then define desirable properties of obfuscation functions in Sect. 3.
After giving an overview of our obfuscation framework in Sect. 4 we provide the
results and a discussion in Sect. 5. Section 6 concludes the paper.

2 A Brief Tour of the Obfuscation and Metric Zoo

This section provides a brief overview of the obfuscation techniques and the
software complexity metrics we used in our evaluation. Where appropriate, we
give an akronym as a shorthand in the later discussion.

Obfuscation Methods. In total, we considered 10 obfuscation techniques that
were available in the Pandora obfuscation tool [19] for Android. These tech-
niques represent a broad selection of specialized and general obfuscation meth-
ods. They can be classified into 4 transformations at the method level and 6
transformation at the class level.

At the method level, we considered the following techniques:

– Array index shift obfuscates the use of the arrays by shifting the indices with
a constant shift value.

– Compose locals groups the method’s local variables of the same type and
composes them to a single container variable, such as array or map. For the
latter one random keys of the types string, character or integer are used.

At the class level, we considered the following obfuscation methods:

– Drop modifiers is one of the most simple transformations: It discards the
access-restricting modifiers like private, protected, or final for classes,
methods, and fields.
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– Extract methods “outlines” the bodies of the methods, the signatures of which
cannot be changed due to restrictions laid down by the application design, e.g.,
methods called in response to the system and user events, like the onCreate
of the Android Activity class.

– Move fields changes the hosting class of the field and replaces all accesses cor-
respondingly. Note that for non-static fields a reference object to the new host
class is required. Such objects are created and initialized in each constructor
of the class.

– In analogy to move field, move methods moves a method from one class to
another. If the method makes use of the implicit this parameter, it must be
added to the explicit parameter list of the method.

– Merge methods replaces two methods of the same class and the same return
type with a single method. It interleaves both parameter lists and the bodies
of the methods. Furthermore, an additional key parameter is added in order
to differentiate which of the bodies is to be executed at runtime.

Software Complexity Metrics. The set of software complexity metrics used in our
evaluation contains measurements of the control flow complexity and data flow
complexity of the methods, as well as the usual object-oriented design (OOD)
metrics suite. We now give a very brief description of these metrics.

At the method level, we used two metrics to measure the complexity of the
control flow and data flow: McCabe’s Cyclomatic Complexity and Dependency
Degree, respectively. Cyclomatic Complexity [16] of the method corresponds to
the number of the linearly independent circuits in the control flow graph (CFG).
It can be computed as v = e−n+p, with e, n, and p being the number of edges,
nodes, and connected components of the CFG respectively.

The Dependency Degree metric (abbreviated as DepDegree), proposed by
Bayer and Fararooy [2], is defined with help of the dependency graph, which is
constructed for the given CFG as follows. The nodes correspond to the instruc-
tions of the method, and the edges reflect the dependencies between them. One
instruction is said to depend on the another if it uses some values defined by
that instruction. Then, the Dependency Degree of the method is defined as the
number of edges in the corresponding dependency graph.

The measurement of OOD complexity is performed with a suite containing
6 metrics by Chidamber and Kemerer [5]. These metrics measure complexity on
the class level:

– Weighted Methods pro Class (WMC): the number of the methods defined in
a class.

– Depth of Inheritance Tree (DIT): the number of classes along the path from
the given class to the root in the inheritance tree.

– Number of Children (NOC): the number of direct subclasses.
– Coupling Between the Object classes (CBO): the number of coupled classes.

Here, two classes are considered coupled, if one of them uses methods or
instance variables of the other one.

– Response Set for a Class (RFC): the number of declared methods plus the
number of methods the declared ones call.
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– Lack of Cohesion in Methods (LCOM): Given a class C declaring methods
M1,M2, ...,Mn and a set of instance variables used by the method Mj denoted
as Ij , define P = {(Ii, Ij)|Ii

⋂
Ij = ∅} and Q = {(Ii, Ij)|Ii

⋂
Ij �= ∅}. Then

LCOM = max{|P | − |Q|, 0}.

3 Obfuscation as a Function

In this section, we formally define what it means to apply a sequence of obfus-
cation methods to a program and identify desirable and undesirable structural
properties.

(Complex) Obfuscation Methods. We consider a finite set of obfuscation methods
Ω = {ω1, ω2, . . .}. Each such method is defined as a program transformation for
a particular domain. Let P denote the set of all programs from that domain
(e.g., all programs written in C). Then formally, every ωi is defined as a function

ωi : P �→ P

such that ωi(p) computes the same functionality as p without being exponentially
slower or larger than p.

A complex obfuscation method can be defined by applying first a specific
simple obfuscation method ωi and then another simple obfuscation method ωj .
From the perspective of obfuscation as a function this is the composition of
functions, i.e., ωj(ωi(p)).

We now define what it means to apply a sequence of obfuscation methods
from Ω to a program. We denote by Ω+ the set of all finite sequences of elements
of Ω (including the empty sequence). An example sequence is 〈ω1, ω2, ω1〉. For
two sequences α, β ∈ Ω+ we denote by α · β the concatenation of α and β and
by α � β that α is a strict (i.e., shorter) prefix of β.

We now define a general notion of obfuscator composition O that uses individ-
ual methods from Ω to create new (and possibly better) variants of obfuscation
methods.

Definition 1. Complex obfuscator composition is a function O : P × Ω+ �→ P
that satisfies the following conditions for all p ∈ P:

1. O(p, 〈〉) = p
2. For all α ∈ Ω+: O(p, α · ω) = O(ω(p), α)

As an example, let α = 〈ω1, ω2, ω1, ω3〉. Then we have:

O(p, α) = ω1(ω2(ω1(ω3(p))))

Properties. We now define a set of properties that complex obfuscation meth-
ods can satisfy. These properties sometimes refer to software metrics such
as those defined in Sect. 2. We formalize them as a finite set of functions
M = {m1,m2, . . .}. Each metric is a function that takes a program and maps
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to into a totally ordered metrical space like the natural numbers. A simple com-
plexity metric is lines of code for which the metrical space is the set of natural
numbers and the ordering relation is ≤.

The first property of idempotency refers to the effect of an individual obfus-
cation function and intuitively states that applying the function more than once
does not improve the obfuscation result regarding a particular metric.

Definition 2. An obfuscation function ω is idempotent with respect to metric
m ∈ M iff for all p ∈ P holds that m(ω(ω(p))) = m(ω(p)).

Note that some obfuscation methods such as drop modifiers are idempotent
for all metrics since they satisfy the stronger property of ω(ω(p)) = ω(p). We
call such methods simply idempotent. An obviously non-idempotent method is
extract methods, since it creates a new methods with every invocation.

We now define an additional property of obfuscation functions: monotony.
Intuitively, monotonous obfuscation functions continuously increase (or
decrease) the value of the considered metrics. Obviously, all idempotent obfusca-
tors are monotonous. For non-monotonous obfuscators, there are metrics which
are unstable, i.e., which rise and later decrease or vice versa.

Definition 3. An obfuscation function ω is monotonous with respect to metric
m ∈ M iff the following holds: Let α and β be sequences of ω: If α � β then
m(O(p, α)) ≤ m(O(p, β)), where ≤ is the order on the metrical space of m.

While idempotency is rather easy to understand, monotony is more complex
since the effect of an obfuscation method on a particular metric is not always
clear. In general, we believe that “good” obfuscation methods should be either
idempotent or at least monotonous for most metrics considered. Idempotency is
a good property because it makes an obfuscation method easy to apply and it
facilitates control of its effects. Monotony is positive, because it corresponds to
the expectation that obfuscation methods make analysis (increasingly) “harder”.

We will evaluate the obfuscation methods presented in Sect. 2 and show that
most of them satisfy these desirable properties.

4 An Android Obfuscation Framework

We have designed and implemented a framework with which we can automatically
apply and evaluate complex obfuscation methods composition to Android APKs.
The structure of the framework is depicted in Fig. 1. The framework is based on
three modules which we use to apply and evaluate obfuscation methods:1

1. Pandora [19] is an Android obfuscation tool that implements the obfuscation
techniques introduced in Sect. 2. It operates on jar files that are the main
ingredient of APKs.

1 Although we rely heavily on Pandora, please note that our framework does not
implement any obfuscation methods or metrics itself and can be extended with other
obfuscation tools (such as Sandmark) later. It therefore is rather a “meta framework”.



Empirical Evaluation of Software Obfuscation 321

2. SSM, a supplementary function to Pandora [19], is a measurement tool for
computing the different software complexity metrics mentioned in Sect. 2.
SSM computes these metrics on every class and method in a jar file.

3. Androsim [18] is a tool written in Python for measuring the similarity between
APKs. It is part of the Androguard APK analysis toolset [11]. The basis for
similarity measurement is the compression distance between different APKs.
To compute this distance, APKs are compiled into an intermediate repre-
sentation focusing much on the control flow and abstracting from identifier
names. The resulting strings of the two APKs are then compared by com-
puting the normalized compression distance (NCD) [6]. We use the resulting
value as a reference value for the SSM metrics.

We now explain how APKs are processed in our framework. The starting
point is a set of APKs stored in the file system of our analysis machine (top of
Fig. 1). The APK is transformed into a jar file that is subsequently processed
by Pandora. The resulting jar file, which is a obfuscated version of the original
jar file, goes through the post-processing section (e.g., it is checked whether it
contains valid JVM code using the jasmin tool [17]). To distinguish both files in
the file system, we append the name of the applied obfuscation method to the
original filename of the jar file (∗ ω.jar, where ω is an identifier of the obfuscation
method record in our database). After that, the jar file is turned into a dex file
and compressed into an Android package which is again stored in the file system.
In the meantime, we use Androsim and SSM to compare and compute different
metrics on the original and transformed jar files and APKs (see Fig. 1). All the
generated data is inserted into a database.

The above processing refers to one step of the complex obfuscation compo-
sition of Definition 1. To apply multiple obfuscation techniques in sequence, the
framework will perform the same iteration with another obfuscation techniques
to the same APK. The selection of the input files as well as the iteration and

*.apk

*.jar

Pandora

Post-
Process

* ω.jar

* ω.apk

AndrosimSSM
File

System

Fig. 1. Structure of the Android Obfuscation Framework.
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type of obfuscation techniques applied on the APKs are totally automated using
Python.

5 Results

We applied the obfuscation transformations described in Sect. 2 to 240 APKs
which we randomly selected from a set of more than 1000 APKs which we
downloaded from the open source Android application market F-Droid [12].
With more time we would have chosen more APKs for the computation of our
results but we consider 240 a large enough set such that our results have some
significance.

Idempotent Transformations. As introductory example for a clearly idempotent
transformation, we show two metrics (CBO and LCOM) of drop modifiers in

Fig. 2. CBO and LCOM measurements of drop modifiers (Color figure online).
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Fig. 2. In these (and the following) graphs, the horizontal axis denotes the num-
ber of transformation iterations and the vertical axis denotes the percentage of
the original APK’s complexity or similarity. The red and green lines correspond
to the given complexity metric and the similarity measured with Androsim,

Fig. 3. Selection of OOD metrics for compose locals (left) and array index shift (right).
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Fig. 4. Cyclomatic complexity, DepDegree and LOC metrics for compose locals (left)
and array index shift (right).

respectively. The values of similarity serve the reference purposes and indicate
the overall change of the program structure caused by obfuscation.2

Transformations applied on the intraprocedural level, namely compose locals
and array index shift, are as expected idempotent with respect to all OOD
metrics. Move fields is idempotent for all metrics. Move methods exhibits idem-
potency for cyclomatic complexity and WMC, since it neither changes the code
of the methods nor their overall number.

Transformations applied on the intraprocedural level, namely compose locals
and array index shift, are as expected idempotent with respect to all OOD
metrics. This can be seen in Fig. 3.
2 In the following figures, we have scaled down the graphs to improve the visual

“overview” impression with multiple graphs on one page. The caption repeats the
method and metric for readability.
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Fig. 5. RFC, CBO, DepDegree and LOC metrics for move methods.

Monotonous Transformations. Many of the evaluated obfuscation transforma-
tions were found to be monotonous, i.e., their continuous application keeps
increasing some of the complexity metrics. In particular, the method-level obfus-
cations compose locals and array index shift are monotonous for the method-level
metrics Cyclomatic complexity, DepDegree and LOC (shown in Fig. 4). For com-
pose locals the complexity growth was superlinear for all three metrics, whereas
array index shift shows very slow linear increase reaching less than 101 % of the
original complexity after 8 transformations.

Move methods is monotonous for the OOD metrics RFC and CBO as well
as DepDegree and LOC (in Fig. 5). As mentioned earlier, with respect to the
cyclomatic complexity this transformation is idempotent. This is because moving
non-static methods requires a reference object to the target class, which is stored
in the class field and copied to the local variable before the method invocation.
Since this does not add any branches, cyclomatic complexity stays unchanged,
however, new instructions and variables are added, which increases the other
two method-level metrics.

Merge methods is monotonous with respect to DepDegree and LOC: It adds
new instructions and operations on variables. However, allthough it adds an
additional branch per merge operation, the cyclomatic complexity (shown in
Fig. 6) remains constant, since the number of circuits in the merged code equals
the sum of the circuits of the merged methods.

Unstable Transformations. Some of the obfuscation transformations did not
fit the definitions of monotonicity or idempotency for certain metrics. These
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Fig. 6. Merge methods: measurements for metrics LOC (left) and Cyclomatic complex-
ity (right).

Fig. 7. A comparison of LCOM for move methods (left) and merge methods (right).

unstable transformations are particularly interesting. One example is merge
methods which exhibits monotonicity and idempotency for CBO and DepDe-
gree, respectively, but is unstable in WMC, RFC, and LCOM (see Fig. 7, right).
Move methods showed interesting unstable behavior with respect to the LCOM
too: After decreasing within the first 3 obfuscation runs, LCOM increases again
(see Fig. 7, left). The key to understanding of this phenomenon lies in the ran-
dom application of the transfomation and the nature of the metric: Recall that
LCOM increases with the number of class methods operating on different sets of
instance variables and decreases with the number of those operating on the inter-
secting sets of instance variables. Since the movement process of move methods
is randomized, a repeated application of the transfomation can result in both
more and less cohesive method layouts, therefore decreasing or increasing the
metric.

6 Conclusions and Future Work

In this paper, we experimentally evaluated obfuscation methods when they are
applied iteratively and we defined and revealed some structural properties of
these methods regarding different software complexity metrics. While the results
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are interesting and show that most obfuscation methods we have used exhibit
rather “stable” properties, the general picture is rather complex since a single
obfuscation method usually exhibits different properties (i.e., monotonicity or
idempotency) regarding different complexity metrics. Interestingly, a few obfus-
cation methods have unstable properties regarding some of the metrics.

More experiments are needed to understand this behavior better. A more
thorough understanding of the behavior of obfuscation methods is the basis for a
more intelligent application of these methods in practice. For example, following
an idea of Collberg et al. [8], a detailed understanding of the effects of certain
obfuscation methods on complexity metrics would allow to transform programs
in such a way that specific “target” complexity requirements are reached with
a minimum number of obfuscation steps. Our obfuscation framework is a good
basis for such investigations.
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