A Survey on Mining Program-Graph Features
for Malware Analysis

Md. Saiful Islam® ™), Md. Rafiqul Islam?, A.S.M. Kayes', Chengfei Liu',
and Irfan Altas3

! Swinburne University of Technology, Melbourne, Australia
{mdsaifulislam,akayes,cliu}@swin.edu.au
2 Charles Sturt University, Alburry, Australia
mislam@csu.edu.au
3 Charles Sturt University, Wagga Wagga, Australia
ialtas@csu.edu.au

Abstract. Malware, which is a malevolent software, mostly pro-
grammed by attackers for either disrupting the normal computer oper-
ation or gaining access to private computer systems. A malware detec-
tor determines the malicious intent of a program and thereafter, stops
executing the program if the program is malicious. While a substan-
tial number of various malware detection techniques based on static and
dynamic analysis has been studied for decades, malware detection based
on mining program graph features has attracted recent attention. It is
commonly believed that graph based representation of a program is a
natural way to understand its semantics and thereby, unveil its exe-
cution intent. This paper presents a state of the art survey on mining
program-graph features for malware detection. We have also outlined the
challenges of malware detection based on mining program graph features
for its successful deployment, and opportunities that can be explored in
the future.

Keywords: Program graph - Graph features - Malware detection

1 Introduction

Malwares are one of the most severe problems witnessed by the modern com-
puter society everyday. Malware is a malevolent software that either tries to
disrupt the normal computer operation or gather sensitive information from pri-
vate computer systems by spying on users’ behavior and compromising their
privacy. The malware writers also apply various code obfuscation techniques on
previous malwares, changing their internal structures while keeping their original
functionalities unchanged known as polymorphic malwares, to evade detection.
The obfuscation techniques also facilitate widespread proliferation of various
instances of the same malware without getting detected. David Perry from Trend
Micro reported that some antivirus (AV) vendors are seeing 5,000 distinct mal-
ware samples per day [32]. A malware detector determines the malicious intent
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015

J. Tian et al. (Eds.): SecureComm 2014, Part II, LNICST 153, pp. 220-236, 2015.
DOI: 10.1007/978-3-319-23802-9_18

A Survey on Mining Program-Graph Features for Malware Analysis 221

of a program and thereafter, stops its execution if it is malicious. In malware
detection based on mining graph features, a program graph is constructed by
considering System and/or API calls, sub-programs and targets of jump instruc-
tions as nodes and their calling relationships as connections or links. A program
graph may come in various formats and names, e.g., call graphs, control-flow
graphs, code graphs etc. Once constructed, a program graph can be mined to
extract important graph-based-features which can be intelligently learned into
a classifier to detect malicious intent of the unknown program.

While a substantial number of malware detection techniques based on sta-
tic and dynamic analysis has been studied for decades ([13,22] for survey), mal-
ware detection based on mining program graph features is not established yet.
However, it is commonly believed that graphs can be used to represent complex
program behavior efficiently [36], which may not be possible in traditional static
and dynamic behavior analysis [12,18]. For example, code obfuscations are easily
detectable through mining program graph features. Therefore, graph based rep-
resentation of program behavior and thereby mining important graph features
for malware detection has attracted recent attention [1,7,8,10-12,15,18,23,26,
28,34,41]. Though, a number of research efforts has been made for malware detec-
tion based on mining program graph features, this is still in its premature stage.
In this survey paper, we report only representative and important state of the art
research works that develop malware detection techniques based on mining pro-
gram graph features. We also provide necessary background on malware detection
based on program graph analysis and outline important research directions that
can be explored in the future.

The main contributions of this survey paper are given as follows:

— We provide the background on the program graph, its construction and mining
program graph features for malware detection.

— We present a survey on representative works that develop malware detection
techniques based on mining program graph features.

— We provide a comparative study of the existing works under the variants of
program graph and a summary of them.

— We outline the future challenges that need to be addressed for successful
deployment of malware detectors based on mining program graph features.

The rest of the paper is organized as follows: Sect. 2 presents related surveys;
Sect. 3 provides preliminaries on program graphs and mining program graph
features; Sect. 4 describes the modules of a generalized malware detection system
based on mining program graph features; Sect.5 presents the surveyed works;
Sect. 6 presents the limitation of the existing works and the future challenges of
malware detection based on mining program graphs; and finally, Sect. 7 concludes
the paper.

2 Related Surveys

Survey on Malware Analysis Techniques: In [37], Siddiqui et al. present
a survey on malware detection based on data mining techniques. The surveyed

222 M.S. Islam et al.

works learn the detection model by mining the file features extracted from the
binary programs. The authors categorize the surveyed works based upon the
analysis type (static and dynamic) and detection type (misuse and anomaly).
In [35], Shabtai et al. present a taxonomy of malware detection methods that
rely on machine learning classifiers (which utilize static features extracted from
executables) to detect malwares. The authors also address various aspects of the
detection challenge such as file representation and feature selection methods,
classification algorithms, weighting ensembles, the imbalance problem, active
learning and chronological evaluation. In [17] Felt et al. survey the current state
of mobile malware in the wild. The authors collect malware samples from iOS,
Android, and Symbian mobile platforms to analyze the incentives and possible
defenses of them. They classify collected malwares by analyzing their behav-
ior and describe the incentives that actually promote each type of malicious
behavior. They also present defenses that disincentivize some of the behaviors
of these malwares. In [13], Egele et al. provide an overview of techniques based
on dynamic analysis that are used to analyze potentially malicious samples.

Survey on Code Obfuscation Techniques: In [3], Balakrishnan and Schulze
analyze the different code obfuscation techniques in connection with the protec-
tion of intellectual property and the hiding of malicious code. In [30], Majumder
et al. provide an overview of obfuscation and highlight that the dispatcher model
and opaque predicates transforms have provable security properties. In [46], You
and Yim present a survey on malware obfuscation techniques by reviewing the
encrypted, oligomorphic, polymorphic and metamorphic malwares.

Survey on Botnet Detection Techniques: A botnet is a collection of com-
promised computers, which are remotely controlled by hackers to perform var-
ious network attacks, such as denial-of-services and information phishing. In
[16], Feily et al. present a literature survey on botnet and four classes of botnet
detection techniques: (a) signature-based (b) anomaly-based (¢) DNS-based and
(d) mining-based. In [2], Bailey et al. provide a brief survey on existing botnet
research, the development and trends of botnets as well as different types of net-
works that approach the botnet problem with differing goals and visibility. In
[48], Zhang et al. survey the latest botnet attacks and defenses by introducing the
principles of fast fluxing and domain fluxing, and explain how these techniques
were employed by the botnet owners. In [38], Silva et al. presents a comprehen-
sive survey on the botnet problem by briefly summarizing the previous works
from the literature. Then, the authors supplement these works by covering an
extensive range of discussion of recent works and providing solution proposals.

Survey on Intrusion Detection Techniques: In [19], Garcia-Teodoro
et al. present a survey of the most well-known anomaly-based intrusion detec-
tion techniques. The authors also present the available platforms, systems under
development and research projects in the area. Finally, the authors outline the
main challenges that need to be addressed for the wide scale deployment of
anomaly-based intrusion detectors. In [40], Tavallaee et al. review the experi-
mental practice in the area of anomaly-based intrusion detection by surveying

A Survey on Mining Program-Graph Features for Malware Analysis 223

276 studies published during the period of 2000-2008. Finally, the authors sum-
marize their observations, e.g., why anomaly-based intrusion-detection methods
are not adopted by the industry and identify the common pitfalls among the
surveyed works.

To the best of our knowledge, there exists no other paper that provides a
complete survey on program graphs and malware analysis based on mining graph
features. The purpose of this paper is to provide a tutorial on program graphs
and mining graph features, as well as survey the existing works that extract
program graph features for malware analysis. We also summarize the limitation
of existing works and give challenges to explore further in this direction.

3 Preliminaries

In this section, we present the generalized definition of program graph, properties
and common features mined on such graphs.

Definition 1 (Program Graph). A program graph, denoted by g, is represented
asg = (V,E,ly,l.), whereV is the set of nodes and E is the set of links. A directed
link (u,v) will be in E if there is a directed relationship from u to v, where both u
andv isin'V. Thel, denotes a labeling function that returns the label of the nodes
mV,ie,l, :V —X,. Thel, denotes another labeling function that returns the
label of the links in E, i.e.,l. : EE — .. A pathp is a sequence of nodes vy, vg,, Uk
such that there is a link between the successive pair of nodes in this sequence. If the
start and end nodes are the same, we call it a cycle c.

The nodes in V' may consist of system or API calls, targets of jump instruc-
tions, procedure calls and jump targets of a program, even a code fragment of a
program including program instructions itself [7,15,24,28]. The links in E may
represent the calling relationships (i.e., who calls whom) and/or information
flows between nodes. The nodes and links are summarized in Table 1.

Table 1. Nodes and links of program graphs

Type | Value(s)

Nodes | System&API Calls, Procedure Calls, Jump Instructions, Targets of Jump,
Code Fragments, Program Instructions

Links | Calling Relationships, Information Flows

The generalized definition

of program graph given in
Definition 1 can be made spe-

cific for call gl"aphs, control- Call Graph Control Flow Graph Code Graph '
flow graphs (CFGs), code ;

graphs etc. as shown in Fig. 1. Fig. 1. Variants of program graph

The nodes and links in differ-

ent variant of program graphs are shown in Table2. An example of a program
call graph (who-calls-whom), which is directed, is shown in Fig. 2.

M.S. Islam et al.

224

ydeid (woym-s[reo-oym) [[eo ojdwes y g “S1q

utew 36 TTP"0-0° Z-ZEUTA-X2BaTT [_lTa:ulaaﬂoou:ﬁud%nﬂuln _ _ 3AT10RI3IUT 6T dde;TTp-dde-eTp _ * aTut dde;TTp-dde-etp [_ 7 4370239057 TTP* TAIASK € |

e}

e g

Tuuzmﬁuxl:%.nﬁﬁnﬂi 14 Scsogua_n_ 7EuﬂEﬂJ:u.HE=|.m 7 39110000 ane

€8T10000 ane

soureu sepou
s[uty e st (a‘n) UOT}OTLISUT oIk a ‘n 2IayM SUOTIONIISUT
aroym ‘()4 — (n)Yy 10 opood() | ‘(n SMO[[0] @) @ «— n 10 sepodd(ydeisd apo))
sdwn sopou suorjonajsur-dun(

s[uty e st (a‘n)
ooy ‘()] — (1))

‘sawreu [[e))

we)SAG 10 TV
pue uorpounj-qng

IR @ ‘n dIoYM
‘(@ 01 sdum(
N 10 A S[[eD M) A +— N

Jo s3a8IR], ‘S[[e)
woysAS/1dV
‘suorjounj-qng

yde1s mop-jo1yuo))

Suip e st (a‘n)
oy ‘()] — (7))

soureu (e

wesAg 10 [V
pue uorpouny-qng

sepou
IR @ ‘N dIoYM
‘(aseon) a«—mn

SIED
wWaSAS/TdV
‘suorjounj-qng

ydeid [e)

R

'K

syurg

SOPON

yde1d weidorJ

sydeid wreiSord JUSISPIP UL SYUI[pUe SOPON °Z O[qelL

A Survey on Mining Program-Graph Features for Malware Analysis 225

The root node “start” in the call graph is the node from where execution
begins and is the same for every program call graph. The success of a mal-
ware detector based on mining program graph features depends on the accurate
construction of the corresponding program graph and the information encoded
in it [24,27]. In [27], Kruegel et al. propose an approach for identifying the
program control-flow-graph and program’s instruction information based on its
initial control flow graph and statistical methods. Generally, the construction of
program graph is accomplished as a preprocessing step by the detectors [24].

Definition 2 (Graph Isomorphism). Given two program graphs g1 = =
V1, Eq, Uy, le) and g2 = (Va, Ea, 1y, le), g1 is said to be subgraph isomorphic to ga,
if there is an injective function p: Vi — Va such that (1) Yu,v € Vi and u # v,
we have p(u) # p(v). (2) Yo € Vi, we have p(v) € Vo and 1,(v) = 1,(u(v)). (3)
V(u,v) € B, (u(u), p(v)) € Ey and le((u,v)) = l((u(u), u(v))). We say that
g1 is a subgraph of g2 and g2 is a supergraph of g1. Given two program graphs
g1 and go, graph g2 is said to be a common subgraph of g1 and gs, if gi12 is
subgraph isomorphic to both g1 and g2, respectively.

Proving subgraph isomorphism is NP-complete [20], which urges for approx-
imate matching between program graphs in large datasets. To facilitate this
approximate matching for nodes and links between pair of program graphs, the
node label function [, and link label function I, can be enhanced to return
additional information about nodes and links beyond their labels. Approxi-
mate/inexact graph matching also urges an efficient indexing mechanism in the
databases for storing program graphs. The advanced graph indexing techniques
proposed elsewhere [43,50] can be borrowed to serve this purpose.

Definition 3 (Graph Database). The database D is a collection of program
graphs, {g1, g2, ..., gn}, where each g; can have either labels “malware” (m) or
“benign” (b), i.e., ly : D — 3,4, where X4 = {m, b} and l, is a labeling function.

Definition 4 (Graph Pattern). A graph feature, f;, is a pattern mined from
program. graphs in D that is highly discriminative for characterizing samples in
either class. A pattern space, I, is a collection of highly discriminative patterns.

In general, graph features are extracted by applying special techniques on
nodes, links, paths and cycles of the program graph, and thereby, to generate
signatures that can represent the corresponding program efficiently. The per-
formance of the detector system largely depends on the intelligent selection of
features and /or construction of signatures [15,18].

Definition 5 (Malware Detection Based on Mining Program Graph
Features). Given the database of program graphs (D) and the pattern space
(F), a malware detector learns a classifier or model, C, that can correctly return
the label of an unknown program graph.

By learning a classifier or model in the above definition we mean gathering
enough information (i.e., graph features) from existing graphs in D so that C can

226 M.S. Islam et al.

classify an unknown program as either malware or benign. This can be modeled
as both lazy and eager learning approach or a combination of both for developing
a multi-step/multi-evidence based malware detectors [47]. For example, we can
adopt lazy learning approach for k-nearest neighbor (kNN) classification where
an unknown program is labeled based on the labels of its k nearest neighbors [49].
Though, we can apply eager learning approach for learning the appropriate value
of k from D. In classifiers like SVM, we need to adopt eager learning approach
to learn an appropriate weight function W from D for classifying an unknown
program graph [45]. The adoption of a specific learning approach depends on
the learned classifier used by the detector system.

4 A Generalized Malware Detection System Based
on Program Graph Analysis

We depict a generalized conceptual framework of a malware detection system
based on mining program graph features in Fig. 3. The framework shows impor-
tant modules and the information flow between them by dividing the whole
system into two main parts: (a) detector system and (b) user interface. The
detector system classify or label an unknown program based on the learned clas-
sifier/model in general. The purpose of user interface is to include user feedback
in the detection system to make it more usable and transparent to end user [39].

Extract L I\ Learn Classifier/
|I Features — Model

|

|

|

|

|

I Feedback
I I) eedbac
| 7 Preprocessing j‘> Detector <;: Analyzer
|

|

|

|

|

|

Detector System

A i

e) —
. = Pl e [e —
Known Program Files .-
I
I
i- User Feedback
|
II Program Label
]'. Unknown Program User Interface
—_— e — e — — — — - — — —_— — — e — — ==

Fig. 3. Conceptual block diagram of a generalized malware detection system based on
mining program graph features

A Survey on Mining Program-Graph Features for Malware Analysis 227

The functions of individual modules are described below in detail:

— Preprocessing: This module preprocess and construct program graphs from
program files. To do so, this module first dissemble the input binary (e.g., pro-
gram executables) and then, gather information to construct the correspond-
ing program graph (e.g., call graph, control-flow graph, code graph etc.).

— Extract Features: This module extract features by mining program graphs
and store them into the database (DB). The database may be equipped with
specialized data indexing techniques to facilitate efficient access.

— Learn Classifier/Model: This module learn classifier/model from features
stored in DB. This module may rerun if there is a need to tune performance
of the detector system.

— Feedback Analyzer: This module analyze user feedback to facilitate feed-
back driven detection and performance tuning of the system.

— Detector: This module classify and label an unknown program based on
learned classifier/model and analyzed user feedback.

In this paper, we present a brief survey of the state-of-the-art important
works under the variants of program graph and the generalized program graph-
based malware detection system shown in Fig. 3.

5 Surveyed Works

This section presents the surveyed works under the variants of program graph
and the generalized graph-based malware detection system shown in Fig. 3.

5.1 Control-Flow Graph Based Systems

— In [42] Wagner and Dean propose a technique in which a control flow graph
for a program is constructed from its system call trace. Then at run time,
this graph is compared with the known system call sequences to check for any
violation. The authors apply both static analysis and dynamic monitoring to
combat malwares and claim that this combination yields better results.

— In [5], Bruschi et al. propose a strategy that can detect the metamorphic
malicious code inside a program P. To do so, they compare the control flow
graphs of P against the set of known malwares’ control flow graphs. Firstly,
they unveil the flow connections between the benign and the malicious code
within P after disassembling and performing a set of normalization operations
on P. Then, they build the corresponding labeled inter-procedural control flow
graph for P. This control flow graph of P is then compared against the con-
trol flow graphs of known malwares to see whether P contains a subgraph
isomorphic to the control flow graphs of the known malwares. The authors
also provide an encouraging experimental results to support their approach.

— In [26], Kruegel et al. propose an approach for detecting structural similarities
between variations of a polymorphic worm based on control flow information.
A fingerprinting technique is developed based on a coloring scheme of the

228 M.S. Islam et al.

control flow graph, which characterizes the high-level structure of a worm
executable. The authors claim that their proposed system is more robust to
polymorphic modifications of a malicious executable and is capable of detect-
ing some previously unknown, polymorphic worms.

— Cesare and Xiang [7] propose a system for detecting polymorphic malwares
using control-flow graphs. They apply an existing approximated flow graph
matching algorithm [6] to estimate graph isomorphisms at the procedure level.
The similarity between programs is then quantified by identifying the underly-
ing isomorphic flow graphs. Firstly, the approach applies depth-first ordering
technique to order the nodes in the control flow graph. Then, a signature is
constructed as a list of graph links for the ordered nodes, where the node
ordering is used as node labels. This signature is represented as a string. To
classify an unknown program, Dice coefficient is computed as the similarity
score between the set of the flow graph strings of the unknown program and
each set of flow graphs associated with malware stored in the database.

— In [8] Cesare and Xiang propose a similarity search technique for malwares
using novel distance metrics. A malware signature is described by a set of
control flow graphs contained in the malware. Then, a feature vector is con-
structed by decomposing these control flow graphs into either fixed size k-
subgraphs, or ¢g-gram strings of the decompiled high-level source. A distance
metric between two sets of control-flow graphs is then computed based on the
minimum matching distance between the corresponding feature vectors of the
sets. The minimum matching distance utilizes the string edit distance and the
minimum sum weight matching between two sets of graphs. The authors claim
that the above technique runs in real time and detects more malware variants
in comparison with other existing malware variant detection techniques.

— In [14,15], Eskandari and Hashemi propose a control-flow graph based mal-
ware detection method by converting the sparse matrix of the control-flow
graph into a vector where they save only the situations of nonzero items.
Then, a feature vector for each program graph is constructed by taking the
API number as data-item and edge number as feature. Among different clas-
sifiers, the authors observe that random forest attains best result.

— In [10] Cesare et al. propose “Malwise” for malware classification. A fast
application-level emulator is used to reverse engineering the code packing
transformation. To classify a malware, two flow-graph based matching tech-
niques are proposed. The exact flow-graph matching algorithm adopts string-
based signatures. Firstly, they use depth first ordering technique to order the
nodes in the control flow graph. A signature subsequently consists of a list of
graph links for the ordered nodes, where the node ordering is used as node
labels. Then, the similarity between two flow graphs with signatures x and y
is calculated as 1 iff z = y, otherwise 0. The approximate flow graph match-
ing algorithm uses string edit distance to quantify the similarity between two
flow graphs. To generate string-based signatures, they apply the decompilation
technique of structuring. The intuition is that malware variants share similar
high-level structured control flow. The authors claim that the probability of
detecting the new malware as the variant of existing malware is 88 %.

A Survey on Mining Program-Graph Features for Malware Analysis 229

5.2 Code Graph Based Systems

In [24], Jeong and Lee proposed a code graph based malware detection system
by analyzing the instructions related to the system-call sequence in binary exe-
cutables and then demonstrating their outcomes in the form of a topological
graph. These topological graphs are used to preview the effects of programs on
a system. Application programs are then tested with the code graph system
to extract their distinctive characteristics. These distinctive characteristics
are then used to separate malwares (worms and botnets) from normal pro-
grams. The authors claim to detect 67 % of unknown malwares from normal
programs.

In [1], Anderson et al. present a code graph-based malware detection technique
by dynamically collecting instruction traces of the executables. The instruc-
tions represent nodes in the graph. To transform the graphs into Markov
chains, the links are labeled with transition probabilities, where the transition
probabilities are estimated from the data contained in the trace. A similarity
matrix between the graphs is constructed by using a combination of graph
kernels. To perform the classification, the similarity matrix is then sent to a
support vector machine. The above technique significantly outperforms the
signature-based and many other machine learning-based detection methods.
Runwal et al. [34] present a method for computing the similarity of executable
files, based on opcode graphs. This opcode graph based technique is similar
but simpler than the one based on instruction trace graphs proposed in [1].
Instead of using graph kernels to generate scores and SVMs for classifications,
the authors directly compare the opcode graphs and compute the similarity
scores. The authors then propose to apply these similarity scores to detect
metamorphic malwares and claim that their approach can outperform a pre-
viously developed technique in [44] based on hidden Markov models.

5.3 Call Graph Based Systems

In [4], Bergeron et al. propose a malware analysis technique based on pro-
gram graph, which consists of three major steps. Firstly, the binary code
of the program is transformed into an internal intermediate form. Secondly,
the intermediate form is converted to various relevant graphs, e.g., control-
flow graph, data-flow graph, call graph and critical-API graph via flow-based
analysis. Finally, these graphs are checked and verified against the security
policy.

Lee et al. [28] propose to reduce the call graphs of malwares into code graphs
for extracting semantic signatures. To do so, they consider only API calls in
the call graphs. They produce 128 groups (32 objects 4 behaviors) to reduce
the sizes of the call graphs. During this reduction step, links represented
call relationships are maintained. Finally, a code graph is represented by a
128x128 adjacent matrix and saved. To estimate the similarity between two
code graphs, they divide the number of links of the union graph with the num-
ber of links of the intersection graph. A suspicious program is identified by

230 M.S. Islam et al.

computing its code graph similarity score with the code graphs of the known
malwares. The authors claim that their proposed mechanism achieves 91 %
detection ratio of real-world malwares and detects 300 metamorphic malwares
that can evade anti-virus (AV) scanners.

In [21] Han et al. propose a metamorphic malware classification method using
the sequential characteristics of API calls used. The authors also present
experimental results using the proposed method with some malware samples.

5.4 Other Graph Based Systems

Fredrikson et al. [18] present an automatic technique for extracting optimally
discriminative specifications, which can be used by a behavior-based malware
detector based on graph mining and concept analysis. To do so, they first
divide the positive (benign) set of programs into disjoint subsets of behav-
iorally similar programs. Then, a dependence-graph is constructed for each
malware and benign application to represent its behavior. Then, significant
behaviors specific to each positive subset are mined. A significant behavior is
a sequence of operations that distinguishes the programs in a positive subset
from all of the programs in the negative (malware) subset. The author use
structural leap mining to identify multiple distinct graphs that are present
in the dependence graphs of the positive subset and absent from the depen-
dence graphs of the negative set. The significant behaviors mined from each
positive subset are combined via concept analysis to obtain a discriminative
specification for the whole positive set. A specification is said to be discrimi-
native if it matches malicious programs but does not match benign programs
and therefore, can be used in the detection of unknown malware. The authors
claim to achieve an 86 % detection rate on new, unknown malware, with 0
false positives.

The authors in [23] present a system called JACKSTRAWS, which automati-
cally extracts and generalizes graph templates to capture the core of different
kinds of command and control (C&C) activities. Then, these C&C templates
are matched against the behavioral graphs produced by other bots. Firstly,
the authors record the activities (e.g., system calls) on the host system that
are related to data that is sent over and received via each network connection.
These activities are then used to construct the behavioral graphs. One graph
is constructed for each connection. Then, all behavioral graphs that are con-
structed during the execution of a malware sample are checked against the
templates of different types of C&C communication. When a sufficiently close
match is found, the corresponding connection is reported as C&C channel. The
authors claim that JACKSTRAWS can accurately detect C&C connections,
even for bot families that were not previously used to generate the templates.
The authors in [11] present Polonium, which is a novel semantic technology for
detecting malicious programs via large-scale graph inference. Polonium applies
scalable belief propagation algorithm to compute the reputation of program
files and program files with low reputations are identified as malwares. They
generate an undirected and unweighted bipartite machine-file graph from the

A Survey on Mining Program-Graph Features for Malware Analysis 231

raw data. A link exists between a file and a machine that has the file. The links
are unweighted and there exists at most one link between a file and a machine.
The algorithm predicts the label of a node from some prior knowledge about
the node and from its neighbor nodes. The idea is that good files are supposed
to appear on many machines and bad files appear only on few machines.

6 Future Challenges

This section presents the future challenges of mining program graphs under the
generalized malware detection framework depicted in Fig. 3.

6.1 Efficient Construction of (Lossless) Program Graph

A malware can damage the host as soon as it starts its execution. Therefore,
the most effective means of protecting the host system is to detect and block
the malware before it starts executing. Graph based representation of program
is a natural way to understand its semantics [18] and also facilitate unveiling
its execution intent [42]. In connection with this, a program graph must satisfy
the following properties: (a) it should characterize the program accurately and
include all important information needed by the feature extraction module of
the detectors to reduce the false positives/negatives; (b) it should be easily
comprehensible by a human being to facilitate user feedback in the system; (c) it
should be easy to identify the similarity /dissimilarity of multiple program graphs
to increase the accuracy and also for detecting polymorphic malwares; and (d) it
should be easy to distinguish the program graphs of different groups to separate
malwares from benign programs. Most of the existing works propose detection
techniques that apply various noise reduction/node summarization techniques
(e.g., [28]) and are therefore, lossy. It should be noted that properties (c) and
(d) are quite hard to ensure in the program graph (one diminishes the other)
and therefore, a very challenging problem. The study made by Cesare and Xiang
in [9] may help towards addressing the above problem.

6.2 Exact Matching vs. Approximate Matching

In exact graph matching, we test whether a program graph is a subgraph or
supergraph of another program graph and is important for detecting polymor-
phic malwares [7]. However, testing subgraph or supergraph isomorphism is an
NP-hard problem [20]. This problem becomes more hard as polymorphic mal-
wares add noise (e.g., obfuscated codes) into the original version of the mal-
ware program, which urges an efficient noise reduction techniques before feeding
the program graph to the matching algorithm and also, approximate matching
techniques between program graphs in large datasets. To facilitate approximate
matching for nodes and links between pair of program graphs, the node label-
ing function [, and link labeling function [, in the program graph g can be
enhanced to return additional information about nodes and links beyond their

232 M.S. Islam et al.

labels. For example, the sub-function nodes in the program graph can itself rep-
resent another sub-program graph which can be used to match sub-function node
of another program graph that has a different node label. Approximate graph
matching also urges an efficient indexing mechanism in the databases for storing
program graphs. The approximate matching techniques proposed in the existing
works are either insufficient or inapplicable in large scale datasets. The advanced
graph indexing techniques proposed elsewhere [43,50] can be borrowed to serve
this. We can also transform the pair-wise similarity problem into a similarity
search problem over the database.

6.3 Behavioral Patterns and Malware Signatures

The success of malware detection based on mining program graphs depends
on discovering discriminative and important behavioral program graph pat-
terns/features that can separate malwares from benign programs [18]. The
system-call calling sequences encoded in the program graph paths and infor-
mation encoded in it can be exploited to serve this. Frequent paths can be
treated as behavioral patterns. However, polymorphic codes may transform the
frequent path to be infrequent. To solve this, a path can be represented by a
string and thereafter, approximate string matching [31] along with noise reduc-
tion [28] techniques can be applied to find frequent paths from the program
graphs. Also, frequent-subgraph idea can be implemented to discover frequent
patterns and thereby, to identify metamorphic code in the program. The authors
in [25] propose to relax the rigid structure constraint of frequent subgraphs by
introducing connectivity to frequent itemsets, which can eases the detection of
metamorphic code in the malware program. The malware detectors must also
conform properties such as soundness and completeness [33] of them. The chal-
lenge is to incorporate these techniques in an integrated manner. None of the
existing techniques works in this direction.

6.4 Non-executable Code

There are worms that do not rely on executable codes, rather these worms are
written in non-compiled scripting languages. These kind of worms urge special-
ized techniques to detect their behavioral patterns through program graph. We
believe that the generalized program graph construction techniques [18,36] and
features of binary programs [9] can be customized to serve this purpose. An
obvious challenge is to analyze malware program in heterogeneous environments
e.g., matching a polymorphic malware in a platform that is different from the
known malware’s platform (i.e., inter-platform comparability).

6.5 Other Graphs

There are works based on graphs, other than the control-flow or code-graphs,
utilizes information not only encoded in the program itself, but also its host
[11] and its command and control activities [23]. A hybrid approach can be
implemented to have the positive aspects of both of these techniques.

A Survey on Mining Program-Graph Features for Malware Analysis 233

6.6 User Feedback

To the best of our knowledge, user feedback is not studied in graph based mal-
ware detection techniques. Li et al. [29] develop a malware (virus) detection
technique with real-valued negative selection (RVNS) algorithm. The authors
propose to utilize the arguments of process calls to train the detector and inte-
grate user feedback for tuning the threshold between normal files and viruses.
User feedback can be used not only for improving the system performance as
described above but can also be tied to improve the usability and transparency
of the system. Stumpf et al. [39] demonstrate that it is possible to improve the
accuracy of the machine learning system as well as gain the trust of the users by
gathering various forms of user feedback, e.g., collecting user feedback on why
the prediction was wrong after explaining how the reasoning made by the sys-
tem. We propose to utilize such forms of user feedback from graph construction
(e.g., nodes/links selection) to feature and system’s parameters selection. The
challenge is to develop a model that requires minimal user involvement and is
also capable of integrating it to tune the model parameters successfully.

7 Conclusion

This paper presents a brief survey on malware detection techniques based on
mining program graph features. We have outlined the variants of program graph,
their properties and presented the surveyed works under them. We have also
presented the challenges that have not been addressed yet as future research
direction. To the best of our knowledge there are no other surveys on malware
detection based on program graph analysis. We believe that the tutorial and
future research challenges presented in this paper may serve as the collective
knowledge base among the malware research community.

Acknowledgement. M.S. Islam and C. Liu are supported by the Australian Research
Council (ARC) discovery project no. DP140103499.

References

1. Anderson, B., Quist, D., Neil, J., Storlie, C., Lane, T.: Graph-based malware detec-
tion using dynamic analysis. J. Comput. Virol. 7(4), 247-258 (2011)

2. Bailey, M., Cooke, E., Jahanian, F., Xu, Y., Karir, M.: A survey of botnet tech-
nology and defenses. In: Cybersecurity Applications & Technology Conference for
Homeland Security, pp. 299-304. IEEE Computer Society, Washington, DC (2009)

3. Balakrishnan, A., Schulze, C.: Code obfuscation literature survey (2005). http://
pages.cs.wisc.edu/~arinib/writeup.pdf

4. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.:
Static detection of malicious code in executable programs. Int J. of Req. Eng.
2001, 184-189 (2001)

5. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating malware using
control-flow graph matching. In: Biischkes, R., Laskov, P. (eds.) DIMVA 2006.
LNCS, vol. 4064, pp. 129-143. Springer, Heidelberg (2006)

http://pages.cs.wisc.edu/~arinib/writeup.pdf
http://pages.cs.wisc.edu/~arinib/writeup.pdf

234

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

M.S. Islam et al.

Carrera, E., Erdélyi, G.: Digital genome mapping-advanced binary malware analy-
sis. In: Virus Bulletin Conference (2004)

Cesare, S., Xiang, Y.: A fast flowgraph based classification system for packed and
polymorphic malware on the endhost. In: AINA, pp. 721-728 (2010)

Cesare, S., Xiang, Y.: Malware variant detection using similarity search over sets
of control flow graphs. In: TrustCom, pp. 181-189 (2011)

Cesare, S., Xiang, Y.: Static analysis of binaries. In: Software Similarity and Clas-
sification. SpringerBriefs in Computer Science, pp. 41-49. Springer, London (2012)
Cesare, S., Xiang, Y., Zhou, W.: Malwise - an effective and efficient classification
system for packed and polymorphic malware. IEEE Trans. Comput. 62(6), 1193—
1206 (2013)

Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Large scale
graph mining and inference for malware detection. In: SDM, pp. 131-142 (2011)
Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X., Han, J.: Mining
graph patterns efficiently via randomized summaries. PVLDB 2(1), 742-753 (2009)
Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1-6:42 (2008)
Eskandari, M., Hashemi, S.: Metamorphic malware detection using control flow
graph mining. Int. J. Comput. Sci. Netw. Secur. 11(12), 1-6 (2011)

Eskandari, M., Hashemi, S.: A graph mining approach for detecting unknown mal-
wares. J. Vis. Lang. Comput. 23(3), 154-162 (2012)

Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection.
In: Third International Conference on Emerging Security Information, Systems
and Technologies, pp. 268-273 (2009)

Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 3-14 (2011)

Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R., Yan, X.: Synthesizing near-
optimal malware specifications from suspicious behaviors. In: IEEE Symposium on
Security and Privacy, pp. 4560 (2010)

Garcia-Teodoro, P., Diaz-Verdejo, J.E., Macid-Fernandez, G., Vazquez, E.:
Anomaly-based network intrusion detection: techniques, systems and challenges.
Comput. Secur. 28(1-2), 18-28 (2009)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

Han, K.S., Kim, LK., Im, E.: Malware classification methods using api sequence
characteristics. In: Kim, K.J., Ahn, S.J. (eds.) Proceedings of the International
Conference on IT Convergence and Security 2011. Lecture Notes in Electrical Engi-
neering, vol. 120, pp. 613-626. Springer, Netherlands (2012)

Islam, R., Tian, R., Batten, .M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646-656
(2013)

Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: picking command and
control connections from bot traffic. In: USENIX Security Symposium (2011)
Jeong, K., Lee, H.: Code graph for malware detection. In: ICOIN, pp. 1-5 (2008)
Khan, A., Yan, X., Wu, K.L.: Towards proximity pattern mining in large graphs.
In: SIGMOD Conference, pp. 867-878 (2010)

Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm
detection using structural information of executables. In: Valdes, A., Zamboni, D.
(eds.) RAID 2005. LNCS, vol. 3858, pp. 207-226. Springer, Heidelberg (2006)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

A Survey on Mining Program-Graph Features for Malware Analysis 235

Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated
binaries. In: USENIX Security Symposium, p. 18 (2004)

Lee, J., Jeong, K., Lee, H.: Detecting metamorphic malwares using code graphs.
In: SAC, pp. 1970-1977 (2010)

Li, Z., Liang, Y., Wu, Z., Tan, C.: Immunity based virus detection with process
call arguments and user feedback. In: Bio-Inspired Models of Network, Information
and Computing Systems, pp. 57-64 (2007)

Majumdar, A., Thomborson, C., Drape, S.: A survey of control-flow obfuscations.
In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 353-356. Springer,
Heidelberg (2006)

Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31-88 (2001)

Perry, D.: Here Comes the Flood or end of the Pattern file. Virus Bulletin, Ottawa
(2008)

Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach
to malware detection. SIGPLAN Not. 42(1), 377-388 (2007)

Runwal, N., Low, R.M., Stamp, M.: Opcode graph similarity and metamorphic
detection. J. Comput. Virol. 8(1-2), 37-52 (2012)

Shabtai, A., Moskovitch, R., Elovici, Y., Glezer, C.: Detection of malicious code by
applying machine learning classifiers on static features: a state-of-the-art survey.
Inf. Secur. Tech. Rep. 14(1), 16-29 (2009)

Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characteriz-
ing large scale program behavior. SIGARCH Comput. Archit. News 30(5), 45-57
(2002)

Siddiqui, M., Wang, M.C., Lee, J.: A survey of data mining techniques for malware
detection using file features. In: ACM Southeast Regional Conference, pp. 509-510
(2008)

Silva, S.S.C., Silva, R.M.P., Pinto, R.C.G., Salles, R.M.: Botnets: a survey. Comput.
Netw. 57(2), 378-403 (2013)

Stumpf, S., Rajaram, V., Li, L., Wong, W.K., Burnett, M.M., Dietterich, T.G.,
Sullivan, E., Herlocker, J.L.: Interacting meaningfully with machine learning sys-
tems: three experiments. Int. J. Hum.-Comput. Stud. 67(8), 639-662 (2009)
Tavallaee, M., Stakhanova, N., Ghorbani, A.A.: Toward credible evaluation of
anomaly-based intrusion-detection methods. Trans. Sys. Man Cyber. Part C 40(5),
516-524 (2010)

Wagener, G., State, R., Dulaunoy, A.: Malware behaviour analysis. J. Comput.
Virol. 4(4), 279-287 (2008)

Wagner, D., Dean, D.: Intrusion detection via static analysis. In: Proceedings of
the 2001 IEEE Symposium on Security and Privacy, pp. 156-169 (2001)

Wang, X., Ding, X., Tung, A.K.H., Ying, S., Jin, H.: An efficient graph indexing
method. In: ICDE, pp. 210-221 (2012)

Wong, W., Stamp, M.: Hunting for metamorphic engines. J. Comput. Virol. 2(3),
211-229 (2006)

Ye, Y., Wang, D., Li, T., Ye, D.: Imds: intelligent malware detection system. In:
ACM SIGKDD, pp. 1043-1047 (2007)

You, I., Yim, K.: Malware obfuscation techniques: a brief survey. In: BWCCA, pp.
297-300. IEEE (2010)

Yu, Z., Tsai, J.J.: Intrusion Detection: A Machine Learning Approach, vol. 3.
Imperial College Pr., London (2010)

236

48.

49.

50.

M.S. Islam et al.

Zhang, L., Yu, S., Wu, D., Watters, P.. A survey on latest botnet attack and
defense. In: TrustCom, pp. 53-60 (2011)

Zhang, M.L., Zhou, Z.H.: Ml-knn: a lazy learning approach to multi-label learning.
Pattern Recogn. 40(7), 2038-2048 (2007)

Zhu, Y., Qin, L., Yu, J.X., Cheng, H.: Finding top-k similar graphs in graph data-
bases. In: EDBT, pp. 456-467 (2012)

	A Survey on Mining Program-Graph Features for Malware Analysis
	1 Introduction
	2 Related Surveys
	3 Preliminaries
	4 A Generalized Malware Detection System Based on Program Graph Analysis
	5 Surveyed Works
	5.1 Control-Flow Graph Based Systems
	5.2 Code Graph Based Systems
	5.3 Call Graph Based Systems
	5.4 Other Graph Based Systems

	6 Future Challenges
	6.1 Efficient Construction of (Lossless) Program Graph
	6.2 Exact Matching vs. Approximate Matching
	6.3 Behavioral Patterns and Malware Signatures
	6.4 Non-executable Code
	6.5 Other Graphs
	6.6 User Feedback

	7 Conclusion
	References

