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Abstract. Network anomalies have been a serious challenge for the
Internet nowadays. In this paper, two new metrics, IGTE (Inter-group
Traffic Entropy) and IGFE (Inter-group Flow Entropy), are proposed
for network anomaly detection. It is observed that IGTE and IGFE are
highly correlated and usually change synchronously when no anomaly
occurs. However, once anomalies occur, this highly linear correlation
would be destroyed. Based on this observation, we propose a linear regres-
sion model built upon IGTE and IGFE, to detect the network anomalies.
We use both CERNET2 netflow data and synthetic data to validate the
regression model and its corresponding detection method. The results
show that the regression-based method works well and outperforms the
well known wavelet-based detection method.
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1 Introduction

Network anomalies have been a serious challenge for the Internet nowadays.
There are basically two classes of detection methods. The first class is called
misused detection, also known as signature-based detection [10,12,17,19,25].
The primary advantage of misused detection is its high degree of accuracy. How-
ever, the misused detection is incapable of detecting emerging anomalies (zero
day attacks), whose features are not known in advance. The second class of
detection methods is called anomaly detection [1,5,16,23]. Anomaly detection
typically derives a normal model of the network data, then computes an “outlier
score” for each data point. The normal model is usually derived from different
quantities of the network traffic, such as the number of packets, the number of
bytes, the number of flows, etc. Outlier score is a measure about the level of “out-
lierness” of each data point, based on the deviation distance from the normal
model. The concept of outlier score is similar to residual which is commonly used
in the field of anomaly detection. In this paper, we will treat these two concepts
equivalently without distinction. Once certain outlier score exceeds predefined
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threshold, an alarm is triggered. Since anomaly detection only cares about the
statistical properties of network traffic rather than specific anomaly features, it
is capable of detecting zero day attacks. This capability is the strong advantage
of anomaly detection over misuse detection. Hence, anomaly detection has been
well studied by researchers in recent years [24,27,30,32].

The wavelet analysis is widely applied in anomaly detection [7,9,11,26,28].
Barford et al. [2] first introduce wavelet techniques into the field of network
anomaly detection. They first use wavelets filters to decompose single-link traf-
fic into three parts: low-frequency part, mid-frequency part, high-frequency part,
and then they use the local variances of mid-frequency part and high-frequency
part to generate a V-signal, then apply thresholding to the V-signal to detect
anomalies. The basic idea of the wavelet-based detector is to compare local
variance with global variance. However, it ignores the fact that the variance of
network traffic is usually proportional to the absolute volume of network traffic.
High traffic volume usually corresponds to massive active users in the network.
Therefore, large local variance is more likely to be a result from normal net-
work behavior rather than anomalies. Unfortunately, the wavelet-based detector
ignores this fact and is prone to generate false positives.

Given the shortcomings of wavelet-based detector, we propose a new anom-
aly detection method based on two new metrics—IGTE and IGFE. These two
metrics are basically entropies summarizing the distribution of the traffic volume
and the number of IP flows among different groups. We focus on the relation
between IGTE and IGFE rather than the variance, which makes this new method
unaffected by the absolute network traffic volume. First, we randomly map the
network flows which constitute the network traffic into fixed number of groups.
The number of bytes and the number of network flows are calculated for each
group. Consequently, we obtain two matrices, which are called Randomly Aggre-
gated Traffic Matrix (RATM) and Randomly Aggregated Flow Matrix (RAFM).
It is assumed that the distribution of the traffic volume among different groups
and the distribution of the number of flows should resemble each other. Then
we calculate two types of entropies based on the columns of RATM and RAFM
respectively. These two entropies are called Inter-group Traffic Entropy (IGTE)
and Inter-group Flow Entropy (IGFE). It is found that IGTE and IGFE are
highly correlated under normal condition, and when anomalies occur, this corre-
lation will be destroyed. Based on this observation, we propose a regression-based
detection method. Using CERNET2 Netflow data and synthetic data, we val-
idate that our regression-based detector is capable of achieving high detection
rate and low false positive rate.

The main contributions of this paper are: (1) putting forward two new
metrics—IGTE and IGFE—which are effective for anomaly detection, (2) vali-
dating the highly linear correlation between IGTE and IGFE, (3) proposing a
new effective regression-based anomaly detection method built upon IGTE and
IGFE, (4) analyzing the shortcomings of wavelets-based detection method [2].

The remainder of this paper is organized as follows. Section 2 presents related
work in the field of anomaly detection. In Sect. 3, we introduce the procedure
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of generating RATM and RAFM. In Sect. 4, we illustrate how to derive two
new metrics—IGTE and IGFE—from RATM and RAFM, and show the highly
linear correlation between them. We explain the principle and rationale of the
regression based detector in Sect. 5. In Sect. 6, we compare the regression-based
detector and the famous wavelets-based detector by using both CERNET2 Net-
flow data and synthetic data. We conclude this work in Sect. 7.

2 Related Work

In recent years, lots of researches have been devoted to the field of anomaly
detection. Yaacob et al. [29] introduce a new approach through using Auto-
Regressive Integrated Moving Average (ARIMA) technique to detect potential
attacks in the network. Although they show the capability of ARIMA model of
predicting future data, their validation process is rough, and the threshold they
choose is heuristic.

Silveira et al. [22] state that when many network flows are multiplexed on
a non-saturated link, their volume changes tend to cancel each other out over
short timescales, making the average change across flows approximately follows
the normal distribution. Based on this observation, they propose the ASTUTE-
based anomaly detector. While it is good at detecting anomalies which involve
many small IP flows, it fails to detect anomalies caused by a few large IP flows.
Besides that, the efficacy of the ASTUTE-based detector highly depends on the
stationarity of network traffic. The authors claim that at short timescales (less
than a hour), the traffic can be well modeled by stationary processes. However,
this conclusion does not always holds for all networks. It performs poorly in those
networks in which IP flows are changeable. For example, the CERNET2 Netflow
data used in this paper contains many IP flows which emerge and vanish quite
suddenly. The ASTUTE-based detector marks almost every point in the data set
as anomalous, which is practically impossible in real world. We manually check
Netflow data and consult the operators of CERNET2, it turns out that most
of the anomalies detected by the ASTUTE-based detector are false positives.
Therefore, we do not adopt ASTUTE-based detector as comparison in this paper.

Lakhina et al. [14,15] first apply principal component analysis (PCA)
in network-wide anomaly detection. PCA-based detector (also referred to as
subspace-based detector) uses the first few principal components to derive nor-
mal model from the original link traffic matrix, and then applies thresholding to
the residual traffic to detect anomalies. The advantage of the PCA method is its
capability of detecting small anomalies distributed over multiple links which are
hard to detect in single-link traffic. Since this method is applied to link traffic
matrix, it is limited to the network-wide anomaly detection. Besides, there are
some inherent weaknesses of PCA based detector. For example, a large anom-
aly may inadvertently pollute the normal subspace, the effectiveness of PCA is
sensitive to the level of aggregation of the traffic measurements, and the false
positive rate is sensitive to small differences in the number of principal com-
ponents in the normal subspace [18,31]. Rubinstein et al. [21] show that the
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attackers can successfully evade PCA-based detection by only adding moderate
amounts of poisoned data. Besides, since all kinds of PCA-based detectors need
to operate on the link traffic matrix, it is necessary to collect data from all links
in the networks simultaneously. However, it is usually a difficult task for large
networks. The lack of scalability limits the application of PCA-based detectors.
In this paper, we only focus on anomaly detection for single-link traffic.

3 RATM and RAFM

Before introducing RATM and RAFM, we give the definition of IP flow here for
the purpose of illustration. In practice, an IP flow can be defined in multiple
ways according to different contexts. In this study, an IP flow is defined as a
sequence of packets that share the same five-tuple value (Source IP address,
Destination IP address, Source port, Destination port and Protocol type).

We select the five-tuple values of IP flows as key, and hash them into fixed
number of groups. The number of groups are selected by the network operators
according to the needs. For each group, we calculate the overall traffic volume
of the IP flows mapped into it during each time interval, then the RATM is
generated. The rows of RATM correspond to different time intervals, the columns
correspond to different groups. In detail, the (i, j) entry of RATM corresponds to
the traffic volume of group j at time instant i. Similarly, the RAFM is generated
by counting the number of IP flows in each group during each time interval.
Thus, the (i, j) entry of RAFM corresponds to the number of IP flows in group
j at time instant i.

4 Two New Metrics—IGTE and IGFE

Intuitively, for a given group, under normal condition, the more IP flows mapped
into the group, the higher traffic volume would be contained in that group.
Consequently, the distribution of traffic volume among different groups should
resemble to the distribution of number of IP flows. Entropy can be used as
a summarization tool for probability distributions from the point of view of
information theory [15]. Thus we calculate the entropies for the rows of RATM
and RAFM respectively. The entropy for RATM is named Inter Group Traffic
Entropy (IGTE), the entropy for RAFM is named Inter Group Flow Entropy
(IGFE). The details for calculating IGTE and IGFE are given as follows.

Suppose a t×p RATM T , where t is the number of time intervals considered,
p is the number of groups predefined. For a given row i of T , the definition of
IGTE is defined as follows:

IGTEi = −
p∑

j=1

{
T (i, j)∑p

j=1 T (i, j)
ln

T (i, j)∑p
j=1 T (i, j)

}
(1)
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Fig. 1. Network traffic from CERNET2
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Fig. 2. IGFE series versus IGTE series from CERNET2

where T (i, j) is the (i, j) entry of T , 1 ≤ i ≤ t, 1 ≤ j ≤ p. Similarly, for a given
row i of a RAFM denoted by F , the definition of IGFE is defined as follows:

IGFEi = −
p∑

j=1

{
F (i, j)∑p

j=1 F (i, j)
ln

F (i, j)∑p
j=1 F (i, j)

}
(2)

where F (i, j) is the (i, j) entry of F , 1 ≤ i ≤ t, 1 ≤ j ≤ p. Therefore, based on
RATM and RAFM, we can obtain an IGTE series and an IGFE series respec-
tively. Note that IGTE and IGFE are essentially entropies. If the distribution of
traffic volume and that of the number of flows resemble to each other, IGTE and
IGFE should be highly correlated. In order to validate this conjecture, we cal-
culate the IGTE and IGFE series from approximately three-day network traffic
obtained from CERNET2 (an academic network in China which will be described
in detail later) which is shown in Fig. 1, and plot the IGTE and IGFE series in
Fig. 2. It is shown that the curve of IGFE series is extremely similar to the curve
of IGTE series, which implies that IGFE and IGTE are highly linearly corre-
lated. To verify this conjecture rigorously, we calculate the correlation coefficient
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between these two series. The result is 0.976, which means IGTE and IGFE are
indeed highly linearly correlated. Note that the three-day network traffic may
contain anomalies which are not known a priori. Even so, the linear relationship
between IGTE and IGFE is strong enough. This observation lays the foundation
of our regression based detector.

5 Detection Methods

5.1 Regression-Based Detection

Based on IGTE and IGFE, we propose a new anomaly detection method using
linear regression analysis. The goal of regression analysis is to construct math-
ematical models which describe relationships that may exist between variables
[20]. Usually, we are interested in just one variable, i.e. the response variable,
and we want to study how it depends on a set of variables which are called
explanatory variables.

Let y denote the response variable, x1, x2, . . . , xp denote the set of explana-
tory variables. Denote the samples from y as Y = (y1, y2, . . . , yn)T , the samples

from x1, x2, . . . , xp as Xe =

⎛

⎜⎜⎜⎝

x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp

⎞

⎟⎟⎟⎠. The goal of regression analysis

is to obtain the relationship of dependency between y and x1, x2, . . . , xp.
Regression analysis assumes y and x1, x2, . . . , xp satisfy the following linear

regression equation:

y = β0 + β1x1 + . . . + βpxp + e (3)

where e ∼ N(0, σ2), σ, β0, β1, . . . , βp are parameters to be determined. From
Eq. (3), the corresponding samples should satisfy the following equation:

Y = Xβ + E (4)

where X = (1,Xe) is defined as the extended matrix of Xe, β =
(β0, β1, . . . , βp)T , E ∼ N(0, σ2I).

Define Q(β) =
∑n

i=1{yi − (β1xi1 +β2xi2 + . . .+βpxip)}2 = ||Y −Xβ||2, then
Q(β) measures the noise of the regression equation. The optimal estimate of β
should make Q(β) as small as possible. Thus the estimate of β is as follows:

β̂ = (XT X)−1XT Y (5)

Then the estimate of σ2 is as follows:

s2 =
1

n − p − 1
Q(β̂) (6)

We define the normal model of Y as follows:

Ŷ = Xβ̂ (7)
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Then the estimate of E is
Ê = Y − Ŷ (8)

Note that Ê is the outlier scores, i.e. residuals, of all data points. Intuitively, if
the residual of a given data point is close to 0, the data point would be normal,
otherwise, the point would be abnormal.

The procedure of detection is as follows. First, we calculate Ê from the sam-
ples as described above. For convenience, we denote Ê as (ê1, ê2, . . . , ên). For a
given sample point i, where 1 ≤ i ≤ n, under normal condition, êi should follows
the normal distribution N(0, s2), based on the assumption of Eq. (3). For a given
confidence level 1 − α, if | êi

s | > zα/2, where zα/2 is the upper α/2 quantile of
standard normal distribution N(0, 1), the data point i is marked as an anomaly.
The meaning of the confidence level is that when a data point is marked as an
anomaly, the probability of being a false alarm is α.

Note that the success of the regression model depends greatly on the linear
correlation between the response variable and the set of explanatory variables.
Given the discussion in Sect. 4, IGTE and IGFE are highly linearly correlated.
Therefore, we choose IGTE as the response variable, IGFE as the explanatory
variable in this study. Let y denote IGTE and x denote IGFE. The regression
equation built upon them is give below.

y = β0 + β1x + e (9)

where e ∼ N(0, σ2), σ, β0 and β1 are parameters to be determined.
The details of our regression based detector is summarized in Algorithm 1 .
Note that there is an important auxiliary procedure which is not illustrated in

Algorithm 1 due to space limitations. After Y = (IGTE1, IGTE2, . . . , IGTEt)T

and X = (1,Xe) are calculated, i.e. after step 7, it is necessary to test rigorously
whether it is appropriate to build regression equation upon them. In other words,
we must test whether the dependence of Y on X is strong enough for the correct-
ness of the regression model. There are two kinds of significance tests for this:
F test and t test [20]. Only when the data passes both tests, the corresponding
regression model can be considered reasonable.

5.2 Rationale Behind Regression-Based Detection Method

Network traffic consists of IP flows. Anomalies usually change the number of IP
flows on the link or the traffic volume of certain IP flows. Some anomalies such
as port scans, would generate lots of small IP flow in the network. This leads to
large increase in the number of IP flow, which makes the IGFE change dramat-
ically. However, the traffic generated by the anomalies is very small compared
to the overall traffic volume on the link, which barely changes the IGTE value.
Therefore, the linear correlation between IGTE and IGFE is destroyed, and the
regression-based detector generates large residual to trigger alarms.

Some anomalies such as DDoS attacks, would increase the number of IP
flows and the traffic volume at the same time. However, the magnitude of traffic
volume change is much larger than the number of IP flows. Hence, the degree of
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Algorithm 1. Regression based anomaly detector
Input: t × p RATM; t × p RAFM; zα/2;
Output: Time intervals containing anomalies;
1: for all i such that 1 ≤ i ≤ t do

2: IGTEi = −∑p
j=1

{
T (i,j)

∑p
j=1 T (i,j)

ln T (i,j)
∑p

j=1 T (i,j)

}

;

3: IGFEi = −∑p
j=1

{
F (i,j)

∑p
j=1 F (i,j)

ln F (i,j)
∑p

j=1 F (i,j)

}

;

4: end for
5: Y = (IGTE1, IGTE2, . . . , IGTEt)

T ;
6: Xe = (IGFE1, IGFE2, . . . , IGFEt)

T ;
7: X = (1, Xe);
8: β̂ = (XT X)−1XT Y ;
9: Ê = (ê1, ê2, . . . , êt)

T = Y − X × β̂;
10: Q(β̂) =

∑n
i=1{yi − (β1xi1 + β2xi2 + . . . + βpxip)}2;

11: s =
√

1
n−p−1

Q(β̂);

12: Ê = Ê/s;
13: for i = 1 to t do
14: if |ei| > zα/2 then
15: Output: Time interval i;
16: end if
17: end for

change of IGTE is much large than IGFE. It results in the breach of the linear
relation between IGTE and IGFE, and the anomalies would be detected by the
regression-based detector.

There are also some anomalies which would increase the number of IP flows
and decrease the traffic volume. Take Low-rate DDoS attacks [13] for example,
the attackers would generate millions of attacking IP flows, which will definitely
change the IGFE value. On the other hand, the traffic volume generated by
the attacking IP flows is very low on average, since these attacks are performed
in the form of pulses. At the same time, the traffic volume of the normal IP
flows would be reduced dramatically due to the congestion control mechanism
in network. Therefore the overall traffic on the link would decrease dramatically,
which would cause the change of IGTE value. Though both IGTE and IGFE
change, they change in opposite directions, which destroys the linear relationship
between them. Hence, these anomalies can be detected by the regression-based
detector.

6 Validation

6.1 Dataset

The data used in this paper is Netflow Records collected from the Second Gen-
eration of China Education and Research Network (CERNET2). CERNET2
connects 25 PoPs including Peking University, Tsinghua University, Beijing
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University of Aeronautics and Astronautics (Beihang University), University of
Science and Technology, etc. The Netflow data is collected from a border router
connecting CERNET2 backbone and Beihang University Campus Network. The
data collection architecture is shown in Fig. 3. The Netflow V9 protocol [4] is
used to collect the data passing through the border router (i.e. Netflow exporter),
and transfer the Netflow records to a storage server. The sampling rate is set to
1 : 1000. Lots of information for each IP flow within every five minutes are saved,
including the five-tuple value, the total number of bytes and packets, the starting
time and finishing time, etc. The average traffic volume in five minutes is about
1.525 × 108 bytes. The average traffic volume of each IP flow is about 985 bytes.
The average number of IP flows is about 154730. Note that these numbers are
calculated from the sampled data. The numbers should be multiplied by 1000
for the un-sampled data.

Fig. 3. Data collection architecture

We collected Netflow records from a border router connecting CERNET2
backbone and Beihang University campus network from 21:45 in August 26 to
23:10 in August 29, 2013. The corresponding network traffic is already shown
in Fig. 1. We set the number of groups as 1024. Since the Netflow records are
stored every five minutes, there are totally 882 time units during the data col-
lection period, then a 882× 1024 RATM and a 882× 1024 RAFM are generated
respectively.

In this paper, we use the CERNET2 data by two different means. One is
to directly apply the detection methods on the CERNET2 data. The other one
is to manually inject anomalies into the “cleaned” CERNET2 data, and then
apply the detection methods on this synthesized data. The advantage of using
CERNET2 data directly is that it can compare the performance of different
detection methods in real networks. The advantage of using synthetic data is the
capability of obtaining the detection rate and false positive rate by controlling
the process of injecting anomalies.
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6.2 Validation Using Real World Data

From the 882 × 1024 RATM and RAFM above, an IGTE series and an IGFE
series—both of length 882—are obtained. Their curves are already presented in
Fig. 2. We choose IGTE as the response variable, denoted by y, and IGFE as
the explanatory variable, denoted by x. From Eqs. (5), (6) and (9), we have:

y = −0.72631 + 1.09724x + e (10)

where e ∼ N(0, 0.0482). Next, we check the significance of regression Eq. (10).
Recall that both F test and t test are used in this work for significance test. We
use the famous statistical software R [3] to do the tests. We set the confidence
level as 1 − α = 1 − 0.05 = 0.95. The p − value of F test outputted by R is
0.26 × 10−8, which is much less than α = 0.05. P − value is a commonly used
metric in hypothesis testing [6]. If the p − value is less than α, the regression
model is accepted as valid. The p − value of F test means that Eq. (10) fits
the data quite well. The resulting p − value of t test is 0.11 × 10−9, which is
again much less than α = 0.05, which also means that Eq. (10) is appropriate
for the data. The residual related to Eq. (10) is illustrated in Fig. 4. We check
these residual data points according to the detection procedure described in
subsect. 5.1, and mark the abnormal points in red circles. There are totally 53
anomalies detected.
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Fig. 4. Anomalies detected by regression-based detector for CERNET2 data (Color
figure online)

As a comparison, we apply the wavelets-based detector [2] to the same data
set. We set the sliding window length as 12. This window size corresponds to one
hour traffic. Thus the output of wavelets-detector, i.e. “deviation scores”, does
not contain the first 11 points in CERNET2 data. In other words, the output
size of wavelets-detector is 882 − 11 = 871. The results are shown in Fig. 5, the
red circles point out the 60 anomalies detected.

Comparing Figs. 4 and 5, we find that only 3 anomalies are detected com-
monly by both detection methods. Does that mean that our regression-based
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Fig. 5. Anomalies detected by wavelets-based detector for CERNET2 data (Color
figure online)

detection method is ineffective? We argue that the wavelets-based detector has
its own limits—it ignores the fact that the variance of network traffic is usu-
ally proportional to the absolute volume of network traffic (as shown in Fig. 1).
Comparing Figs. 1 and 5, it is observed that the anomalies detected by wavelets-
based detector coincide with the time intervals in which traffic volume is high.
It is known that high traffic volume usually corresponds to massive active users
in the network, and the variance of network traffic becomes large accordingly. In
other words, large local variance is more likely to be a result from normal net-
work behavior rather than anomalies. Unfortunately, the wavelets-based detector
ignore this fact and mark these data points as anomalies arbitrarily. Thus we
have reason to believe that most of the alarms triggered by wavelets-based detec-
tor are likely to be false alarms. We manually check the Netflow data and also
consult the operators who run CERNET2, it turns out that there were no sign of
large-scale attacks during the data collecting period, which supports our state-
ment. In the following subsection, we will validate this claim quantitatively and
rigorously.

6.3 Validation Using Synthetic Data

To evaluate the performance of different anomaly detection methods rigorously
and quantitatively, we manually inject anomalies into the “cleaned” CERNET2
Netflow data. The detail is as follows: first, we abandon those time intervals
which are marked by regression-based detector or wavelets-based detector. The
remaining 772 time intervals are considered as “clean” traffic. In other words,
we assume that these 772 time intervals contain no anomalies. Since the only
two detectors applied on the “clean” traffic are regression-based detector and
wavelets-based detector, this assumption makes sense. Then, we manually inject
certain number of anomalous IP flows every 22 time intervals. Thus the total
number of injected anomalies is 35. In the area of anomaly detection, a general
assumption is that the anomalies contained in the data are much less than the
normal points. Thus the number of injected anomalies we choose is reasonable.
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According to the number of anomalous IP flows injected, we evaluate the
performance of detection methods in two cases:

– Anomalies involving a small number of IP flows.
– Anomalies involving many small IP flows.

In the first case, we focus on the impact of the traffic volume of injected
anomalies. We inject 11 anomalous IP flows and gradually increase their traffic
volume. The true positive rate (detection rate) curves and false positive rate
curves are shown in Figs. 6 and 7 respectively. The horizontal coordinates rep-
resent the proportion of the anomalous traffic volume in the total traffic volume
of the link. The vertical coordinates represent the true positive rates and the
false positive rates. The definitions of true positive rate and false positive rate
in this paper originate from the introductory document about ROC analysis [8].
It is illustrated that as the anomalous traffic volume increases, the detection
rate of regression-based detector rises sharply, and the false positive rate falls
quickly. When the anomalous traffic volume reaches 42.8% of the total traffic
volume, the regression-based detector can detect all the injected anomalies while
generate no false alarms. It means that the regression-based detector is good at
detecting anomalies involving a few large IP flows for which the ASTUTE-based
detector performs poor [22]. However, for the wavelets-based detector, the detec-
tion rate increases very slowly. Even when the anomalous traffic volume reaches
60%, which means the order of magnitude of anomalous traffic volume reaches
around 109 bytes, the detection rate is below 5.8%. This result is unacceptable
for practical application. The performance of wavelet-based detector in the point
of view of false positive rate is also poor. As the anomalous traffic increases, the
false positive rate is hardly decreasing, and converges to around 2.4%. In con-
trast, the false positive rate of the regression-based detector falls down quickly.
When the anomalous traffic volume reaches 15%, no false positive is generated.
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Fig. 6. True positive rate for a small number of anomalous IP flows
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Fig. 7. False positive rate for a small number of anomalous IP flows

In the second case, we focus on the impact of the number of anomalous IP
flows. We simulate the scenario of DDoS attacks. We first set the traffic volume of
each injected IP flow as 50 bytes. Considering the average traffic volume of each
IP flow in CERNET2 is around 985 bytes, the traffic volume per anomalous flow
we choose is reasonable and small. Then we gradually increase the number of
injected IP flows. The detection rates and false positive rates of the two detectors
are shown in Figs. 8 and 9. Note that the horizontal coordinates here represent
the proportion of the number of anomalous IP flows in the total number of IP
flows in the link. For the regression-based detector, as the number of anomalous
flows grows, the detection rate curve rises sharply and the false positive rate
curve falls quickly. When the proportion of injected IP flows reaches 41% of the
total number of IP flows, the detect rate reaches 80%. The false positive rate
reaches 0 when the number of anomalous IP flows reaches no more than 4%. On
the other hand, for the wavelets-based detector, the detection rate keeps below
3% and does not grow with the number of anomalous flows. The false positive
rate of the wavelet-based detector keeps around 4%, which seems acceptable at
first. However, when we look deeper into the anomalies marked by the wavelets-
based detector, we find that the number of false positives keeps around 34 and the
number of true positives keeps close to 1. This observation holds no matter how
much the proportion of the number of injected IP flows accounts for. Comparing
the amount of false positives and the amount of true positives it detect, the
performance is really poor. We also try other values of traffic volume for each
injected IP flow, the results are similar.

For both cases, we find that the alarms generated by the wavelets-based
detector again coincide with the time intervals with high traffic volume. This
observation strongly support our reasoning about the shortcomings of wavelets-
based detector—it ignores the fact that large local variances are usually related
to the high traffic volume generated by normal users.

In summary, based on the synthetic CERNET2 data, our regression-based
detector achieves higher detection rate and lower false positive rate than the
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Fig. 8. True positive rate for a large number of anomalous IP flows
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Fig. 9. False positive rate for a large number of anomalous IP flows

wavelets-based detector. Besides, the regression-based detector is good at detect-
ing both anomalies involving a few large IP flows and anomalies involving many
small IP flows. Note that we ignore the scenario where anomalies involve many
large IP flows on purpose. Because in this case, the volume of the network traffic
would change so much that the anomalies can be identified even by the naked
eyes. Both the wavelet-based detector and the regression-based detector perform
excellently in this case. There is no need to show the experiment results in this
case for the sake of brevity.

7 Conclusions and Future Work

In this paper, we propose two new metrics, IGTE and IGFE, for anomaly detec-
tion. It is found that IGTE and IGFE are highly linearly correlated. When anom-
alies occur, this linear correlation will be destroyed. Based on this observation,
we propose the regression based detector which is built upon IGTE and IGFE.
We validate that the regression based detector can achieve high detection rate
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and generate very few false positives. We show that the regression-based detector
is good at detecting both anomalies involving a few large IP flows and anomalies
involving many small IP flows. We compare the regression based detector with
the wavelet-based detector, and find that the former outperforms the latter. We
analyze the reason for the failure of wavelets-based detector. The wavelets-based
detector uses local variance of traffic volume to measure the degree of anomaly.
However, large local variance are usually caused by large number of normal users.
Thus the wavelets-based detector usually generates too many false positives. We
do not deny the possibility that the CERNET2 data used in this paper bias for
the regression-based detector while bias against the wavelet-based detector. In
the future, we plan to use more data sources to validate the regression-based
detector.
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