Blind Format String Attacks

Fatih Kilic®), Thomas Kittel, and Claudia Eckert

Technische Universitat Miinchen, Miinchen, Germany
{kilic,kittel,eckert}@sec.in.tum.de

Abstract. Although Format String Attacks (FSAs) are known for many
years there is still a number of applications that have been found to be
vulnerable to such attacks in the recent years. According to the CVE
database, the number of FSA vulnerabilities is stable over the last 5
years, even as FSA vulnerabilities are assumingly easy to detect. Thus
we can assume, that this type of bugs will still be present in future. Cur-
rent compiler-based or system-based protection mechanisms are helping
to restrict the exploitation this kind of vulnerabilities, but are insufficient
to circumvent an attack in all cases.

Currently FSAs are mainly used to leak information such as pointer
addresses to circumvent protection mechanisms like Address Space Lay-
out Randomization (ASLR). So current attacks are also interested in the
output of the format string. In this paper we present a novel method for
attacking format string vulnerabilities in a blind manner. Our method
does not require any memory leakage or output to the attacker. In addi-
tion, we show a way to exploit format string vulnerabilities on the heap,
where we can not benefit from direct destination control, i.e. we can not
place arbitrary addresses onto the stack, as is possible in stack-based
format string.

Keywords: Security - Format string attacks

1 Introduction

Format string vulnerabilities are known for many years and are assumed to be
easy to detect. But unfortunately there still exist applications, that are vulner-
able to this kind of attack. According to the CVE database [17], the number of
vulnerabilities that can be classified as format string vulnerability has decreased
in the last 10 years. Over the course of the last 5 years, however, it appears to
stay on a constant level.

These was, for example, a severe format string flaw in sudo versions 1.8.0
through 1.8.3pl which was found in the sudo_debug() function (CVE-2012-
0809). In Linux kernel through 3.9.4 existed a bug which allowed an attacker to
gain privilege rights, which could be exploited by using format strings in device
names (CVE-2013-2851). There also existed an exploitable format string bug in
the Linux kernel before 3.8.4 in the function ext3_msg() which could be used to
get higher privileges or crash the system (CVE-2013-1848). Therefore, we can
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015

J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 301-314, 2015.
DOI: 10.1007/978-3-319-23802-9_23

302 F. Kilic et al.

Table 1. Number of format string attacks in the last five years

Year 2009 | 2010 | 2011 | 2012 | 2013
Number | 26 14 9 18 14

assume, that format string bugs will still be present in the future. Table1 lists
the number of registered format strings vulnerabilities over the last 5 years.

Since the first methods for a FSA were released, system wide protection
mechanisms like Non Executable Bit (NX) and ASLR are implemented in many
operating systems. Also compiler-based protections like stack-cookies and FOR-
TIFY_SOURCE should protect from binary exploitation. All these protection
mechanisms make exploitation more difficult nowadays. Nevertheless, Planet [13]
has shown that FORTIFY_SOURCE can be circumvented and Payer et al. [12]
have shown, that NX can also be bypassed.

All generic exploiting techniques shown in the past are relying on two mature
constraints. First, the input buffer that is used by the attacker has to be placed
on the stack, and secondly, the attacker requires knowledge about the output of
the format string. In this paper, we instead assume, that the attacker is blind
regarding to the output of the application. He will not receive any memory
leakage by the exploited application. In addition, we also show that with our
technique, the attackers payload may also be located on heap, instead of the
stack.

In this paper we make the following contributions:

— We introduce a novel mechanism that enables an attacker to write to arbitrary
memory locations using an FSA without the requirement to place the format
string onto the stack.

— We describe a technique to redirect the control flow of an FSA vulnerable
function in a blind fashion.

— We describe a Proof Of Concept (POC) implementation of our attack con-
ducted with enabled protection mechanisms.

The rest of this work is structured as follows: First we introduce related work
and various protection mechanisms in Sect. 2 and thereby motivate that format
strings are still an issue in modern systems. Secondly, we describe the classical
version of format string attacks in Sect.3. We continue by showing our novel
method to exploit format string attacks even without receiving any output in
Sect.4. In Sect.5 we then present a POC that is able to use our method to
execute arbitrary code on the victims machine. Finally we conclude our work in
Sect. 6.

2 Related Work

The topic of FSAs is already known in the academic world for over a decade.
The basic concept was first introduced by Newsham back in the year 2000 [11].

Blind Format String Attacks 303

The concept was then extended and described in more detail in 2001 by Teso [14].
The attack has been enhanced by Haas [9] and Planet [13] in 2010. Haas is
showing, that the memory leak of a format string can be used to calculate all
relevant memory address to build the exploit string without any bruteforce,
whereas Planet is showing a way to bypass the FORTIFY_SOURCE protection using
format string attacks. We will describe the basic concepts of these attacks in
the next section. In the recent years, however, this topic gained less interest.
Payer et al. [12], recently describes a method for applying both Return Oriented
Programming (ROP) [15] and Jump Oriented Programming (JOP) [5] to for-
mat string attacks described by Haas and Planet and also discusses different
protection mechanisms.

We now describe protection mechanisms that have been established to miti-
gate memory write attacks. We hereby differ between two classes of protections
mechanisms: Compiler-based and system-based protections. A commonly used
compiler-based defense mechanism against control flow violations are stack cook-
ies. The basic idea behind stack cookies is, that, in order to overwrite the return
address of a function, a user has to overflow a buffer on the stack and thus
overwrite everything between this buffer and the return address. If the compiler
places a stack cookie between the buffer and the return address, the attacker also
has to overwrite this cookie. As an attacker is unable to know the content of this
cookie in advance, it is possible to detect the modification of the return address,
if the cookie was overwritten by an attacker. This cookie can be circumvented
by FSAs easily, because the place to be written can be directly controlled by
the attacker. Another compiler-based protection mechanism is the compiler flag
RELocation Read-Only (RELRO). This mechanism is resolving all addresses at
the beginning and mapping the Global Offset Table (GOT) read-only, so an
attacker cannot overwrite the function pointer and redirect the control flow.

A further mechanism that specifically protects against a FSA is using the
FORTIFY_SOURCE option at compile time. The idea behind FORTIFY_SOURCE is
to check the source code for the usage of certain insecure functions. These
are common functions (e.g. strcpy) that use a given buffer and expect it to
be delimited by a null terminator, which is not always the case. If the com-
piler detects the usage of such an insecure function (like strcpy), it tries to
identify the size of the destination buffer and replaces the vulnerable function
with a more secure function. A call to the printf function is replaced with
a more secure function, so that the compiled program can handle a possible
attack at runtime. If an attacker, for example, tries to use the %n parame-
ter in a format string, the program will crash. Although this is a good idea,
Planet has shown that this protection can be circumvented by overwriting the
IO_FLAGS2_FORTIFY bit in the file stream by controlling the nargs value in
the format string [13]. Another compiler-based protection is pointer encryption.
This technique is used to encrypt instruction pointers with a simple encryption
function which is not known by the attacker and thus prevents a pointer manip-
ulation by the attacker [7]. This approach is thereby somehow similar to the
stack-cookie approach. Although even if the algorithm uses XOR the attacker

304 F. Kilic et al.

can easily find the key if he knows a pair of plain and encrypted text. Further-
more, instruction set randomization uses the same idea in which the attacker
does not know the instruction set [8].

After we now described some compiler-based approaches, we now look at
common system-based mitigation approaches. One approach is ALSR. ALSR
randomizes the memory addresses of both the executed code as well as the stack.
Unfortunately, it only randomizes the prefix of entire pages, thus in case of 4K
pages (which is common on the intel architecture), the last 12 bits of an address
are not randomized. On modern systems we also see more randomization added
to some mappings. They extend it to 20 bits and therefore only the last 4 bits
are not randomized. This does not ensure security in 32 bit systems because the
address can still be bruteforced. The reason for this is the limited number of
randomized bits [1,3,4,10,16]. Another system-based protection mechanism is
NX or Data Execution Prevention (DEP). Its goal is to hinder the execution of
code that is located on a page that is supposed to contain data. Thus it hinders
an attacker to prepare, for example his shellcode on the stack or heap.

Libsafe is a library which which can be used to protect against overwriting
the stack at run-time. Equal to FORTIFY_SOURCE it replaces vulnerable functions
like *printf () with secure versions. If there is an possible attack the library
will kill the process and log the event. The disadvantage of this approach is that
it works only for limited amount of functions [2].

FormatGuard is a patch for glibc which counts the arguments which are given
to the printf function at run-time and compares it to the number of format spec-
ifiers (%). If the format string uses for more arguments then the actual number
of printf arguments then a attack is assumed and the program will be termi-
nated. To use this protection the programmer has to re-compile the program
with FormatGuard. A problem with this approach is that it can only detect if
the number of specifiers is changing but not if the variables are reordered. This
kind of attack can not be recognized by FormatGuard [6].

3 Classical Attack

To give the reader a background in the topic of this work, we now describe the
classical FSA attack that has evolved throughout the recent years. The classical
FSA exploits the behavior of *printf functions, which are a class of functions
that use formatting information to specify the format of the output. Since the
printf function family are variadic c-functions, the number of format specifiers
within the format strings is controlling the number of parameter which are used
by the function and are thus popped from the stack'. The most important format
specifiers for exploiting format string vulnerabilities are listed below:

%x - pop address from stack
%s - pop address and dereference
%n - write printed char count to address on stack

Ye.g. printf(“id: %d, size:%d, name: %s”id,size,name) consumes three arguments.

Blind Format String Attacks 305

%hn - write to lower 16 bits (short)
%hhn - write to lower 8 bits (byte)

A basic format string vulnerability just passes a single argument to the printf
function. This is illustrated in Line 5 of Fig.1 were a user controlled buffer is
given to the printf function as a single argument. In the classical exploit the
buffer is defined as a character array on the stack. If the buffer contains user
controlled input, an attacker can fill this buffer with arbitrary format specifiers,
as listed above, and the function will access the next immediate value on the
stack for each format identifier within the buffer. Depending on the used specifier,
different actions will be executed on the stack. The attacker can, for example,
shift the stack by using a %z operator or can dereference a memory address to
access the content that is referenced by that address by using the %s operator.
But the most important format specifier for having a generic way for exploiting
this vulnerability is the %n operator. This specifier takes an address from the top
of the stack, dereferences it and writes the total number of printed characters
into the specified location. This allows an attacker to write arbitrary values
to an arbitrary memory location, assuming that the vulnerable input buffer is
located on the stack?. The chosen address could be the address of the saved
return value, the address to an address in the GOT or an entry in the list of the
destructors (.dtors). Thereby the attacker is able to change the control flow of
the application, if she redirects such a pointer to some shellcode that she also
prepared in advance.

4 New Attack Methods

After we discussed the classical FSA in the last section, we now describe a novel
technique to apply an FSA even in an environment where the exploit string
is placed on the heap and in addition, the user has no direct control over the
stack content. Afterwards we will also describe, how it is possible to exploit this
blindly, even without any feedback by the vulnerable program.

As this paper is about describing a blind FSA, we now want to define the
term “Blind Attack”: A blind attack is a network-based attack that is executed
remotely without any local access to the attacked system. In addition, the attack
does not require the attacking entity to receive any data from the attacked
system. In the case of FSA this especially means that the output of the attacked
printf function is not available to the attacker. Nevertheless, we assume, that
the attacker is in possession of the executed binary beforehand. This is a legit
restriction because most software is custom of the shelf software, that is not self
developed and is available for the public.

2 An input to a buffer like “\z78\z4f\x9e\xbf”,“%5u”,“%10$hhn” will, for example,
write the value 0x9 to the least significant byte at the address 0xbf9ed f78, because
in this example the tenth value on the stack is containing our user input.

306 F. Kilic et al.

1 | void logfunc(char xbuf) {

2 char % pch;

3 pch = strtok (buf,"|");

4 while (pch != NULL) {

5 printf (pch);

6 pch = strtok (NULL, "|");

7 }

8 1}

9 |int parse(char xbuf, int log) {

10 if (log — ENABLELOGGING)

11 logfunc (buf);

12 * Do something using local stack variables x
13 |}

14 | int handle(clientsocket) {

15 char xbuf = (char*)malloc(SIZE);
16

17 recv(clientsocket, buf, SIZE—1, 0);
18 parse(buf ,1);

19 free(buf);

20

21 |}

22 |int func(serversocket) {

23

24 while (1) {

25 pid = fork();

26 if(pid = 0) { /* ... %/ handle(clientsock); /* ... =x
27 }

28

29 }

30

31 |}

Fig. 1. Format string vulnerability on the heap

4.1 Exploitstring on Heap

To exploit a FSA vulnerability, an attacker traditionally needs to store her attack
payload in a buffer inside the vulnerable program. In Sect. 3 we have shown how
a FSA is applied if the user input is saved on the stack. Within related work
it is assumed, that it is required, that this buffer is located on the stack of the
attacked system. This is an optimistic assumption, as is not always the case in
practice. The problem with a heap based FSA is, that the attacker can only
write to addresses which are already saved on the stack using the %n specifier.
In this case the attacker can not place the destination address of the write on
the stack to dereference it directly.

Stack-based FSAs, however, rely on user controlled input on the stack. The
attacker places the exploit string, which contains the address of the write desti-
nation, directly inside the user input buffer. This address can then be directly
accessed by the § operator or using the %z operator many times to pop all values

Blind Format String Attacks 307

from top of stack until the attacker controlled data is at the top of stack. In our
case we do not require attacker controlled input on the stack. This means only
application controlled data is referenced on the stack. We therefore assume that
there is no other input channel to place data on the stack, which would make
the exploitation easier.

4.2 Arbitrary Write

Above, we described how to write to application controlled locations by deref-
erencing the memory addresses on the stack and writing to it using the %n
specifier. Now we focus on a generic exploitation concept to achieve arbitrary
writes into application memory. The basic idea of our novel approach is to use the
saved frame pointer, which is stored on the stack once a new function is called.
If the application is not compiled with specific flags like -fomit-frame-pointer
every function will save/push the last frame pointer on the stack in the prologue
and restore it in the epilogue. We benefit from this fact because this address is
always pointing to another location in the stack, which is also writeable. There-
fore, no protection mechanisms like NX, stack cookies or ASLR will protect the
system from an attacker writing to that location. Whenever an application is
using the saved frame pointer feature, one frame pointer is pointing to the next
frame pointer like a linked list. The next frame is therefore also located on the
stack on higher addresses which can also be written to.

The goal of our mechanism is to use this list of saved frame pointers to achieve
an arbitrary write to an arbitrary location within the system. With current FSA
mechanisms we are only able to write to locations, which are already referenced
on the stack of the current application. But by leveraging the linked list property
of the saved frame pointers, we are able to modify the saved frame pointers on
the stack according to our needs and thus achieve a situation in which we are
able to write to an arbitrary location in memory. First we are using the saved
base pointer (BP) on a lower address to overwrite the value of the next saved
BP to point it to an arbitrary address like the GOT. In the second step we this
location can be written to with an arbitrary value.

4.3 Changing the Control Flow

As we now are able to write to arbitrary memory locations, we describe how
it is possible to hijack the applications control flow using an FSA. This still
requires exact knowledge about the addresses, that have to be modified in order
to control the execution flow. In the case of a blind attack, with no feedback
from the attacked application and with ASLR activated at the same time, it is
impossible to guess the exact address of our destination in advance. Entries like
GOT are mainly at constant addresses but as mentioned in Sect. 2 the compiler
flag RELRO will protect this locations from write access. In our approach we will
only write to the stack, which is always writeable, to change the execution flow
of the application. A generic way of controlling the execution flow is to overwrite
the saved instruction pointer on the stack, so that an address is getting executed

308 F. Kilic et al.

on a ret command that was chosen by an attacker. As we already described
above, the stack frames are connected with a linked list with directed pointers.
Our goal is control the pointers in a way, that we can write to arbitrary locations
on the stack.

Offset X Offset X + Y K—\
EBP > EBP > EBP EBP > @ EBP
EIP EIP EIP EIP EIP EIP
: <ARGS> <ARGS> <ARGS> <ARGS> <ARGS> <ARGS>
N
(V]
[Cookie : ’ Cookie
Cookie Cookie
Cookie Cookie
call call call call
parse() -«——— handle() -«——— func() parse() handle() func()
(a) Initial Stack configuration with three (b) In the first step, the EBP of handle()
functions. is redirected to the EBP of parse().
EIP EIP EIP EIP @ EIP
<ARGS> <ARGS> <ARGS> <ARGS> <ARGS> <ARGS>
Cookie ’ ’ Cookie
Cookie Cookie
Cookie Cookie
call call call call
parse() <«——— handle() <€——— func() parse() handle() func()

(c¢) In the second step, the EBP of (d) In the third step, the EIP of handle()
parse() is redirected to the EIP of han-is redirected to the attackers code.
dle().

Fig. 2. Sequence of overwrites to modify the return address

We will now describe our mechanism in more detail. To illustrate our mech-
anism first imagine a chain of three function calls like shown in Fig. 1. In this
example a function handle calls a vulnerable function parse which in turn for-
wards the attackers buffer to an internal log function wrapper logfunc. This
is a common scenario in both the Linux kernel and userspace applications. The
initial stack layout of this scenario is depicted in Fig. 2(a). If we consider a for-
mat string like %6%hhn, we will write to the destination of the 6th value on
the stack. The number six would be the offset in our explanation. The size is
given as multiples of the architecture size, in our case 32 bit. EBP is the saved
extended base pointer of the calling function. We do not have to care about the
stack cookie protection, but if there is a cookie it will be at the bottom of the
box, which we assume in our case as part of the frame content like the used stack
variables. As the stack is growing to lower addresses, it is possible to overwrite
the contents of the stack frames of the function handle and parse from within
the log function. The attack consists of three format string overwrites, that use
the pointers in EBP.

Blind Format String Attacks 309

Note that the linked list of saved frame pointers is corrupted by this attack.
An attacker may, nevertheless, reconstruct it after he is able to execute his
own code, if it is required. This is only the case if the function is using local
variables after the overwrite and before the return. Otherwise the application
flow is changed and the attacker succeeded.

Table 2. Overview of required overwrites.

Offset in format string | Dereferenced offset | Value written (address of)
11X X+Y X
2 X4+Y X X4+Y+1
31X X+Y+1 Address of ROP gadget

In the first overwrite, the saved EBP of the function handle (1) will be
modified to point to the saved EBP of the function parse. This is achieved by
using the offset X in the format specifier and change the content at offset X +Y
with the address of offset X. Now we can directly address the saved EBP of
parse as shown in Fig.2(b). The next overwrite then replaces the contents of
the saved EBP of parse, located at offset X (2) to the EFIP of the function
handle, located at offset X + Y + 1 by using the offset X + Y, as shown in
Fig.2(b). As a result of these first two steps an attacker generated a pointer
on the stack, that points to the return address. In the third step the attacker
overwrites this return address using offset X (3) to point to either the shellcode
or some ROP chain, that the attacker prepared in advance. This final step is
depicted in Fig. 2(c). After the vulnerable function finishes, the control flow will
switch to a sequence of instructions that was chosen by an attacker. An overview
over the conducted overwrites is given in Table 2.

4.4 Pointer Modification with ASLR Enabled

In our approach we leverage the saved frame pointer feature as it contains point-
ers that can be used during an FSA. In case the attacked system has stack ASLR
enabled, an attacker is unable to guess the address he has to write to the stack.
Unfortunately in its simple version, ASLR is not randomizing the whole address.
For example all addresses inside a page will be constant, as ASLR only random-
izes the beginning of the stack on page granularity. This means that effectively
the least significant 12 bits, we assume a page size of 4K as described in Sect. 2,
of the address will be constant and not randomized. In the case of an FSA an
attacker can benefit from this behavior as he only needs to overwrite the least
significant bytes of the frame pointer and redirect it to another frame pointer.
Thus she modifies the least significant bytes of an address that is already pointing
to the right location. Depending on the frame size the attacker has to overwrite
one or two bytes. In the case of a good alignment and a distance less than 256
Bytes, an attacker does not need to care about ASLR, because only one byte

310 F. Kilic et al.

write is required. We can only write a multiple of eight bits using the %n opera-
tor. This means that in case of a two byte overwrite, four bits of randomization
are overwritten by the FSA. In a practical exploit this is not a problem and an
attacker is able to brute force these four bytes because of two reasons. First, if
we have a network related application, each connection is transfered into its own
process. This feature can be leveraged in a way that the attacker is able to crash
the process without crashing the whole application. In case the exploit is not
successful, the attacker can simply reconnect and try again. The second reason
is, that only four bits of ASLR randomization is not a barrier for an attacker in
this case, because the value only has to be found once. Every other write will also
be at the same randomized four bytes and can thus be calculated beforehand.
Note that as the connection handler is forked for every connection the stack will
also be at the same address until the main application is restarted. In contrast
to the 12 bit ASLR randomization, some systems use 20 bits of randomization
for the stack. In this case an attacker has to bruteforce more bits, but as we
will show this case in our POC, even with 20 bits of randomization the attack
is practicable in a short time.

5 Proof of Concept

After we have introduced a novel technique to change the control flow of an
application in a blind way using an FSA, we now introduce our POC imple-
mentation. In the following we assume the attack to be conducted on a 32 bit
Linux system on the x86 architecture. In our tests we used an Ubuntu 14.10
system with the latest security patches applied. Therefore we assume that our
binary is compiled with gcc in version 4.8. As already described, our vulnerable
application consists of a networking daemon that forks a new process once it
receives a new network connection. Each connection is than handled inside the
newly created process. Our test system has the following protections activated:
ASLR for stack, heap and libraries, NX on stack and heap, and RELRO. The
stack addresses, where the BP are stored is randomized with 20 bit. After a
local analysis of the attacked binary we will get the following values for the
stack frame sizes: X = 48 Bytes and Y = 48 Bytes. This means that we will
only require a one byte write if the least significant byte (LSByte) of the saved
BP of handle() is between 0260(= X +Y) and Oz fe(= 02100 — 4). Otherwise it
has to be a two byte write. As it is the more complex case, we will only consider
the case of two byte writes and show, that this technique is feasible even with
bigger frame sizes.

First of all we will start with a simple bruteforce using three phases: In
Phase 1, we will iterate over all possible values for the LSByte and restore the
saved BP of handle(). Since the addresses on the stack are 32bit aligned, there
are only 64 possible values for the LSByte. If the value that is currently checked
does not match, we assume that the application crashes and the server socket is
closed. We can recognize this behavior once we do not get any feedback. On the
other hand we also have to take into account that not all successful tries imply a

Blind Format String Attacks 311

correct guess of the correct LSByte. value. Thus after this step there can still be
a number of false positives that we have to filter in the next step. Therefore, we
will collect all checked LSByte. values that do not crash the server immediately
in the first phase and verify them in the second phase.

In the second phase we reduce the number of possible values that we received
in the first phase by verifying the integrity of those values. In our POC we
designed four different verification tests that can be divided into two category.
In the first category we try to rewrite pointers on the stack by building a chained
list of pointers. For example, as we know the stack layout we can calculate
the relative addresses of the saved frame pointers of other frames or any other
variables within the frames and to overwrite their contents. In this case we do
not expect the application to crash. In the second category we also use those
addresses where we assume pointers on the stack and redirect the pointer chain to
point to a non mapped memory location at the end, so printf() will crash during
the memory write. After this verification process we have the exact address of
the LSByte.

The third phase is then required to obtain the value of the second byte. Thus
this phase is only needed if we have a two byte write. In this phase we are writing
to the second byte, which has 256 possible values in total. Since we now modify
the saved BP by a multiple of 4K, the probability of having false positives is
small. In our POC we did not get any false positives during our experiments.
Our attack thus requires 256 + 64 + §® connections in the worst case, which only
takes few seconds in total. As the exploit strings used in this phase are small
and can thus be executed very fast after printf() is called and the connections
can also be multi-threaded, this step can be conducted in a short time.

After having the exact LSBytes of our address, we can now calculate all
other stack addresses and build our exploit string to achieve an arbitrary write
as describe in Sect. 4.3. The stack layout of our POC is illustrated in Fig. 3, where
every column represents the stack layout in one of the described three stages of
our attack. In Stage 3, we are overwriting the saved instruction pointer of han-
dle() to return to a previously chosen destination. This destination could be the
first ROP chain. Putting the whole ROP chain into the stack would assume, that
we have enough space on the stack for all gadgets. It would also require more
space in the input buffer or many calls to printf() for many writes using the
format string vulnerability. Therefore the ROP chain should be located within
the buffer itself and the number of the written gadgets by printf() should be
small. It should only be used to switch the stack to the heap and to execute
another ROP chain. But this technique has a big constraint. Since the libc is
randomized, the non randomized gadgets are only available in the text section.
We cannot guarantee, that we can find enough gadgets in the text section, espe-
cially if the binary is small. It has been proven that the libc gadgets are turing
complete by Schacham [15], so we set our focus to use the libc gadgets here.
As our technique is based on a remote connection, the Procedure Linkage Table
(PLT) contains network related functions like send() and recv(). We are going to

3 § = false positive count * 4 (# of verification tests).

312 F. Kilic et al.

use this feature for constructing a memory leak and to extract the address of the
libc back to the attacker. The addresses of the used library functions like send()
are stored in the GOT at a constant and readable address. The call to a library
function is done inside the text segment, which is not randomized. We can either
call it by returning to the text segment or we can call it directly using the PLT
entry, which is also on constant addresses. Overwriting the return value with
send@PLT and leveraging the send function also requires that we now the value
of clientsocket, to return the information to the right client. This value could
be bruteforced, but in many cases it is stored on the stack. In our POC, for
example, the clientsocket is a parameter of the handle() function. We are using
a gadget to lift the stack to the position of clientsocket and return to send@PLT
with the arguments (clientsocket, send@GOT, 4, 0). This sends the address of
send@libc to the attacker, who in the next step is able calculate all addresses
inside the libc and build an exploit for a successful attack.

lower
addresses
SEBP of parse() SEBP of parse() Pointer to X+Y+1
SEIP of parse() SEIP of parse() SEIP of parse()
buf buf buf
SEBP of handle() Pointer to X Pointer to X
SEIP of handle() SEIP of handle() LIFT stack; RET
buf buf buf
log log log
>t SEBP of func() SEBP of func() send@PLT
SEIP of func() SEIP of func() SEIP of func()
clientsocket clientsocket clientsocket
higher
addresses send@GOT
Stage: 1 Stage: 2 Stage: 3

Fig. 3. Stacklayout for the proof of concept

6 Conclusion

In this paper we have shown, that format string attacks are still a security
issue in recent history. We proposed a new approach, which does not require a
memory leakage to exploit a format string vulnerability. Using our approach, we

Blind Format String Attacks 313

can exploit an FSA blindly without having any output channel to the attacker
or access to the local system. Our concept extends the classical FSAs to write to
arbitrary memory locations even in cases where the format string is not stored
on the stack but instead resides on the heap. We especially show that is is
possible to redirect the control flow of an application using and modifying only
pointers that are already present on the stack. We have also considered the most
known protection mechanisms like ASLR, NX, RELRO and have shown that
blind format string attacks are feasible even with activated protections.

References

11.
12.

13.
14.

15.

Homepage of the pax team. http://pax.grsecurity.net/. Accessed 15 November 2013
Baratloo, A., Singh, N., Tsai, T.K.: Transparent run-time defense against stack-
smashing attacks. In: USENIX Annual Technical Conference, General Track,
pp. 251-262 (2000)

Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach
to combat a broad range of memory error exploits. In: Proceedings of the 12th
USENIX Security Symposium, vol. 120, Washington, D.C. (2003)

Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient techniques for comprehensive pro-
tection from memory error exploits. In: Proceedings of the 14th USENIX Security
Symposium, pp. 271-286 (2005)

Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASTACCS 2011, pp. 30—40.
ACM, New York (2011)

Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier, J.:
Formatguard: automatic protection from printf format string vulnerabilities. In:
USENIX Security Symposium, vol. 91, Washington, D.C. (2001)

Cowan, C., Beattie, S., Beattie, S., Kroah-Hartman, G., Frantzen, M., Lokier, J.:
Pointguardtm: protecting pointers from buffer overflow vulnerabilities. In: USENIX
Security Symposium, vol. 91, Washington, D.C. (2001)

Gadaleta, F., Younan, Y., Jacobs, B., Joosen, W., De Neve, E., Beosier, N.:
Instruction-level countermeasures against stack-based buffer overflow attacks.
In: Proceedings of the 1st EuroSys Workshop on Virtualization Technology for
Dependable Systems, pp. 7-12. ACM (2009)

Haas, P.: Advanced format string attacks. DEFCON 18 (2010)

. Miiller, T.: Aslr smack & laugh reference. In: Seminar on Advanced Exploitation

Techniques (2008)

Newsham, T.: Format string attacks. Guardent Inc., September 2000

Payer, M., Gross, T.: String oriented programming. In: Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop, PPREW
2013. ACM (2013)

Planet, C.: A eulogy for format strings. Phrack magazine, 14(67), November 2010
Scut. Exploiting format string vulnerability. http://crypto.stanford.edu/cs155/
papers/formatstring-1.2.pdf

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS 2007, pp. 552-561. ACM, New York
(2007)

http://pax.grsecurity.net/
http://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf
http://crypto.stanford.edu/cs155/papers/formatstring-1.2.pdf

314 F. Kilic et al.

16. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security, pp. 298-307. ACM (2004)

17. The MITRE Corporation: Common vulnerabilities and exposures. https://cve.
mitre.org/data/downloads/allitems.csv

https://cve.mitre.org/data/downloads/allitems.csv
https://cve.mitre.org/data/downloads/allitems.csv

	Blind Format String Attacks
	1 Introduction
	2 Related Work
	3 Classical Attack
	4 New Attack Methods
	4.1 Exploitstring on Heap
	4.2 Arbitrary Write
	4.3 Changing the Control Flow
	4.4 Pointer Modification with ASLR Enabled

	5 Proof of Concept
	6 Conclusion
	References

