
High-Level Programming and Symbolic
Reasoning on IoT Resource Constrained Devices

Salvatore Gaglio1,2, Giuseppe Lo Re1, Gloria Martorella1,
and Daniele Peri1(B)

1 DICGIM University of Palermo,
Viale Delle Scienze, Ed. 6, 90128 Palermo, Italy

{salvatore.gaglio,giuseppe.lore,gloria.martorella,
daniele.peri}@unipa.it

2 ICAR CNR,
Viale delle Scienze, Ed. 9, 90128 Palermo, Italy

Abstract. While the vision of Internet of Things (IoT) is rather
inspiring, its practical implementation remains challenging. Conven-
tional programming approaches prove unsuitable to provide IoT resource
constrained devices with the distributed processing capabilities required
to implement intelligent, autonomic, and self-organizing behaviors. In our
previous work, we had already proposed an alternative programming
methodology for such systems that is characterized by high-level pro-
gramming and symbolic expressions evaluation, and developed a light-
weight middleware to support it. Our approach allows for interactive
programming of deployed nodes, and it is based on the simple but effec-
tive paradigm of executable code exchange among nodes. In this paper,
we show how our methodology can be used to provide IoT resource con-
strained devices with reasoning abilities by implementing a Fuzzy Logic
symbolic extension on deployed nodes at runtime.

Keywords: High-level programming · Resource constrained devices ·
Knowledge representation · Fuzzy Logic

1 Introduction

According to the Internet of Thing (IoT) vision [1], all kinds of devices, although
computationally limited, might be used to interact with people or to man-
age information concerning the individuals themselves [6]. Besides reactive
responses on input changes, the whole network may exhibit more advanced
behaviors resulting from reasoning processes carried out on the individual nodes
or emerging from local interactions. However, nodes’ constraints leave the system
designers many challenges to face, especially when distributed applications are
considered [9]. Conventional programming methodologies often prove inappro-
priate on resource constrained IoT devices, especially when knowledge must be
treated with a high level representation or changes of the application goals may
be required after the network has been deployed [8]. Moreover, the implemen-
tation of intelligent mechanisms, as well as symbolic reasoning, through rigid
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
R. Giaffreda et al. (Eds.): IoT360 2014, Part I, LNICST 150, pp. 58–63, 2015.
DOI: 10.1007/978-3-319-19656-5 9

High-Level Programming and Symbolic Reasoning on IoT Resource 59

layered architectures, reveals impracticable on resource constrained devices such
as those commonly used in Wireless Sensor Networks (WSNs). Often this issue is
faced through the adoption of an intelligent centralized system that uses WSNs as
static sensory tools [3]. Indeed, integration of WSN devices in the IoT seems quite
natural and desirable, provided that the aforementioned issues be addressed. In
our previous work [4,5], we introduced an alternative programming methodol-
ogy, along with a lightweight middleware, based on high-level programming and
executable code exchange among WSN nodes. The contribution of this paper
consists in the extension of the methodology to include symbolic reasoning even
on IoT resource constrained devices. The remainder of the paper is organized
as follows. In Sect. 2 we describe the key concepts of our methodology and the
symbolic model we adopted. In Sect. 3, we extend the symbolic approach charac-
terizing our programming environment with Fuzzy Logic, and in Sect. 4 we show
an application to make the nodes reason about their position with respect to
thermal zones of the deployment area. Finally, Sect. 5 reports our conclusions.

2 Key Concepts of the Development Methodology

Mainstream praxis to program embedded devices consists in cross-compilation of
specialized application code together with a general purpose operating system.
The resulting object code is then uploaded to the on-board permanent stor-
age. Instead, our methodology is based on high-level executable code exchange
between nodes. This mechanism, while abstracted, is implemented at a very low
level avoiding the burden of a complex and thick software layer between the
hardware and the application code. Indeed, a Forth environment runs on the
hardware providing the core functionalities of an operating system, including
a command line interface (CLI). This also allows for interactive development,
which is a peculiar feature of our methodology that can be used even to repro-
gram deployed nodes. This way, nodes can be made expand their capabilities by
exchanging pieces of code among themselves in realtime. The CLI is accessible
through either a microcontroller’s UART or the on-board radio [4]. The Forth
environment is inherently provided with an interpreter and a compiler. Both can
be easily extended by defining new words stored in the dictionary. Being Forth a
stack-based language, words use the stack for parameters passing. A command,
or an entire program, is thus just a sequence words. The description of a task
in natural language and its implementation can be thus made very similar. Our
programming environment is composed of some nodes wirelessly deployed and a
wired node that behaves as a bridge to send user inputs to the network. In previ-
ous work [5], we introduced the syntactic construct that implements executable
code exchange among nodes:

tell: 〈code〉 :tell

in which 〈code〉 is a sequence of words, sent as character strings, to be remotely
interpreted by the receiver node. The address of the destination node is left
on the top of the stack. A numeric as well as a string value, can be taken at

60 S. Gaglio et al.

runtime from the top of the stack and inserted in the outgoing packet when
special markers, such as ∼ for numbers and ∼s for strings are encountered.

3 Distributed Processing and Symbolic Reasoning

In our programming environment, purely reactive behaviors can be easily imple-
mented on the remote nodes by sending them the sequence of words to be exe-
cuted if certain conditions are met. Let us consider the following command given
through the CLI of the bridge node:

bcst tell: close-to-window? [if] red led on [then] :tell ;

This command broadcasts (bcst is the reserved address for the purpose) the
code between the tell: and :tell words. Once received, each node executes
the word close-to-window? to evaluate if it is close to the window and, if so
turns the red LED on. The word close-to-window?, already in the dictionary,
performs temperature and luminosity measurements and checks if both sensory
readings are above a predefined threshold. As it can be noticed, the code is quite
understandable, although all the words operate just above the hardware level
by setting ports or enabling the ADCs to read temperature and light exposure.
This code, as well as those in the rest of the paper, has been used on Iris Mote
nodes equipped with the MTS400 sensor board to acquire data about tempera-
ture and light exposure. For the sake of showing how it is possible to incorporate
in our middleware new abstractions to support intelligent applications here we
introduce a Fuzzy Logic extension. Fuzzy Logic has the peculiarity to be appro-
priate to implement approximate reasoning in several contexts as well as for
machine learning purposes [10]. We adopted a classic Forth Fuzzy Logic imple-
mentation [11] that we enriched with the possibility to exchange definitions and
evaluation among nodes. Moving on with the above example, in place of two
crisp variables, the fuzzy variables temp and lightexp can be easily defined on
deployed nodes, using the word fvar to define the related membership functions
(Fig. 1) placed between tell: and :tell. A node can be made measure light
exposure, and fuzzify it with the code:

lightexp measure apply

while the code:

lightexp.low @

pushes onto the stack the truth value by using the built-in word @ (fetch). Rather
than through a thresholding process, a device can establish if it is close to the
window through the evaluation of fuzzy rules in the form:

temp.high @ lightexp.high @ & => close-to-window

where temp.high and lightexp.high are membership functions of the fuzzy
input variable temp and lightexp respectively, and close-to-window is one of
the linguistic labels associated to the output variable. Similarly to the case of
the thresholding process, if both the temperature and the light exposure levels
are high a node can infer to be under sunlight, and thus close to the window.

High-Level Programming and Symbolic Reasoning on IoT Resource 61

Fig. 1. Fuzzy set associated with the fuzzy variable lightexp. On the right side, the
code to define the fuzzy variable lightexp and its membership functions. The definition
domain, corresponding to the raw readings values interval [0,1200], is given before the
word fvar, while the word member defines each of the three trapezoidal membership
functions by using four control points (bottom-left, top-left, top-right, and bottom-
right).

4 Inferring Nodes’ Distribution According
to Thermal Zones

Let us suppose we intend to make the deployed nodes able to discover their
distribution with respect to thermal zones of an environment lighted by some
windows exposed to direct sunlight, and lamps. Each node assesses in turn the
thermal zone it belongs to, and makes the others aware of this information.
We defined the syntactic construct classification to make the nodes able to
classify according to an arbitrary number of fuzzy variables. With the previously
defined input variables temp and lightexp the code:

temp lightexp 2 classification thermal-zone

creates the new word thermal-zone, which is bound to the two fuzzy variables
temp and lightexp. The new word thermal-zone measures the temperature and
luminosity, fuzzifies the crisp inputs and evaluates the rules by storing the fir-
ing strength for each rule, indicating the degree to which the rule matches the
inputs. The rule generation process considers all the possible combinations of all
the membership functions, -i.e. in this case, the set of all ordered pairs (a,b)where
a and b are linguistic terms associated respectively with temp and lightexp.
When handling few variables, this does not cause excessive memory occupation.
It offers instead the advantage of considering a fine-grained classification based
on all the n-tuples, that in this case, are all valid. However, optimization meth-
ods for the reduction of a large scale rule base may be required in real-time fuzzy
systems [2,7,12]. When needed, the table is traversed to compute the member-
ship grade of the output by aggregating all rules. The rule with the maximum
strength is taken as the output membership class. This way, each node is able
to classify itself into one of the thermal zones. To support more sophisticated
behaviors, it is possible to exploit the mechanism of code exchange among nodes
to trigger the process of neighbor discovery in order to keep track of their clas-
sification into thermal-zones. For this purpose, it is necessary to define the table

62 S. Gaglio et al.

nodes-distribution to contain the number of nodes for each thermal zone.
For instance, each device can transmit once, after waiting (word on-timer) for
a time that is function of its unique ID. When its time is elapsed, the word
classification-spread is executed, the node classifies itself into a thermal
zone and then broadcasts the class it belongs to, together with the code to make
the others update the whole distribution. The Forth code required for the entire
process is the following:

: local-update nodes-distribution update ;
: spread dup local-update bcst [tell:] ~ local-update [:tell] ;
: classification-spread thermal-zone spread ;
on-timer ’ classification-spread

in which the word spread creates a message with the code to make the other
devices update locally the nodes-distribution. At the end of the update
process, each node holds the current nodes distribution in terms of thermal
zones, as such:

Class 1 2 3 4 5 6 7 8 9
5 1 0 0 0 0 0 1 1

Five nodes belongs to class 1, one node to class 2 and so on. Each node knows
the number of nodes in the network and their position, without any centralized
computation. Once some nodes are moved from their position to another, and
the process is triggered again, each node is able to detect the new distribution.
Moreover, the analysis of the nodes distribution may lead a node to classify
itself as an outlier, to trigger self-diagnosis operations, and even to take specific
actions, by reasoning about the whole network configuration and its membership
thermal zone. The interactivity granted by our approach permits the program-
mer to communicate with the network through the serial shell of the bridge
node. For instance, the programmer can tell the nodes belonging to class 8 to
turn their red LED on:

bcst tell: thermal-zone 8 class? [if] red led on [then] :tell ;

5 Conclusions

In this paper, we showed how distributed symbolic reasoning can be implemented
on resource constrained IoT devices by exploiting executable code exchange.
Our contribution aims to fill the lack in the absence of programming paradigms
enabling a vast adoption of IoT in everyday life. The possibility to exchange
executable code makes the system adaptive and autonomous, since each node can
evolve on the basis of realtime inputs, in terms of both data and executable code,
from other nodes and from the user. We showed how abstractions and symbolic
expression evaluation can be efficiently incorporated into a programming model
for such networks by exploiting both interpretation and compilation of code.
As an example, we described the syntactic constructs that can be defined to make

High-Level Programming and Symbolic Reasoning on IoT Resource 63

the nodes aware of their position with respect to a subdivision of the environment
into thermal zones. Our methodology reveals suitable for implementing more
advanced behaviors on IoT devices since symbolic reasoning is performed even
on inexpensive and resource constrained microcontrollers.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

2. De Paola, A., Lo Re, G., Pellegrino, A.: A fuzzy adaptive controller for an ambient
intelligence scenario. In: Gaglio, S., Lo Re, G. (eds.) Advances onto the Internet
of Things. AISC, pp. 47–59. Springer, Heidelberg (2014)

3. De Paola, A., Ortolani, M., Lo Re, G., Anastasi, G., Das, S.K.: Intelligent man-
agement systems for energy efficiency in buildings: a survey. ACM Comput. Surv
47(1), 13:1–13:38 (2014)

4. Gaglio, S., Lo Re, G., Martorella, G., Peri, D.: A fast and interactive approach to
application development on wireless sensor and actuator networks. In: Accepted
at the 19th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2014) (2014)

5. Gaglio, S., Re, G.L., Martorella, G., Peri, D.: A lightweight middleware plat-
form for distributed computing on wireless sensor networks. Procedia Com-
put. Sci. 32, 908–913 (2014). http://www.sciencedirect.com/science/article/pii/
S1877050914007108, The 5th International Conference on Ambient Systems, Net-
works and Technologies (ANT-2014), The 4th International Conference on Sus-
tainable Energy Information Technology (SEIT-2014)

6. Guo, B., Zhang, D., Yu, Z., Liang, Y., Wang, Z., Zhou, X.: From the Internet of
things to embedded intelligence. World Wide Web 16(4), 399–420 (2013)

7. Jin, Y.: Fuzzy modeling of high-dimensional systems: complexity reduction and
interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2), 212–221 (2000)

8. Kortuem, G., Kawsar, F., Fitton, D., Sundramoorthy, V.: Smart objects as building
blocks for the internet of things. IEEE Internet Comput. 14(1), 44–51 (2010)

9. Martorella, G., Peri, D., Toscano, E.: Hardware and software platforms for dis-
tributed computing on resource constrained devices. In: Gaglio, S., Lo Re, G.
(eds.) Advances onto the Internet of Things. Advances in Intelligent Systems and
Computing, vol. 260, pp. 121–133. Springer International Publishing, Switzerland
(2014)

10. Navara, M., Peri, D.: Automatic generation of fuzzy rules and its applications in
medical diagnosis. In: Proceedings of the 10th International Conference on Informa-
tion Processing and Management of Uncertainty, Perugia, Italy, vol. 1, pp. 657–663
(2004)

11. VanNorman, R.: Fuzzy Forth. Forth Dimensions 18, 6–13 (1997)
12. Yam, Y., Baranyi, P., Yang, C.T.: Reduction of fuzzy rule base via singular value

decomposition. IEEE Trans. Fuzzy Syst. 7(2), 120–132 (1999)

http://www.sciencedirect.com/science/article/pii/S1877050914007108
http://www.sciencedirect.com/science/article/pii/S1877050914007108

	High-Level Programming and Symbolic Reasoning on IoT Resource Constrained Devices
	1 Introduction
	2 Key Concepts of the Development Methodology
	3 Distributed Processing and Symbolic Reasoning
	4 Inferring Nodes' Distribution According to Thermal Zones
	5 Conclusions
	References

