Defence Against Code Injection Attacks

Hussein Alnabulsil, Quazi Mamunl, Rafiqul Islam', and Morshed U. ChowdhuryZ(X)

! School of Computing and Mathematics, Charles Sturt University, Albury, Australia
{halnabulsi, gmamun,mislam}@csu.edu.au
2 School of Information Technology, Deakin University, Melbourne, Australia
muc@deakin.edu.au

Abstract. Code injection attacks are considered serious threats to the Internet
users. In this type of attack the attacker injects malicious codes in the user
programs to change or divert the execution flows. In this paper we explore the
contemporary defence strategies against code injection attacks (CIAs) and under-
line their limitations. To overcome these limitations, we suggest a number of
countermeasure mechanisms for protecting from CIAs. Our key idea relies on the
multiplexing technique to preserve the exact return code to ensure the integrity
of program execution trace of shell code. This technique also maintains a FIFO
(first in first out) queue to defeat the conflict state when multiple caller method
makes a call simultaneously. Finally, our technique can provide better perform-
ance, in terms of protection and speed, in some point compared to the CFI (control
flow integrity) as well as CPM (code pointer masking) techniques.

Keywords: Security - Code injection attacks - Malicious

1 Introduction

Code injection attack is a malicious activity where a malware code placed by hacker in
the memory of a system either to cause damage on the system, spy on the user, or to
steal user’s information. An attacker tries to take the control of the program flow using
code injection attacks by changing the return address of shell code. An example of code
injection attacks is the stack-based buffer overflow, which overwrites the return address.
In addition, more advanced techniques are exist such as indirect pointer overwrites, and
heap-based buffer overflows, where a code pointer can be overwritten to divert the
execution control to the attacker’s shell code. According to National Institute of Stand-
ards and Technology (NIST 2013) [1], code injection attack represents a high priority
of all types of vulnerabilities and that must be mitigated. According to (NIST) (9.86 %
of attacks is buffer over flow) came after SQL injection attacks and XSS attacks (16.54 %
of attack, 14.37 % of attack) respectively [1].

There are many countermeasures techniques are available against code injection
attacks but each has limitations. Below, we describe them briefly:

1. StackGuard: In this technique a canary secret value is placed between the buffer and
the return address. Thus when an intruder tries to change the return address in the

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 237-251, 2015.
DOI: 10.1007/978-3-319-23802-9_19

238

H. Alnabulsi et al.

victim program StackGuard detects these changes. As the canary value is random
32-bit wide then it is very hard for an attacker to guess the value of the canary. The
canary value is usually chosen at the time when program starts. There are four types
of canaries that have been used: Random Canary, Random XOR Canary, Null
Canary, Terminator Canary [9, 11, 14].

The limitation of StackGuard is that this technique does not work well when indirect
pointer overwrite attacks occurred. In this type of attack the attacker overwrites an
unprotected pointer and then inserts a value in the stack. Whenever, the application
changes the pointer and overwrites the value with the integer, the attacker writes a
random value in any location in the memory by manipulating the pointer and the
integer. Thus, the attacker can write any value over the return address of the stack.
Moreover, StackGuard technique is incompatible with Linux kernel [4, 8, 11].
Address Space Layout Randomization (ASLR): This technique is used to protect the
system from buffer over flow attacks. It works by randomizing the base address of
structures such as the heap, stack, and libraries, making it hard for an attacker to find
injected shell code in memory of the system. Also if an attacker succeeds in over-
writing a code pointer, the attacker does not know where to point it [10]. Windows
Vista provides Address Space Layout Randomization as a basis on a per image, so
any executable image which have a PE header, such as (.dll or .exe) can be used in
Address Space Layout Randomization (ASLR) [13].

Limitation of the Address Space Layout Randomization countermeasure is that an
attacker may use a new technique called heap-spraying, in this technique an attacker
fills the heaps with many copies of the malicious shell code, and then jumps any
location in the memory, this operation gives a good probability to an attacker that
he will access to his shell code in memory [4]. However Address Space Layout
Randomization is not effective against exploit code for single flaw, and for brute
force attack [12].

Memory Management Unit Access Control Lists (MMU ACLs): it allows applica-
tions to mark memory pages as non-executable memory, and supported by Control
Processing Units (CPUs). In this technique, memory semantic consists of three
components: the first component separates readable and writable pages, the second
component makes stack, heap, anonymous mapping, and mark memory pages as
non-executable memory, the third one is enforcing ACL (Access Control List, which
is a set of data that informs the operating system (OS) about permissions, access
rights, and privileges (read, write, and execute) for users in the computer system
object [15]), which control the operation of converting the non-executable memory
to executable memory and vice versa or denying the conversion [1, 14].

However, the MMU ACLs are not supported by some processors, as the technique
breaks applications which expect the heap or stack to be executable. It is possible that
an attacker injects a crafted fake stack, then an application will unwind the fake stack
instead of the original calling stack, the attacker then directs the processor to arbitrary
function in program code or library, and it is also possible that the attacker marks the
memory where he injected his shell code as executable and jumping to it [1].
StackShield: it is developed from StackGuard to protect against stack smashing attacks,
and exploitation of stack based buffer overflows. This technique applies a random

Defence Against Code Injection Attacks 239

secret canary value. This technique is comparatively better, however it cannot protect
against indirect pointer overwriting attacks [8, 17].

5. Control Flow Integrity (CFI): This technique provides a good guarantee against code
injection attacks, it determines control flow graph for every program, and to each
control flow destination of a control flow transfer it gives a unique ID. The CFI will
know if there are code injection attacks by comparing the destination ID with
expected ID before transferring the control flow to destination, if they are not equal,
the application will kill. Otherwise the program will proceed as normal.

In comparison with other countermeasures CFI is considered very slow [2, 4].

6. CPM (masking code pointers) is a countermeasure against code injection attacks,
CPM does not detect memory corruption or prevent overwriting code pointer, but it
is hard for an attacker to make a successful code injection attack. It provides a mask
to every return addresses and function pointer of the program and masks the global
offset table, the masking operation relies on logic operation such as OR, AND oper-
ations to prevent code injection in the memory of the system [1]. The limitation of
CPM (masking code pointers) is that it does not give a good guarantee of protection
against code injection attacks.

Our key idea relies on the multiplexing technique to preserve the exact return code
to ensure the integrity of program execution trace of shell code. This technique also
maintains a FIFO (first in first out) queue to defeat the conflict state when multiple caller
method makes a call simultaneously.

To alleviate the aforementioned problems with the existing countermeasures, we
propose a technique which relies on the multiplexer idea. To preserve the exact return
code to ensure the integrity of program execution trace of shell code. As each method
has a particular ID, using the multiplexer method an attacker will not be able to divert
the return address to the attacker’s shell code. This technique also maintains a FIFO
(first in first out) queue to defeat the conflict state when multiple caller method makes
a call simultaneously. The proposed technique has some similarity with the CFI,;
however it improves the main problem of the CFI, which is being slow.

The rest of paper is organized as follows: The next section provides related work.
Section 3 illustrates the idea of our approach. Section 4 provides complexity analysis
between CFI methodology and multiplexer methodology, and between CPM method-
ology and Counter methodology. Finally, the paper is concluded in Sect. 5.

2 Related Work

According to [3] the authors presented a design of MoCFI (Mobile CFI) and implemented
a framework of Smartphone platforms, the standard platform that they focused is ARM
architecture. The ARM architecture is standard platform of smartphones. It prevents control
flow attacks by using control flow integrity (CFI) method. In the paper authors showed the
enforcement of CFI that applied on the ARM platform, and implemented CFI framework
for Apple iOS. The result showed that the application mitigates Control Flow Attacks. The
limitation of MoCFlI is that it can only applicable in mobile phone applications.

In [4] authors presented a CPM countermeasure against code injection attacks which
does not depend on secret value (stack canaries), but relies on masking the return address

240 H. Alnabulsi et al.

functions, masking function pointer, and masking global offset table. However it gave
a good protection against code injection attacks but there are some scope for an attacker
to success his attack, therefore it does not give a full protection against code injection
attacks.

Lee et al. [5] presented secure return address stack (SRAS) which is hardware-based
to prevent code injection attacks by verifying modification of return address. To apply
this methodology needs low cost modification of the processor and operating system
(OS), the hardware protection can be applied to executable code and new program. The
impact of performance of the applications using this hardware-based is negligible, it
does not impact on performance of return instructions and procedure call. However
SRAS requires a hardware modification that some time hard to apply because of compat-
ibility with the processor and operating system (OS) of the system.

Zhang et al. [6] presented a new protection method called Compact Control Flow
Integrity and Randomization (CCFIR), to solve the limitation of CFI by collecting all
targets of indirect control transfers instructions in a section called “Springboard” in a
random order. By using “Springboard” section CCFIR will ensure indirect transfers
easier than CFI. Result showed that CCFIR eliminate control flow attacks such as return-
into-libc and ROP, but this technique still use the same approach of CFI.

In [7] Xia et al. presented a system called CFIMon, which is the first system can
detect a control flow attacks without any changes to applications (binary code or source)
and it does not require any special hardware. It works by collecting legal control flow
transfers and uses branch tracing store mechanism to analyse runtime traces, and detects
the code injection attacks. The CFIMon uses two phases: offline phase which builds a
set of target addresses for every branch instruction, and online phase that applied a
number of rules to diagnoses possible attacks. The limitation of CFIMon is that it gives
a false alarm (false positive or false negative) when detecting code injection attacks.

The motivation of our work is to improve CFI speed by applying a multiplexer to
divert every return addresses to its address memory locations, and overcome problem
with CPM which did not give a complete guarantee to protect against code injection
attacks by using a counter of one’s in return addresses. Our approaches addresses these
issues and have a significant countermeasures to protect against code injection attacks.

3 Our Proposed Approaches

In this section, we propose two different approaches to protect the code injection attacks.
The first approach is a multiplexer application approach, which can protect the return
address of each legitimate method, residing in a non-writable memory location. In our
second approach we apply a matrix to keep the number of 1s of the return addresses of
each legitimate method, and later we compare it with the calling method for similarity
testing. The following subsections describe our approaches in details.

Multiplexer approach:

In this approach we apply a software module called MUX_App and every method in
the system must call the MUX_App to get its return address. Each legitimate method is
provided with a unique ID and will have its own return address. Our assumption is to

Defence Against Code Injection Attacks

241

keep MUX_App in a memory location which is non-writable. As a result the MUX_App
remains protected from the attackers to divert the program execution (Fig. 1).

Enter Return Addresses

A
M1 00
M2 10
M3 11
M4 01

QUEUE Method ID

Return Address of
Method

Fig. 1. Multiplexer with the return address of the method

We provided a queue (first-in first-out) to the multiplexer application to manage
calling operations to prevent multiple calls for the multiplexer application in the same
time. Therefore it will give a protection from code injection attacks and will improve
speed significantly compare to CFI technique.

Figure 2 shows the assembly code for the CFI method. Note that, the code contains
a comparison operation (cmp [ecx], 12345678h), which make the CFI method slower
compared to the proposed multiplexer approach.

Sowrce destination
Brytes x86 Comme nt Bes x26 Comme nt
{opcodes) assernbly {opcodes) assernbly
code code
FF El jmpecx sacomputed | EB 4424 oV eax, ;first
jump 04 [espd] instruction of
instruction destination
code
81 3978 cmp [ecx], ; COTpare TE56 34 DD 2labellID, as
563412 12345678h | dataat 12 12345678h| data
destination
7513 jne Jif not ID BB 44 24 Mo eax, sdestination
error_label | walue, then 04 [esprtd] instruction
fail
8D 49 04 leaecx, 1 skip ID data
[ecx+d] at destination
FF El jmpecx Jjumngp to
destination
code

Fig. 2. CFI low-level language code [2]

242 H. Alnabulsi et al.

The policy of our methodology is that the software execution must follow a path of
Control Flow Graph (CFG) which determined ahead of time as shown in Fig. 3. The
definition of Control Flow Graph (CFG) is a representation using graph notation, of all
paths that might be traversed through a program during its execution. The CFG can be
defined by analysing source code, or execution profile [2, 16]. Our methodology based
on CFG; its enforcement can be implemented in software as shown in Fig. 3. It is very
close to CFI in execution, it works by preventing an attacker divert code execution, by
diverting to a static return addresses using a multiplexer for every return addresses and
every static application program. Therefore attackers cannot divert the code execution
to their shell code as shown in Fig. 4. The figure shows that an attacker tried to divert
the execution method M1 by calling it from an attacker’s method M2, but when method
MI calling the multiplexer to get its return address then an attacker will fail because the
multiplexer will give the right return address of M1 to method M1.

The difference between our methodology with CFI, is that our methodology is faster
because it diverts the return address methods immediately by using a multiplexer’s
application that contains a static return addresses for every application’s methods, but
the CFI is working by comparing the ID of the destination with expected ID, and if they
are not equal, the program will be killed, but if they are equal the program proceeds as
normal as shown in Fig. 2. The comparing operation takes a longer time than our meth-
odology [1].

Figure 5 illustrates how the attacker can successfully inject shell code in process.

Label M1 Label M2 Label M3
If return address then Jump to If return address then Jump to If return address then Jump to
Multiplexer Multiplexer Multiplexer
Get return address of M1 then Get return address of M2 then Get return address of M3 then
Jump to return address Jump to return address Jump to return address

A A

A
Label Multiplexer

If there is anther method under
processing then

Delay(wait)

Else

Get return address of Mi
Jump to Mi

Fig. 3. CFG control flow graph

Defence Against Code Injection Attacks

The attacker M1
can not change

the retumn instruction code
address of M1
because of the Callin Multiplexer
Multiplexer % : €—Get return address of M1 Application code
make itstatic |Return Multiplexer
Return address
A
Calling
M2 method code of
attacker

M2 calling M1 to divert
the execution to its shell
code by changing the
return address of M1 to
shell code address

—Divert executio

243

Shell code
some
where in
memory
location

Fig. 4. An attacker tries to divert the execution to his shell code

| 0000101110111111 I

A

| 0000101100111111

L—Return Address

eturn Address—

alling. » M)&

A
——Return Mdmssg

| 0000101010011001 |

Calling

Calling—
The number of one's of
retum addresses of
methods that calling M
are equal 6, 9. So if any
method calls M, if its
retum address is not
equal 6, 9, then the
operation will not
proceed.

Calling

Fig. 5. Explaining for example 1

The retum address of
M3 is
0001101100111111
AND operation with
mask is not same
value of retum
address of M3 so
mask will kill the
operation.

The retum address
of M4 is
0000100000111111.
AND operation with
mask is same value
of retum address of
M4, so the operation
will proceed.

244 H. Alnabulsi et al.

Example 1:

Consider two caller methods M1 and M2 and a call method M. During the compilation
the system knows the return addresses of M say 0 X OB3F (0000101100111111) for method
M1, and 0 X 0A99 (0000101010011001) for method M2. The mask can be calculated by
performing bitwise logical OR operations of the two return addresses. Therefore, the final
mask is calculated as 0 X OBBF (0000101110111111). As a result, bitwise logical AND
operation between the final mask and a return address produces the same return address.
On the other hand, an invalid return address does not produce the same return address after
AND operation with the final mask. This is a basic technique to identify incorrect/mali-
cious return address, as proposed in [1].

However, this technique fails to protect the system all the time. For instance, assume
a malicious method M3 calls the method M. Assume the return address of M3 is
0001101100111111. In this case, the bitwise logical AND operation
0000101110111111 && 0001101100111111 does not produce 0001101100111111.
Therefore, the method M3 will be detected as malicious method. On the other hand,
consider another malicious method M4 for which the return address is
0000100000111111. Performing a logical bitwise AND operation between the final
mask and the return address does produce the correct return address
0000100000111111&&0000101110111111 = 0000100000111111. Therefore, the
method M4 increases the false negative instance.

Counter Matrix:

To improve the possibility to identify a malicious method, our proposed solution
uses the same masking technique [1] after an additional phase, called Counter Matrix,
of counting 1s of the return addresses. In this bit counting “process numbers of one’s
(1’s) are counted and compare with that of the return address as shown in the following
algorithm.

if (bit count())==0 // compare the number of ones
return False; // Malicious method identified
else run CPM(); // the system will consider the //
method as vulnerable and will
// call CPM process.

For example, the return addresses of M1, M2 have 6 and 10 one-bits respectively.
Therefore M4, M5 could not call M3 because the number of one’s is 7, 3 respectively
and the operation process will kill.

After counting operation if the code injection attack is not detected, then a mask oper-
ation will be done by using OR operation with return addresses methods that is M3, then
AND operation will conduct with every return address methods of M3, therefore our
method will improve the time. Because it - kills the operation if the counting operation
detect differences in count of one’s for each method, and it will ensure security. The
security is enhanced because the masking operation (CPM) is conducted after counting
operation. However if still there is a small space for the attacker to pass his attack then it
will fail because we use two techniques together (Counter of One’s technique and CPM

Defence Against Code Injection Attacks 245

technique). Therefore, it is not needed more time in execution if the first technique
(Counter of One’s technique) detects an attack operation it will kill the operation of
method without executing second technique (CPM technique). Here we preview example
2 with its Fig. 6.

The retum address of
M3is 11011011,

AND operation with
mask is not same value
of retum address of
M3. So the mask will
kill the operation.

10111000

10101000

Return Addres

urn Address—
M € Calling——

Y

alling:

——Return Address:

10011000

The retum address of
M4 is 10010000 AND
operation with mask is
same value of retum
address of M4, so the
operation will proceed.

liny

The number of one's of N8
retum addresses of
methods that calling M

is equal 3. So if any
method calls M, if its

retum address is not

equal 3, then the
operation will not
proceed.

Fig. 6. Explaining for example 2

Consider a method M which is being called by two other methods M1 and M2. The
mask of M is calculated by performing logical bitwise OR operation of the return
addresses of M1 and M2.

Thus, Masking M = 10101000 OR 10011000 = 10111000.

We consider a method M3, which contains malicious code and this method wants to
call the M.

Therefore when AND operation conducted with the return address of M3 (11011011)
with the making code 10111000, we will not get the same return address value of M3
(11011011), thus the attacker cannot continue his attacks, and he cannot divert the return
address of method M into his shell code in memory and cannot execute it because the
application will kill. In the same Fig. 6 illustrate a preview example of masking failure,
Consider M4 as a malicious code that want to call the method M.

The AND operation of the return address of M4 with the mask of M, the result will
be the same value of the return address of M4, so the application will continue.

246 H. Alnabulsi et al.

Therefore if we apply our technique in this problem it will count the numbers of 1’s
for every return addresses that has called method M. In this example its 3 (1’s), and the
return address of M4 is 4, and for M3 is 6.

By applying this technique the application will kill, because the number of (1’s) of
M3 and M4 are not equal with 3 (1’s).

Figure 7 shows our propose algorithm of multiplexer methodology with its time
execution.

If call method => O(1)

Going to Multiplexer location => O(1)
Give ID of method to Multiplexer => O(1)
Get return address for method ID => O(1)
Jump to return address location => O(1)

Fig. 7. Algorithm of multiplexer methodology with its time execution

The total execution time for multiplexer methodology is equal
O(1) + O(1) + O(1) + O(1) + O(1) => O(1) as shown in Fig. 7. Our algorithm of counter
methodology with its time execution is illustrated in Fig. 8.

If call method => O(1)
Going to counter location => O(1)
Compare count of one’s => O(n)
If true => 0O(1)
Go to mask location => O(1)
AND Operation => O(n)

If true => O(1)
Go to return address location => O(1)
else
error kills operation => O(1)
else

error kills operation => O(1)

Fig. 8. Algorithm of counter methodology with its time execution

The execution time for counter methodology according to Fig. 8 is
O(N) + O(N) + O(1) + O(1) + +O(1) = O(2 N). Figure 9 shows an assembly code for
counter methodology.

Defence Against Code Injection Attacks 247

for (int i=0; i<a.length; i++)

051E6B40: 04 iconst 0 //get O : A

051E6B41: 3E istore_3 // store it in i

051E6B42: A70011 goto 0x051E6B53 //go to test i<alength near bottom

if (a[i] = n)

051E6B43: 2B aload 1 //get a's base address : B

051E6B44: 1D jload 3 // get i

051E6B45: 2E iaload // get a[i]

051E6B46: 1C nload 2 //get n

051E6B47: A70011 goto 0x051E6B52 //go to increment C

051E6B49: A40007 if icmple O0x051E6B50 //go to test near bottom if <=

051E6B50: 840301 iinc //increment i : C
Count=Count+1

051E6B51: 1E Cload 4 //get count D

051E6B52: 840303 Cinc //increment ¢ : E

051E6B53: 1D iload 3 //get i F

051E6B54: 2B aload 1 //get a's

051E6B55: BE arraylength // length

051E6B56: A1FFED if icmplt 0x051E6B43 //go to if above if <
Compare Count with count of one’s in method

051E6B57: 2E Cload 5 //get count from method : G
if (b[s] = C)

051E6B58: 2B bload 1 //get b base address : H

051E6B59: 1D sload 1 /! get s

051E6B60: 2E sbload // get b[s]

051E6B61: 1C cload 3 //get c

Then same operations of mask methodology

Fig. 9. An assembly code for counter methodology [19]

Figure 9 also shows the implementation of the countermeasure technique, which
requires 21 assembly instructions. Although the implementation of the proposed tech-
nique requires few extra instructions, the proposed technique detects more anomalies
than the CPM technique. This is because the proposed technique uses parity checking
in addition to the masking technique.

Figure 10 shows use of C code for quicksort algorithm to illustrate our multiplexer
methodology; we preview the following C function, this function code return the median
value of an array of integers [18].

int median (int* data, int len, void* cmp)
{ int tmp [MAX_LEN]:

Memcpy (tmp, data, len*sizeof{(int));
Qsort (tmp, len, sizeof (int), cmp);
Return tmp [len/2];

Fig. 10. Quicksort algorithm [18]
The time complexity of quicksort algorithm is O (N*log N) [20]. In Figs. 11, 12 and

13 show assembly codes of quicksort algorithm, quicksort with CFI, and quicksort with
our multiplexer technique respectively.

248 H. Alnabulsi et al.
Regular_gsort:

push ebx

mov eax, esi
call shortsort
add esp, Och

push edi ; anattackis

push edx ; possible by

call [esptcomp fp] ; Going to X
add esp, 8

test eax, eax

jle lable_lessthan

Regular_library_function:
mov edi, edi

push ebx

mov ebx, esp

push ecx

pop ebp

X: mov esp, ebx
pop ebx

ret

Fig. 11. Quicksort assembly code [18]

The Qsort algorithm code is vulnerable as shown in Fig. 11. Figure 12 shows the
assembly code of Qsort with CFI. If an attacker overwrites the comparison function cmp
before it is passed to Qsort, an attacker can exploits this point to divert the execution to
his shell code when the Qsort method calls the corrupted comparison function cmp. This
has been labelled as X in Figs. 11, 12, and 13.

The Qsort with CFI assembly code in Fig. 12 includes ID checks before call instruc-
tions, therefore CFI methodology will prevent the exploiting Qsort code from an
attacker, because of the ID checks will happen before call instructions and this prevents
any exploitation in calling instructions in the code.

In Fig. 13 shows Qsort with multiplexer methodology that will protect from an attacker
exploiting because when call function has happened, an attacker has changed the return
address of method. Therefore, next instruction is to get the return address from a multi-
plexer (prefetchnta [AABCCDEENh]: line 5 in Fig. 13) which means to go to this location
in memory to get the return address of the method. As a result incorporating multiplexer
technique is able to protect from attacking such as CFI methodology, but also improves
execution time [18].

Defence Against Code Injection Attacks 249
Qsort_with_CFI

push ebx

mov eax, esi

call shortsort

prefetchanta [AABCDDEEh] ; tacking data from this location
add esp, 0Ch

push edi

push ebx

mov eax, [esptcomp_fp]

cmp [eax+4], 12345678h ; CFI check

jne error lable : Prevents

call eax ; going to X

prefetchanta [AABCDDEEh] ; tacking data from this location
add esp, 8

test eax, eax
jle label lessthan

Fig. 12. Quicksort assembly code with CFI [18]

Qsort_with_Our_ methodology

push ebx

"mov eax, esi

call shortsort

prefetchanta [AABCCDEEh] ; tacking data from this location
add esp, 0Ch

push edi

push ebx

mov eax, [esp+comp_fp]

call eax ; going to X

prefetchanta [AABCCDEEh] ; tacking data from this location
add esp, 8

Fig. 13. Quicksort assembly code with multiplexer methodology [18]

250 H. Alnabulsi et al.

4 Complexity Analysis Between CFI, Multiplexer Methodologies
and CPM, Countermeasure Methodologies

It also shows in Figs. 12 and 13 that our multiplexer methodology requires only 11 lines
of code instead of 12 lines of code used in CFI for implementation, which is an evidence
of improving execution time. Table 1 shows a complexity analysis between our method,
CFI and CPM. Our method gives better results compare to other methods.

Table 1. Complexity analysis between CFI, Multiplexer methodologies and CPM, Counter-
measure methodologies

Execution time Security Lines of code
CFI O(n) No vulnerability 15 lines of code* (N time)
Multiplexer | O(1) No vulnerability 11 lines of code* (N time)
CPM NA Good protection NA
Counter O(2n), or O(2n) + CPM | It uses 2 approaches 21 + CPM’s line of code
execution time together (Counter-
measure + CPM)

5 Conclusion

In this paper we propose two approaches to defence against code injection attacks. One
of the approaches augments ‘1’ bit counting technique to modify the Masking Code
Pointer (CPM) [1]. The augmentation technique improves the probability of identifying
malicious code compared to CPM. The proposed technique provides more protection
without introducing time complexity.

The second methodology relies on the multiplexer technique, which is based on the
Control Flow Integrity (CFI) however performs faster than the CFI technique. The time
complexity of the proposed multiplexer technique is O(n) compared to the time
complexity of the CFI which is O(2n).

In our future work, we will apply our counter technique and multiplexer technique
using a Linux environment and SPEC CPU2006 Integer benchmarks.

References

1. Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T.. CPM:
masking code pointers to prevent code injection attacks. ACM Trans. Inf. Syst. Secur.
(TISSEC) 16(1), Article No. 1 (2013)

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control flow integrity principles,
implementations, and applications. ACM J. 13, 4 (2006)

3. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nurnberger, S., Sadeghi,
A.: MoCFI : a framework to mitigate control-flow attacks on smartphones. IETF J. 4, 3244
(2012)

10.

11.

12.

13.
14.
15.
16.
17.
18.
19.

20.

Defence Against Code Injection Attacks 251

. Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T.: Code pointer

masking: hardening applications against code injection attacks. In: Holz, T., Bos, H. (eds.)
DIMVA 2011. LNCS, vol. 6739, pp. 194-213. Springer, Heidelberg (2011)

. Lee, R.B., Karig, D.K., McGregor, J.P., Shi, Z.: Enlisting hardware architecture to thwart

malicious code injection. In: International Conference on Security in Pervasive Computing
(SPC 2003), pp. 237-252, Boppard, Germany (March 2003)

. Zhang, C., Weil, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song, D., Zou, W.:

Practical control flow integrity and randomization for binary executables. In: 34th IEEE
Symposium on Security and Privacy (Oakland), San Francisco (May 2013)

. Xia, Y., Liu, Y., Chen, H., Zang, B.: CFIMon: detecting violation of control flow integrity

using performance counters. In: 42nd Annual IEEE/IFIP International Conference, pp. 1-12
(2012)

. Richarte, G.: Four different tricks to bypass StackShield and StackGuard protection. J.

Comput. Virol. 7(3), 173-188 (2002)

. Etoh, H., Yoda, K.: Protecting from stack-smashing attacks. IBM Research Division, Tokyo

Research Laboratory (June 2000)

Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: an efficient approach to combat
a broad range of memory error exploits. In: 12th USENIX Security Symposium, USENIX
Association (2003)

Cowan, C., Beattie, S., Day, R.F., Pu, C., Wagle, P., Walthinsen, E.: Protecting systems from
stack smashing attacks with StackGuard (May 2005)

Shacham, H., Page, M., Pfaff, B., Goh, E., Modadugu, N., Boneh, D.: On the effective of
address-space randomization. In: CCS 2004 Proceedings of the 11th ACM Conference on
Computer and Communications Security, pp. 298-307 (October 2004)

Whitehoue, O.: An analysis of address space layout randomization on Windows Vista.
Symantec Adv. Threat Res. (February 2007)

Silberman, P., Johnson, R.: A Comparison of Buffer Overflow Prevention Implementations
and Weaknesses. iDEFENSE Inc., Dallas (2004)

ACL (2014). http://www.webopedia.com/TERM/A/ACL.html

Control flow graph (April 2014). http://en.wikipedia.org/wiki/Control_flow_graph

Youna, Y., Pozza, D., Piessens, F., Joosen, W.: Extended Protection Against Stack Smashing
Attacks Without Performance Loss, pp. 194-213. Springer, Berlin (2006)

Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control flow integrity principles,
implementations, and applications. ACM J. 13(1), Article 4 (2009)

Pattis, R.E.: https://www.cs.cmu.edu/afs/cs/Web/People/pattis/15-1XX/15-200/lectures/aa/
index.html. Accessed June 2014

How to find time complexity of an algorithm. http://stackoverflow.com/questions/11032015/
how-to-find-time-complexity-of-an-algorithm

http://www.webopedia.com/TERM/A/ACL.html
http://en.wikipedia.org/wiki/Control_flow_graph
https://www.cs.cmu.edu/afs/cs/Web/People/pattis/15-1XX/15-200/lectures/aa/index.html
https://www.cs.cmu.edu/afs/cs/Web/People/pattis/15-1XX/15-200/lectures/aa/index.html
http://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm
http://stackoverflow.com/questions/11032015/how-to-find-time-complexity-of-an-algorithm

	Defence Against Code Injection Attacks
	Abstract
	1 Introduction
	2 Related Work
	3 Our Proposed Approaches
	4 Complexity Analysis Between CFI, Multiplexer Methodologies and CPM, Countermeasure Methodologies
	5 Conclusion
	References

